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The maximum correlation between a function and affine functions
is often called the linearity of the function. In this paper, we deter-
mine an upper bound for the linearity of Exponential Welch Costas
functions using Fourier analysis on Zn . Exponential Welch Costas
functions are bijections on Zp−1, where p is an odd prime, defined
using an exponential function of Zp . Their linearity properties were
recently studied by Drakakis, Requena, and McGuire (2010) [1] who
conjectured that the linearity of an Exponential Welch Costas func-
tion on Zp−1 is bounded from above by O (p0.5+ε), where ε is
a small constant. We prove that the linearity is upper bounded by
2
π

√
p ln p + 4

√
p, which is asymptotically strictly less than what

was previously conjectured.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Linear cryptanalysis [2,3] is a prominent cryptanalytic method that is based on finding linear ap-
proximations over the nonlinear components of the cipher. Fourier analysis is commonly used in
studying the resistance of a component to linear cryptanalysis. It allows us to determine the strongest
linear approximation of a function by finding the largest (nontrivial) absolute value of the Fourier

✩ A version entitled “A Lower Bound for the Nonlinearity of Exponential Welch Costas Functions” appeared in the informal
proceedings of the Seventh International Workshop on Coding and Cryptography, WCC 2011, pp. 397–404.
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coefficients of the function. This quantity is called the linearity of the function and it indicates the
maximum correlation between the function and affine functions. The nonlinearity of the function is
defined as the minimum distance to the set of affine functions: higher distance means lower linearity
and better resistance to linear cryptanalysis. Optimal resistance against linear cryptanalysis is achieved
by bent functions [4,5], which have a flat Fourier spectrum.

Traditional linear cryptanalysis is based on constructing linear approximations over binary vector
spaces. Since some ciphers, such as SAFER [6,7], IDEA [8] and ZUC [9], rely on components that
have simple non-binary representations, the use of other algebraic structures in linear cryptanalysis
has been studied as well: for example, Carlet and Ding [10] studied non-binary functions that have
optimal nonlinearity; Baignères, Stern, and Vaudenay [11] presented several results related to linear
cryptanalysis of ciphers containing non-binary functions. The choice of the algebraic structure affects
how Fourier analysis is applied: if a binary vector space is used, Fourier analysis is also performed on
the same binary vector space. The general notion on linearity and nonlinearity can be defined using
a Fourier transform on arbitrary finite groups, where the chosen groups depend on the definition of
the studied function.

In this paper, we derive an upper bound for the linearity of Exponential Welch Costas (EWC)
functions and their inverses, Logarithmic Welch Costas (LWC) functions, using Fourier analysis on Zn .
EWC and LWC functions are bijections on Zp−1, where p is an odd prime, and they are used as
S-boxes in SAFER with p = 257. Cryptographic properties of EWC and LWC functions have been pre-
viously studied in [12,1]: Drakakis, Gow, and McGuire [12] showed that EWC functions form a class
of almost perfect nonlinear bijections; Drakakis, Requena, and McGuire [1] presented results about
the linearity of EWC functions and conjectured based on empirical evidence that the linearity of an
EWC function on Zp−1 is bounded from above by O (p0.5+ε), where ε is a small constant. We prove
that the linearity of an EWC function is upper bounded by 2

π

√
p ln p + 4

√
p, which is asymptotically

strictly less than the conjectured bound. The bound also shows that EWC functions are asymptotically
highly nonlinear: the linearity is larger by at most a logarithmic factor than the minimum linearity
achieved by generalized bent functions [4,5].

Studying nonlinearities using Fourier analysis reduces into determining the maximum absolute
value of the exponential sum defined by the Fourier transform. The exponential sum studied in this
paper is closely related to the exponential sum introduced and studied by Mordell [13]. The main
difference between these sums is that Mordell’s sum is incomplete and taken over pth roots of unity,
while the sum in this paper is complete and taken over (p − 1)th roots of unity. Our analysis is also
different, but contains analogical elements since the results depend on similar trigonometric sums.
A fundamental lemma in our analysis is related to the linearity of mappings from Zn into Zn−1,
where n is any integer with n � 3. The lemma is not exclusive to the analysis in this paper and can
be applied in other similar cases as well. The linearity of mappings between Zn and Zn−1 has also
been considered by Zhou, Feng, and Wu [14] who focused on studying binary linear approximations of
addition modulo 2m − 1 using known results on binary linear approximations of addition modulo 2m .
Their results can be applied for binary linear cryptanalysis of ZUC which uses addition modulo 2m − 1
as a basic arithmetic operation with m = 31.

2. Preliminaries

In this section, we recall some definitions from [12,1] and set up the notation. Let n be a positive
integer. We use Zn to denote the ring of integers modulo n, p to denote an odd prime, and g to
denote a generator of the multiplicative group Z

∗
p . We also denote e(z) = exp(2π iz) and en(z) =

e(z/n) for a real number z. The exponential function of Zp is a mapping from Zp−1 to Z
∗
p defined as

x �→ gx mod p. If we consider Zp−1 to be the set {0,1, . . . , p − 2} and Z
∗
p to be the set Zp \ {0} =

{1,2, . . . , p − 1}, then EWC functions can be defined as follows:

Definition 1. An Exponential Welch Costas function is a mapping f : Zp−1 → Zp−1 defined as

f (x) = (
gx mod p

) − 1.

Its inverse function f −1(x) = logg(x + 1) is called a Logarithmic Welch Costas function.
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The linearity and nonlinearity of a function can be defined using its Fourier transform in the
following way:

Definition 2. The Fourier transform of f : Zn → Zm at α ∈ Zn and β ∈ Zm is defined by

f̂ (α,β) =
∑
x∈Zn

em
(
β f (x)

)
en(αx).

Definition 3. The linearity of f : Zn → Zm is defined by

L( f ) = max
α∈Zn

max
β∈Zm
β �=0

∣∣ f̂ (α,β)
∣∣.

Definition 4. The nonlinearity of f : Zn → Zm is defined by

NL( f ) = n −L( f )

m
.

It is not hard to show that a bijection and its inverse have the same nonlinearity [1, Theorem 2].
Also, the nonlinearity of an EWC function depends only on the prime p, not on the generator g of Z∗

p
[1, Theorem 3]. It follows that all EWC and LWC functions over Zp−1 have the same nonlinearity.

3. Linearity of Exponential Welch Costas functions

In this section, we derive an upper bound for the linearity of an EWC function. The bound can be
used to obtain a lower bound for the nonlinearity. Let p be an odd prime and f : Zp−1 → Zp−1 be an
EWC function defined by

f (x) = (
gx mod p

) − 1.

We obtain an upper bound for

∣∣ f̂ (α,β)
∣∣ =

∣∣∣∣∣
p−2∑
x=0

ep−1
(
β f (x)

)
ep−1(αx)

∣∣∣∣∣
for α,β ∈ Zp−1 with β �= 0. The analysis of this sum is problematic since two different modulo opera-
tions, mod p and mod p − 1, are mixed in the term ep−1(β f (x)). Thus, in the proof of Theorem 1, we
formulate ep−1(β f (x)) as a sum, where f (x) is given as an argument for ep(·) instead of ep−1(·). The
final expression consists of two sums that can be bounded individually using the results of Lemmas 1
and 2. Lemma 1 was shown by Drakakis et al. [1] and used to approximate the average linearity of f ,
but we also present the proof here for completeness. It gives an upper bound for the linearity of the
mapping from Zp−1 to Zp defined by x �→ (gx mod p) − 1. Lemma 2 gives crucial information about
the linearity of the mapping from Zp into Zp−1 defined by x �→ x mod p − 1.

Lemma 1. For any integers α ∈ Zp−1 and r ∈ Zp with r �= 0, we have

∣∣∣∣∣
p−2∑
x=0

ep
(
r f (x)

)
ep−1(αx)

∣∣∣∣∣ �
√

p.
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Proof. Denote

W =
p−2∑
x=0

ep
(
r f (x)

)
ep−1(αx).

We get

|W |2 =
p−2∑

x,y=0

ep
(
r
(

gx − g y))ep−1
(
α(x − y)

)

=
p−2∑
z=0

ep−1(αz)
p−2∑
y=0

ep
(
rg y(gz − 1

))
.

Since

p−2∑
y=0

ep
(
rg y(gz − 1

)) =
{

p − 1 if z = 0 or r = 0,

−1 otherwise,

we obtain

|W |2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p − 1)2 if α = r = 0,

0 if α �= 0, r = 0,

1 if α = 0, r �= 0,

p if α, r �= 0,

and the result follows. �
We use the ideas presented in the proof of Lemma 8.80 in [15] to prove the following result:

Lemma 2. For any integers p � 3 and β ∈ Zp−1 with β �= 0, we have

p−1∑
r=0

∣∣∣∣∣
p−2∑
y=0

ep−1(β y)ep(−ry)

∣∣∣∣∣ <
2

π
p ln p + 4p.

Proof. Denote

S(r) =
p−2∑
y=0

ep−1(β y)ep(−ry).

For an integer r ∈ Zp , we have

S(r) =
p−2∑
y=0

ep−1(β y)ep(−ry) =
p−2∑
y=0

e

(
β y

p − 1
− ry

p

)

=
p−2∑
y=0

e

((
β

p − 1
− r

p

)
y

)
= e(ϕ(r)(p − 1)) − 1

e(ϕ(r)) − 1
,
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where we denote

ϕ(r) = β

p − 1
− r

p
.

Thus,

∣∣S(r)
∣∣ = | sinπϕ(r)(p − 1)|

| sinπϕ(r)| .

Let R ′ denote the set {β − 1, β,β + 1, β + 2} ⊆ Zp . We will find an upper bound for
∑p−1

r=0 |S(r)|
by comparing sums with integrals. For this purpose, we first find individual upper bounds for |S(r)|,
r ∈ R ′ , since the divisor | sinπϕ(r)| in |S(r)| is close to zero when r ∈ R ′ . For s � 6, we have

(
π

s

)−1

sin

(
π

s

)
�

(
π

6

)−1

sin

(
π

6

)
, so sin

(
π

s

)
� 3

s
.

It follows that

1

| sinπϕ(r)| = 1

sinπ |ϕ(r)| �
1

3|ϕ(r)| (1)

holds if |ϕ(r)| � 1/6. Since 1 � β � p − 2, we have |ϕ(r)| < 2/p for all r ∈ R ′ . Therefore, (1) holds for
p � 12 and r ∈ R ′ . Since also | sin θ | � |θ | for all θ , we get

∣∣S(r)
∣∣ = | sinπϕ(r)(p − 1)|

| sinπϕ(r)| � |πϕ(r)(p − 1)|
3|ϕ(r)| = π

3
(p − 1) (2)

for p � 12 and r ∈ R ′ . We then estimate the remaining part of the sum. Suppose that p � 5 and let R
denote the set Zp \ R ′ . Since | sin θ | = | sin(−θ)| = | sin(π − θ)| for all θ , we obtain

∑
r∈R

∣∣S(r)
∣∣ =

β−2∑
r=0

∣∣S(r)
∣∣ +

p−1∑
r=β+3

∣∣S(r)
∣∣

=
β+p−2∑

r=p

∣∣S(r)
∣∣ +

p−1∑
r=β+3

∣∣S(r)
∣∣ =

β+p−2∑
r=β+3

∣∣S(r)
∣∣

�
β+p−2∑
r=β+3

1

| sinπϕ(r)| =
β+p−2∑
r=β+3

∣∣cscπϕ(r)
∣∣

=
β+p−2∑
r=β+3

csc

(
π

(
r

p
− β

p − 1

))

�
β+p−1∫
β+2

csc

(
π

(
t

p
− β

p − 1

))
dt.
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We denote u = π(t/p − β/(p − 1)), so t = pu/π + βp/(p − 1) and dt = (p/π)du. Let

θ1 = π

(
β + 2

p
− β

p − 1

)
= π

(
2p − 2 − β

p(p − 1)

)

and

θ2 = π

(
β + p − 1

p
− β

p − 1

)
= π

(
1 − p − 1 + β

p(p − 1)

)
.

Since 1 � β � p − 2, we have θ1 � π/(p − 1) and π − θ2 � π/(p − 1). Therefore,

∑
r∈R

∣∣S(r)
∣∣ � p

π

θ2∫
θ1

csc u du � 2p

π

π/2∫
π/(p−1)

csc u du

= −2p

π
ln tan

π

2(p − 1)
= 2p

π
ln cot

π

2(p − 1)

� 2p

π
ln

2(p − 1)

π
= 2p

π
ln

2

π
+ 2p

π
ln(p − 1) (3)

for p � 5. From (2) and (3), we get

p−1∑
r=0

∣∣S(r)
∣∣ � 4π

3
(p − 1) + 2p

π
ln

2

π
+ 2p

π
ln(p − 1)

=
(

4π

3
+ 2

π
ln

2

π

)
p + 2p

π
ln(p − 1) − 4π

3

<
2

π
p ln p + 4p

for p � 12. This inequality can be quickly checked for 3 � p � 11, so the result follows. �
Theorem 1. Let f be an EWC function and p be an odd prime. Then

L( f ) <
2

π

√
p ln p + 4

√
p.

Proof. Let α,β ∈ Zp−1 be integers with β �= 0. We have

f̂ (α,β) =
p−2∑
x=0

ep−1
(
β f (x)

)
ep−1(αx).

For integers z, y, and n with n � 2, we have

n−1∑
r=0

en
(
r(z − y)

) =
{

n if y ≡ z mod n,

0 if y �≡ z mod n,

so
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ep−1
(
β f (x)

) = 1

p

p−2∑
y=0

ep−1(β y)

p−1∑
r=0

ep
(
r
(

f (x) − y
))

= 1

p

p−1∑
r=0

p−2∑
y=0

ep−1(β y)ep
(
r f (x)

)
ep(−ry).

The value r = 0 can be omitted from the sum above since
∑p−2

y=0 ep−1(β y) = 0. By Lemmas 1 and 2,
we obtain

∣∣ f̂ (α,β)
∣∣ =

∣∣∣∣∣
p−2∑
x=0

1

p

p−1∑
r=1

p−2∑
y=0

ep−1(β y)ep
(
r f (x)

)
ep(−ry)ep−1(αx)

∣∣∣∣∣

� 1

p

p−1∑
r=1

∣∣∣∣∣
p−2∑
y=0

ep−1(β y)ep(−ry)

∣∣∣∣∣
∣∣∣∣∣

p−2∑
x=0

ep
(
r f (x)

)
ep−1(αx)

∣∣∣∣∣
<

2

π

√
p ln p + 4

√
p. �

4. Conclusion

We derived an upper bound for the linearity of EWC (and LWC) functions. The bound shows that
EWC functions are asymptotically more nonlinear than previously conjectured in [1]. We can also
conclude that the asymptotic nonlinearity of EWC functions is high: their linearity is larger by at
most a logarithmic factor than the minimum linearity achieved by generalized bent functions [4,5].

The techniques involved in the paper and specifically the result of Lemma 2 are not exclusive to
the analysis of EWC functions: they can be used when two different modulo operations are mixed in
a similar manner as in EWC functions.
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