
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 256 (2009) 2123–2156

www.elsevier.com/locate/jfa

Spectral analysis of the semi-relativistic Pauli–Fierz
hamiltonian

Tadahiro Miyao ∗, Herbert Spohn

Zentrum Mathematik, Technische Universität München, D-85747 Garching, Germany

Received 2 June 2008; accepted 23 September 2008

Available online 5 October 2008

Communicated by L. Gross

Abstract

We consider a charged particle, spin 1
2 , with relativistic kinetic energy and minimally coupled to the

quantized Maxwell field. Since the total momentum is conserved, the Hamiltonian admits a fiber decompo-
sition as H(P ), P ∈ R

3. We study the spectrum of H(P ). In particular we prove that, for non-zero photon
mass, the ground state is exactly two-fold degenerate and separated by a gap, uniformly in P , from the rest
of the spectrum.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let us consider a classical point charge, charge e, mass M , position q , velocity q̇ , coupled to
the Maxwell field with electric field E and magnetic field B . The coupling to the field is through
a rigid charge distribution ϕ : R

3 → R+ normalized as
∫

dx ϕ(x) = 1. Then the equations of
motion for the coupled system read, in units where c = 1,

∂

∂t
B = −∇ ∧ E,

∂

∂t
B = ∇ ∧ E − eϕ(· − q)q̇,

∇ · E = eϕ(· − q), ∇ · B = 0,
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d

dt

(
M

(
1 − q̇2)−1/2

q̇
) = e

(
E ∗ ϕ(q) + q̇ ∧ (B ∗ ϕ)(q)

)
(1)

with ∗ denoting convolution. The uncoupled system, e = 0, is Lorentz invariant. But the choice
of the rigid charge distribution singles out a specific reference frame and hence makes the model
semi-relativistic, only.

The canonical quantization of (1) results in a quantum evolution governed by the semi-
relativistic Pauli–Fierz hamiltonian. Our goal is to study spectral properties of this operator.
While the nonrelativistic counterpart has been investigated in considerable detail, no spectral
results seem to be available for the semi-relativistic case.

The quantization procedure for (1) is described, e.g., in [24]. One writes (1) in Lagrangian
form and Legendre transforms to Hamiltonian structure in using the Coulomb gauge. Since our
prime example will be an electron (charge −e), we want to include spin 1

2 . As for the nonrela-
tivistic hamiltonian this amounts to replacing (p+eA)2 by (σ · (p+eA))2 with σ the 3-vector of
Pauli spin matrices. As a result one obtains the semi-relativistic Pauli–Fierz hamiltonian, which
is given by

Hsr =
√(

σ · (−i∇x + eA(x)
))2 + M2 + Hf. (2)

Without restriction of generality we set e � 0. Hsr acts in L2(R3;C
2)⊗F, where F is the photon

Fock space

F =
∑
n�0

⊕
L2(

R
3 × {1,2})⊗sn.

A(x) is the quantized vector potential defined through

A(x) =
∑

λ=1,2

∫
|k|�Λ

dk√
2(2π)3ω(k)

ε(k,λ)
(
eik·xa(k,λ) + e−ik·xa(k,λ)∗

)
,

where ε(k,λ), λ = 1,2, is the pair of polarization vectors. k/|k|, ε(k,1), ε(k,2) are a dreibein
depending measurably on k. For convenience we use the sharp ultraviolet cutoff Λ which cor-
responds to setting ϕ̂(k) = (2π)−3/2 for |k| � Λ and ϕ̂(k) = 0 otherwise, ˆ denoting Fourier
transform. Our results are equally valid for a smooth cutoff. a(k,λ), a(k,λ)∗ are the annihilation
and creation operators which satisfy the standard commutation relations

[
a(k,λ), a(k′, λ′)∗

] = δλλ′δ(k − k′),[
a(k,λ), a(k′, λ′)

] = 0 = [
a(k,λ)∗, a(k′, λ′)∗

]
.

Hf is the field energy,

Hf =
∑

λ=1,2

∫
3

dk ω(k)a(k,λ)∗a(k,λ). (3)
R
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For the Maxwell field the dispersion relation is

ω(k) = |k|.
Mathematically it is convenient to introduce the photon mass mph through the choice

ω(k) =
√

k2 + m2
ph.

Readers will find more precise definitions of A(x) and Hf in Appendix A.

Remark 1. For a fixed configuration of the vector potential the classical hamiltonian function is

Hcl(p, q) =
√(

p − eA(q)
)2 + M2. (4)

We picked here the “naive” quantization p � −i∇x , q � x, which is fairly common in the
physics community [3]. Alternatives would be either Weyl or magnetic Weyl quantization [16].

By translation invariance the total momentum, i.e., the sum of the momentum of the charge
and the field momentum, is conserved. The generator of translations is the total momentum
operator Ptot = −i∇x + Pf with

Pf =
∑

λ=1,2

∫
R3

dk ka(k,λ)∗a(k,λ).

It strongly commutes with the hamiltonian Hsr, namely, exp[−ia · Ptot] exp[−itHsr] =
exp[−itHsr] exp[−ia · Ptot] for all a ∈ R

3 and t ∈ R. Therefore Hsr admits the direct integral
decomposition

U Hsr U ∗ =
∫
R3

⊕
Hsr(P )dP, (5)

Hsr(P ) =
√(

P − Pf + eA(0)
)2 + σ · B(0) + M2 + Hf (6)

acting in C
2 ⊗ F, B(0) = ∇ ∧ A(0). The unitary U is defined by U = Fx exp[ix · Pf] where

Fx is the Fourier transformation with respect to x. We will provide a mathematically rigorous
definition of Hsr and Hsr(P ) in Section 2.

As the most basic information on Hsr(P ) we want to study its spectral gap and the multiplicity
of its ground state. To have a guideline, one restricts Hsr(P ) with e = 0 to one-photon excitations
only [6]. Then this restricted operator has a single, doubly degenerate eigenvalue

Er
0(P ) =

√
P 2 + M2 (7)

and continuous spectrum with bottom

Er
c(P ) = inf

(√
(P − k)2 + M2 + ω(k)

)
. (8)
k
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Now in the non-relativistic case, kinetic energy P 2/2M , the corresponding version of (7), (8)
imply that for small P there is a gap which vanishes at Pc, Pc 
 M . On the other hand for
the semi-relativistic case, (7), (8) imply that the restricted hamiltonian has a spectral gap which
closes as 1/|P | for |P | → ∞.

One of our long term goals is to control the effective dynamics of a charge subject to slowly
varying external potentials and coupled to the radiation field as in (2). Very crudely, one consid-
ers the subspace of L2(R3;C

2) ⊗ F spanned by the ground states of Hsr(P ) with P ∈ R
3 and

constructs the effective dynamics as an approximate solution to the full dynamics lying close to
that subspace. In principle this problem can be handled by space-adiabatic perturbation theory
[19,25,26], which as one basic input uses that Hsr(P ) has a uniform spectral gap, i.e., for all
P ∈ R

3,

inf
{
spec

(
Hsr(P )

) \ {
Esr(P )

}} − Esr(P ) =: Cg(P ) � C0 > 0, (9)

where Esr(P ) = inf spec(Hsr(P )). The heuristic argument above indicates that Hsr(P ) does not
satisfy the gap condition (9). Of course, one could imagine to avoid the uniform gap through a
suitable restriction on the allowed initial wave functions. But this seems to be a major technical
enterprise. Therefore we propose to modify somewhat Hsr(P ) such that the small energy behav-
ior is changed only little, while at large P the gap condition (9) holds. The simplest way is to put
a factor γ , 0 < γ � 1, in front of the square root, to say, (2) is modified to

H = γ

√(
σ · (−i∇x + eA(x)

))2 + M2 + Hf. (10)

Then (4) carries a prefactor γ and (5), (6) are modified to

U H U ∗ =
∫
R3

⊕
H(P )dP, (11)

H(P ) = γ

√(
P − Pf + eA(0)

)2 + σ · B(0) + M2 + Hf. (12)

The heuristics based on (7) and (8) indicates that H(P ) should have a uniform gap and this will
be one of the main results of our paper.

To get started we have to ensure the self-adjointness of H and of H(P ), see Section 2 for
details.

Proposition 1.1. For any 0 < γ � 1,Λ < ∞ and 0 � mph, there exists e∗ > 0 such that, for all
e < e∗, H is self-adjoint on dom(|−i∇x |) ∩ dom(Hf). Moreover H is essentially self-adjoint on
any core of the free Hamiltonian H0 = γ

√
−�x + M2 + Hf.

Proposition 1.2. Choose γ,Λ,mph arbitrarily as Proposition 1.1. Let e∗ be given by Proposi-
tion 1.1. Then, for all e < e∗ and P ∈ R

3, H(P ) is self-adjoint on dom(Hf). Moreover H(P ) is
essentially self-adjoint on any core of the operator H0(P ) = γ

√
(P − Pf)2 + M2 + Hf.

Remark 2. There are further parts of our proof which will require small e∗. Therefore we did
not attempt to optimize e∗ in every step.
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The spectral analysis of the nonrelativistic Pauli–Fierz hamiltonian was initiated by J. Fröhlich
in his PhD thesis [6]. Our first main result is the extension of his methods to the semi-relativistic
case. While the result could be anticipated from [6,17,23], the actual proof is surprisingly tech-
nical, since the minimal coupling is under the square root, see Section 3.

Theorem 1.3. Set Λ,γ,mph arbitrarily as in Proposition 1.2. Choose e as e < e∗. Let

�(P ) = inf
k∈R3

(
E(P − k) + ω(k) − E(P )

)
where

E(P ) = inf spec
(
H(P )

)
, Σ(P ) = inf ess.spec

(
H(P )

)
.

Then one has

Σ(P ) − E(P ) = �(P )

for all P ∈ R
3.

If mph > 0 and γ < 1 it is easily seen that �(P ) � C0 > 0 uniformly. However this does not
yet establish a spectral gap in the sense of (9), because beyond the ground state there could be
other eigenvalues in the interval [E(P ),Σ(P )]. In the literature there are two methods to count
the number of eigenvalues. One is through positive commutator, Mourre type estimates and the
other uses a pull through in order to estimate the overlap between the Fock vacuum and the
ground state. For sufficiently small P both methods yield the desired result. However, a uniform
bound on the spectral gap seems to be difficult to achieve by such techniques. Therefore we
introduce a novel method based on operator monotonicity, which we learned from the masterly
works of Lieb and Loss [13,14], together with the min-max principle. While the case γ = 1 is
not worked out detail, our method is still available to investigate the spectral gap of Hsr(P ).

Progressed so far, one still has to determine the degeneracy of the ground state. For the non-
relativistic Pauli–Fierz model this is discussed in [12]. Later on we learned a very simple and
general argument from M. Loss. We reproduce his result and show that it is applicable to the
semi-relativistic Pauli–Fierz hamiltonian.

We summarize our main result in

Theorem 1.4. Fix 0 < γ < 1 and 0 < mph. Then there exists e∗ > 0 independent of P , such that,
for all e < e∗ and P ∈ R

3, the following properties hold.

(i) One has

Σ(P ) − E(P ) � (1 − γ )mph − ec1 − O
(
e2) > 0

for all P ∈ R
3, where c1 and O(e2) are independent of P . In particular E(P ) is an eigen-

value.
(ii) One has

inf
{
spec

(
H(P )

) \ {
E(P )

}} − E(P ) � (1 − ec2 − γ )mph − ec3 − O
(
e2) (13)
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for all P , where c2, c3 and O(e2) are independent of P .
(iii) E(P ) is exactly doubly degenerate.

Remark 3. We remark that the lowest energy E(P ) and a possible spectral gap are also of
importance, e.g., in scattering theory. We refer to [1,7,8,10,11,22] for the investigation of related
models and to [2] for E(P ) when the infrared cutoff is removed.

This paper is organized as follows. In Section 2 we define the semi-relativistic Pauli–Fierz
Hamiltonians and prove Propositions 1.1 and 1.2. In Section 3 we prove Theorem 1.3. Section 4
is devoted to show the degeneracy of eigenvalues by Kramers’ degeneracy theorem. In Section 5
some energy inequalities are established. We prove Theorem 1.4 in Section 6. Some auxiliary
results are proven in Appendices A–E.

2. Self-adjointness

2.1. Dirac operators

As a preliminary, we introduce two Dirac operators which will simplify our study.
Let us define a Dirac operator D by

D = α · (−i∇x + eA(x)
) + Mβ

living in L2(R3;C
4) ⊗ F. This is essentially self-adjoint on C∞

0 (R3;C
4) ⊗ Ffin by the Nelson’s

commutator theorem [20] with the test operator −�x + Hf. Here

Ffin = Lin
{
a(f1)

∗ . . . a(fn)
∗Ω, Ω

∣∣ f1(·, λ1), . . . , fn(·, λn) ∈ C∞
0

(
R

3)
for all λ1, . . . , λn ∈ {1,2} and n ∈ N

}
,

where Lin{. . .} means the linear span of the set {. . .} and Ω is the Fock vacuum defined by
Ω = 1 ⊕ 0 ⊕ 0 ⊕ · · · . We denote the closure of D by the same symbol. We note that

D2 = T + M2,

|D| =
√

T + M2,

where the self-adjoint operator T is expressed as

T =
(

(σ · (−i∇x + eA(x)))2 0
0 (σ · (−i∇x + eA(x)))2

)

on C∞
0 (R3;C

4) ⊗ Ffin.
Next let us define the following Dirac operator

D(P ) = α · (P − Pf + eA(0)
) + Mβ

acting in C4 ⊗ F. Again this is essentially self-adjoint on C4 ⊗ Ffin by the Nelson’s commutator
theorem with a test operator Hf. We denote its closure by the same symbol. Then one can easily
observe that
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U DU ∗ =
∫
R3

⊕
D(P )dP,

D(P )2 = T (P ) + M2,∣∣D(P )
∣∣ =

√
T (P ) + M2,

where the action of the self-adjoint operator T (P ) is concretely given as

T (P ) =
(

(σ · (P − Pf + eA(0)))2 0
0 (σ · (P − Pf + eA(0)))2

)

on C
4 ⊗ Ffin.

2.2. Definition of the Hamiltonians

Our definition of H and H(P ) are as follow:

H = γ |D| + Hf,

H(P ) = γ |D(P )| + Hf.

In this paper we occasionally identify a direct sum operator A ⊕ A with A if no confusion
occurs. Hence the above definitions mean that H ⊕ H = γ |D| + Hf ⊕ Hf and H(P ) ⊕ H(P ) =
γ |D(P )| + Hf ⊕ Hf.

2.3. Proof of Proposition 1.1

For each ϕ ∈ C∞
0 (R3;C

4) ⊗ Ffin, one has

∥∥|D|ϕ∥∥2 = 〈
ϕ,D2ϕ

〉
� const

∥∥(H0 + 1)ϕ
∥∥2

.

Since C∞
0 (R3;C

4) ⊗ Ffin is a core of H0, one concludes that dom(H0) ⊆ dom(|D|). Also note
that, for D0 := α · (−i∇x) + Mβ , one has dom(H0) ⊆ dom(|D0|). Let HI be the interaction term
given by

HI = |D| − |D0|.

By the above arguments, dom(H0) ⊆ dom(HI) holds. Using the formula

|a| = 1

π

∞∫
0

dt
1√
t

a2

t + a2
, (14)

one has
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|D| − |D0|

= 1

π

∞∫
0

dt
√

t
(
t + D2)−1{2eA(x) · (−i∇x

) + e2A(x)2 + eσ · B(x)
}(

t + D2
0

)−1
, (15)

where B(x) = ∇x ∧ A(x). Observe that

∥∥Aj(x)(−i∂j )
(
t + D2

0

)−1
(H0 + 1)−1

∥∥
�

∥∥Aj(x)(−i∂j )|−i∂j |−1/2(H0 + 1)−1
∥∥∥∥|−i∂j |1/2(t + D2

0

)−1∥∥
� const t−3/4

for j = 1,2,3, and

∥∥A(x)2(H0 + 1)−1
∥∥ � const,∥∥σ · B(x)(H0 + 1)−1
∥∥ � const.

Combining these with (15), one obtains

∥∥HI(H0 + 1)−1
∥∥ � const

(
e + e2) ∞∫

0

dt
√

t
(
t + M2)−1{

t−3/4 + (
t + M2)−1}

� O(e). (16)

Hence there exists e∗ such that ‖HI(H0 + 1)−1‖ < 1 for all e < e∗. Now we can apply the Kato–
Rellich theorem [20] to obtain the assertion in Proposition 1.1.

2.4. Proof of Proposition 1.2

By (16), one has

‖HIψ‖ � O(e)
∥∥(H0 + 1)ψ

∥∥. (17)

For each k0 ∈ R
3, choose ψ as U ψ = |Bε,k0 |−1/2χBε,k0

⊗ ϕ where ϕ ∈ C
2 ⊗ Ffin, χS is the

characteristic function of the set S, Bε,k0 = {k ∈ R
3 | |k − k0| < ε} and |Bε,k0 | = 4πε3/3. It

follows from (17) that

|Bε,k0 |−1
∫

Bε,k0

dk
∥∥HI(k)ϕ

∥∥2 � O
(
e2)|Bε,k0 |−1

∫
Bε,k0

dk
∥∥(

H0(k) + 1
)
ϕ
∥∥2

, (18)

where HI(P ) = |D(P )| − |D0(P )|. Since HI(P )ϕ and (H0(P ) + 1)ϕ are strongly continuous
in P , we can take the limit as ε ↓ 0 and obtain that∥∥HI(k0)ϕ

∥∥ � O(e)
∥∥(

H0(k0) + 1
)
ϕ
∥∥.
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Since k0 is arbitrary and C
2 ⊗ Ffin is a core of H0(P ), we have that ‖HI(P )(H0(P ) + 1)−1‖ �

O(e) for all P . Now we can apply the Kato–Rellich theorem [20] and obtain the assertion in the
proposition. �
3. Spectral properties

3.1. Preliminaries

In this section, we will prove Theorem 1.3. To this end, we need some preliminaries.
Let j1 and j2 be two localization functions on R

3 so that j2
1 + j2

2 = 1 and j1 is supported in
a ball of radius R. For each vector f = f (k,λ) in L2(R3 × {1,2}), we define an operator Ji

(i = 1,2) by

(Jif )(k, λ) = ji(−i∇k)f (k,λ).

Now we define a linear operator J : L2(R3 × {1,2}) → L2(R3 × {1,2}) ⊕ L2(R3 × {1,2}) by

J f = J1f ⊕ J2f

for each f ∈ L2(R3 × {1,2}).
Let U be the natural isometry from F(L2(R3 × {1,2}) ⊕ L2(R3 × {1,2})) to F ⊗ F where

F(L2(R3 ×{1,2})⊕L2(R3 ×{1,2})) is the Fock space over L2(R3 ×{1,2})⊕L2(R3 ×{1,2}),
see Appendix A. Concrete action of U is given by

Ua(f1 ⊕ g1)
∗ . . . a(fn ⊕ gn)

∗Ω⊕

= [
a(f1)

∗ ⊗ 1 + 1 ⊗ a(g1)
∗] . . .

[
a(fn)

∗ ⊗ 1 + 1 ⊗ a(gn)
∗]Ω ⊗ Ω,

where Ω⊕ is the Fock vacuum in F(L2(R3 × {1,2}) ⊕ L2(R3 × {1,2})). The following operator

Γ̌ (J ) := UΓ (J )

plays an important role in our proof. The importance of Γ̌ (J ) was discovered by Dereziński
and Gérard [4].

In Appendix C we show the following formula.

Lemma 3.1 (Localization formula). Let

H⊗(P ) = γ

√{
σ · (P − Pf ⊗ 1 − 1 ⊗ Pf + eA(0) ⊗ 1

)}2 + M2 + Hf ⊗ 1 + 1 ⊗ Hf

acting in C
2 ⊗ F ⊗ F. Choose e as e < e∗, where e∗ is given in Proposition 1.2. Then, for all

ϕ ∈ C2 ⊗ Ffin ⊗ Ffin, one obtains

∣∣〈ϕ,
(
H(P ) − Γ̌ (J )∗H⊗(P )Γ̌ (J )

)
ϕ
〉∣∣ � oR(1)

∥∥(
H(P ) + 1

)
ϕ
∥∥2

,

where oR(1) is a function of R vanishing as R → ∞.
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Finally we note the following lemma.

Lemma 3.2. One has

H⊗(P ) � E(P ) + �(P )(1 − PΩ),

where PΩ is the orthogonal projection onto C
2 ⊗ F ⊗ Ω .

Proof. Remark the following natural identification,

C
2 ⊗ F ⊗ F =

⊕∑
n�0

C
2 ⊗ F ⊗ L2(

R
3 × {1,2})⊗sn.

Set Hn = C
2 ⊗F⊗L2(R3 ×{1,2})⊗sn. Each vector ϕ ∈ Hn can be expressed as a C

2 ⊗F-valued
symmetric function on (R3 × {1,2})×n:

ϕ = ϕ(k1, λ1, . . . , kn, λn).

Under this identification, the action of H⊗(P ) is given by

(
H⊗(P )ϕ

)
(k1, λ1, . . . , kn, λn)

=
(

H

(
P −

n∑
i=1

ki

)
+

n∑
i=1

ω(ki)

)
ϕ(k1, λ1, . . . , kn, λn)

for a suitable ϕ ∈ Hn. Thus, using the triangle inequality ω(k1 + k2) � ω(k1) + ω(k2), one has

〈
ϕ,H⊗(P )ϕ

〉 = ∑
λ1,...,λn=1,2

∫
dk1 . . .dkn

〈
ϕ(k1, λ1, . . . , kn, λn),

(
H

(
P −

n∑
i=1

ki

)
+

n∑
i=1

ω(ki)

)
ϕ(k1, λ1, . . . , kn, λn)

〉

�
(
�(P ) + E(P )

)‖ϕ‖2.

For n = 0, we have H⊗(P ) � H0 = H(P ). Combining the results, one reaches the assertion in
the lemma. �
3.2. Proof of Theorem 1.3

3.2.1. Lower bound of Σ(P ) − E(P )

In this sub-subsection, we will show the following lower bound.

Proposition 3.3. Choose e < e∗. Then one has that Σ(P ) − E(P ) � �(P ).



T. Miyao, H. Spohn / Journal of Functional Analysis 256 (2009) 2123–2156 2133
Proof. For any λ ∈ ess.spec(H(P )), we can find a sequence {ϕn}n such that ‖ϕn‖ = 1,
w- limn→∞ ϕn = 0 and limn→∞ ‖(H(P ) − λ)ϕn‖ = 0. For each n ∈ N, one has

〈
ϕn,H(P )ϕn

〉
�

〈
ϕn, Γ̌ (J )∗H⊗(P )Γ̌ (J )ϕn

〉 − oR(1)
∥∥(

H(P ) + 1
)
ϕ
∥∥2

by Lemma 3.1. Thus using Lemma 3.2 one gets

〈
ϕn,H(P )ϕn

〉
� E(P ) + �(P ) − �(P )

∥∥PΩΓ̌ (J )ϕn

∥∥2 − oR(1)
∥∥(

H(P ) + 1
)
ϕn

∥∥2
. (19)

First we will show that limn→∞ ‖PΩΓ̌ (J )ϕn‖ = 0. Remark that ‖PΩΓ̌ (J )ϕn‖ =
‖Γ (J1)ϕn‖. With Nf the number operator given by

Nf =
∑

λ=1,2

∫
R3

dk a(k,λ)∗a(k,λ),

we also remark that 〈ϕn,Nfϕn〉 is uniformly bounded in n because

〈ϕn,Nfϕn〉 � m−1
ph 〈ϕn,Hfϕn〉 � m−1

ph

〈
ϕn,H(P )ϕn

〉
.

Thus ‖(1 − χN(Nf))Γ (J1)ϕ‖ � ‖(1 − χN(Nf))ϕn‖ = oN(1) holds where oN(1) is a func-
tion of N , independent of n, vanishing as N → ∞. Here χN(s) = 1 if 0 � s � N and
χ(s) = 0 otherwise, moreover χN(Nf) is defined by the functional calculus. On the other hand,
χN(Nf)(Hf + 1)−1/2Γ (J1) is compact for all N . Thus one finds that

∥∥PΩΓ̌ (J )ϕn

∥∥2

� 2
∥∥χN(Nf)Γ (J1)ϕn

∥∥2 + 2
∥∥(

1 − χN(Nf)
)
ϕn

∥∥2

= 2
〈
χN(Nf)(Hf + 1)−1/2Γ (J1)

2ϕn, (Hf + 1)1/2ϕn

〉 + oN(1)

= 2
∥∥χN(Nf)(Hf + 1)−1/2Γ (J1)

2ϕn

∥∥∥∥(Hf + 1)1/2(H(P ) + 1
)−1/2∥∥

× ∥∥(
H(P ) + 1

)1/2
ϕn

∥∥ + oN(1).

First we take the limit n → ∞. Then, by the compactness of the linear operator χN(Nf)(Hf +
1)−1/2Γ (J1), the vector χN(Nf)(Hf + 1)−1/2Γ (J1)

2ϕn converges to 0 strongly which im-
plies that lim supn→∞ ‖PΩΓ̌ (J )ϕn‖ � oN(1). Then taking N → ∞, one concludes that
limn→∞ ‖PΩΓ̌ (J )ϕn‖ = 0.

Taking the limit n → ∞ in both side of (19), one finds

λ � E(P ) + �(P ) − oN(1)(λ + 1)2.

Finally taking R → ∞, one obtains the desired assertion. �
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3.2.2. Upper bound of Σ(P ) − E(P )

We will complete our proof of Theorem 1.3 by showing the following upper bound.

Proposition 3.4. Choose e as e < e∗. Then we have that Σ(P ) − E(P ) � �(P ).

Proof. For notational simplicity we set γ = 1 in this proof. For each k0 ∈ R3, let us define

fε,k0 = |Bε,k0 |−1/2χBε,k0
,

Bε,k0 = {
k ∈ R

3
∣∣ |k − k0| � ε

}
,

where χA is the characteristic function of the measurable set A and |A| means the Lebesgue
measure of A. Choose a normalized vector ϕε ∈ ranEΔ(H(P − k0)) with Δ = [−ε + z, z + ε],
z = E(P − k0) + ω(k0), ε > 0. Here for a self-adjoint operator A, EΔ(A) stands for the spec-
tral measure of A for the interval Δ. Let aλ(f ) = ∫

R3 dk f (k)∗a(k,λ). We will show that
aλ(fε,k0)

∗ϕε/‖aλ(fε,k0)
∗ϕε‖ is a Weyl sequence for z as ε ↓ 0. Applying the pull-through for-

mula, one has

〈(
H(P ) − z

)
aλ(fε,k0)

∗ϕε,ψ
〉

=
∫
R3

dk fε,k0(k)
{〈(

H(P − k) + ω(k) − z
)
ϕε, a(k,λ)ψ

〉 − 〈
Sk,λ(P )∗ϕε,ψ

〉}
(20)

for each normalized ψ ∈ C
2 ⊗ Ffin, where

Sk,λ(P ) = ∣∣D(P − k)
∣∣a(k,λ) − a(k,λ)

∣∣D(P )
∣∣.

As to the second term in the right-hand side of (20), observe that

∣∣∣∣
∫
R3

dk fε,k0(k)
〈
Sk,λ(P )∗ϕε,ψ

〉∣∣∣∣
�

∫
R3

dk fε,k0(k)
∥∥Sk,λ(P )∗ϕε

∥∥‖ψ‖

�
∫
R3

dk fε,k0(k)
∥∥Sk,λ(P )∗

(
H(P − k) + 1

)−1∥∥∥∥(
H(P − k) + 1

)
ϕε

∥∥
� C

∫
R3

dk fε,k0(k)
(
1 + |k|)∣∣F0(k, λ)

∣∣(E(P − k0) + 1 + ω(k0) + O
(|k − k0|

) + ε
)

by Lemma D.6 and (29) below, where

Fx(k,λ) = e
χΛ(k)ε(k,λ)√

3
e−ik·x. (21)
2(2π) ω(k)
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Clearly the right-hand side of the above inequality converges to 0 as ε ↓ 0 because fε,k0 weakly
converges to 0 in L2(R3). Next we will estimate the first term in the right-hand side of (20). One
has ∣∣∣∣

∫
R3

dk fε,k0(k)
〈(

H(P − k) + ω(k) − z
)
ϕε, a(k,λ)ψ

〉∣∣∣∣
�

[ ∫
R3

dk fε,k0(k)2
∥∥(Nf + 2)1/2(H(P − k) + ω(k) − z

)
ϕε

∥∥2
]1/2

(22)

×
[ ∫

R3

dk
∥∥(Nf + 2)−1/2a(k,λ)ψ

∥∥2
]1/2

. (23)

The term (23) is less than ‖ψ‖2(= 1) because

∫
R3

dk
∥∥(Nf + 2)−1/2a(k,λ)ψ

∥∥2 �
∫
R3

dk
〈
a(k,λ)ψ,a(k,λ)(Nf + 1)−1ψ

〉

= 〈
ψ,Nf(Nf + 1)−1ψ

〉
� ‖ψ‖2.

As to the term (22) we need a lengthy calculation below. Note that, since Nf + 2 � m−1
ph H(P −

k) + 2, one has

∥∥(Nf + 2)1/2(H(P − k) + ω(k) − z
)
ϕε

∥∥
� C

∥∥(
H(P − k) + 2

)1/2(
H(P − k) + ω(k) − z

)
ϕε

∥∥
� C

∥∥(
H(P − k) + ω(k) − z

)3/2
ϕε

∥∥ (24)

+ C
∣∣2 − z + ω(k)

∣∣1/2∥∥(
H(P − k) + ω(k) − z

)
ϕε

∥∥. (25)

Note that

H(P − k) + ω(k) − z

= (
H(P − k0) + ω(k0) − z

) + (
H(P − k) − H(P − k0) + ω(k) − ω(k0)

)
.

Thus one has

∥∥(
H(P − k) + ω(k) − z

)
ϕε

∥∥
�

∥∥(
H(P − k0) + ω(k0) − z

)
ϕε

∥∥ + ∥∥(
H(P − k) − H(P − k0)

)
ϕε

∥∥ + ∣∣ω(k) − ω(k0)
∣∣

� ε + ∥∥(∣∣D(P − k)
∣∣ − ∣∣D(P − k0)

∣∣)ϕε

∥∥ + ∣∣ω(k) − ω(k0)
∣∣. (26)
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We will show that∥∥(∣∣D(P − k)
∣∣ − ∣∣D(P − k0)

∣∣)(H(P − k0) + 1
)−1∥∥ � O

(|k − k0|
)
. (27)

To see this, we just note that, by (14),

∣∣D(P − k)
∣∣ − ∣∣D(P − k0)

∣∣
= 1

π

∞∫
M2

dt
√

t
(
t + D̂(P − k)2)−1{2(−k + k0) · Pf + k2 − k2

0 + 2e(−k + k0) · A(0)
}

× (
t + D̂(P − k0)

2)−1
.

Hence, by Lemma D.3, one obtains

∥∥(∣∣D(P − k)
∣∣ − ∣∣D(P − k0)

∣∣)(H(P − k) + 1
)−1∥∥

� 1

π

∞∫
M2

dt
√

t t−1
∥∥{

2(−k + k0) · Pf + k2 − k2
0 + 2e(−k + k0) · A(0)

}
(Hf + 1)−1

∥∥
× ∥∥(Hf + 1)

(
t + D̂(P − k0)

2)−1(
H(P − k0) + 1

)−1∥∥︸ ︷︷ ︸
�C(t−1+t−3/2+t−2) by Lemma D.3

� O
(|k − k0|

)
(28)

which implies ∥∥(
H(P − k) + ω(k) − z

)
ϕε

∥∥ � O
(|k − k0|

) + ε (29)

by (26). As a consequence, the term (25) is estimated as

(25) �
(

O
(|k − k0|

) + ε
)∣∣2 − z + ω(k)

∣∣1/2
. (30)

To estimate (24), observe that

∥∥(
H(P − k) + ω(k) − z

)3/2
ϕε

∥∥2

�
∥∥(

H(P − k) + ω(k) − z
)2

ϕε

∥∥∥∥(
H(P − k) + ω(k) − z

)
ϕε

∥∥︸ ︷︷ ︸
�O(|k−k0|)+ε by (29)

. (31)

Since ‖(H(P − k) + ω(k) − z)2(H(P − k0) + 1)−2‖ is uniformly bounded for k ∈ Bε,k0 by
Lemma D.5, we obtain

(24) � O
(|k − k0|

) + Cε. (32)

Collecting (30) and (32), we arrive at
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∫
R3

dk fε,k0(k)2
∥∥(Nf + 1)1/2(H(P − k) + ω(k) − z

)
ϕε

∥∥2

�
∫
R3

dk fε,k0(k)2(O
(|k − k0|

) + ε
)

= oε(1).

This means that

∥∥(
H(P ) − z

)
aλ(fε,k0)

∗ϕε

∥∥ � oε(1). (33)

Set Ψε = aλ(fε,k0)
∗ϕε/‖aλ(fε,k0)

∗ϕε‖. (Note that, by the CCRs, ‖aλ(fε,k0)
∗ϕε‖2 =

‖fε,k0‖2‖ϕε‖2 + ‖aλ(fε,k0)ϕε‖2 � 1.) Then one can easily see that Ψε weakly converges to 0
as ε ↓ 0 and, by (33), limε↓0 ‖(H(P ) − z)Ψε‖ = 0. Hence {Ψε} is a Weyl sequence. Thus
z = E(P − k0) + ω(k0) ∈ ess.spec(H(P )). Since k0 is arbitrary, one has the desired assertion in
the proposition. �
4. Degenerate eigenvalues

4.1. Abstract Kramers’ degeneracy theorem

The following lemma is well known as the Kramers’ degeneracy theorem which plays a cen-
tral role in this section.

Lemma 4.1 (Abstract Kramers’ degeneracy theorem). Let ϑ be an antiunitary operator with
ϑ2 = −1. (In applications ϑ is mostly the time reversal operator.) Let H be a self-adjoint oper-
ator. Assume that H commutes with ϑ . Then each eigenvalue of H is at least doubly degenerate.

Proof. Let ψ be an eigenvector of H for the eigenvalue μ. The commutativity between H and
ϑ implies

Hϑψ = ϑHψ = μϑψ.

Hence ϑψ is an eigenvector for the same eigenvalue μ.
The antiunitarity of ϑ means that

〈ϑψ,ϑη〉 = 〈η,ψ〉.

Therefore

〈
ϑ(ϑψ),ϑψ

〉 = 〈ψ,ϑψ〉

which implies 〈ψ,ϑψ〉 = 0, using ϑ2 = −1. �
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4.2. Reality preserving operators and degenerate eigenvalues

Recall that the Hamiltonian H(P ) is living in C
2 ⊗ F. Each vector ϕ ∈ C

2 ⊗ F has the fol-
lowing expression:

ϕ = ϕ1 ⊕ ϕ2,

ϕi =
∑
n�0

⊕
ϕ

(n)
i (k1, λ1, . . . , kn, λn), i = 1,2,

under the identification C2 ⊗ F = F ⊕ F. For each ϕ ∈ C2 ⊗ F, set

Jϕ = jϕ1 ⊕ jϕ2,

jϕi =
∑
n�0

⊕
ϕ

(n)
i (k1, λ1, . . . , kn, λn), i = 1,2.

We say that a linear operator A on F preserves the reality with respect to j if A commutes with j .
Since a(k,λ) acts by

a(k,λ)ϕi =
∑
n�0

⊕ √
n + 1ϕ

(n+1)
i (k, λ, k1, λ1, . . . , kn, λn),

one has ja(k,λ) = a(k,λ)j and ja(k,λ)∗ = a(k,λ)∗j which imply

jPf = Pfj, (34)

jA(0) = A(0)j, (35)

jB(0) = −B(0)j, (36)

jHf = Hfj, (37)

that is, Pf, A(0), iB(0) and Hf preserve the reality with respect to j . (Here B(0) = ∇ ∧ A(0).)

Proposition 4.2. Let ϑ be given by

ϑ = σ2J.

Then ϑ is an antiunitary operator satisfying ϑ2 = −1. Moreover, for all P and e, we obtain that

ϑH(P ) = H(P )ϑ. (38)

Thus, by Lemma 4.1, each eigenvalue of H(P ) is at least doubly degenerate.

Proof. Since σ 2
2 = 1, one easily sees the antiunitarity of ϑ . Furthermore using the anticommu-

tativity σ2J = −Jσ2, one has ϑ2 = −1.
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Next we will show (38). Since Hf commutes with ϑ by (37), it suffices to show that
|D(P )| commutes with ϑ . Our basic idea is simple. Noting the fact ϑσi = −σiϑ for i =
1,2,3, we can easily see that ϑ commutes with |D(P )|2(= (P − Pf + eA(0))2 + eσ ·
B(0) + M2) on C

2 ⊗ Ffin by (34)–(36). As a consequence we could expect that |D(P )|
(= √

(P − Pf + eA(0))2 + eσ · B(0) + M2 ) also commutes with ϑ .
Unfortunately since we do not know whether the subspace C

2 ⊗ Ffin is a core of D(P )2

or not, the above arguments are somehow formal. However we can rigorize the arguments as
follow. To clarify the M dependence, we write D(P ) as DM(P ) in this proof. Let ϑ̃ = ϑ ⊕ ϑ

acting in C4 ⊗ F. Then we see that αiϑ̃ = −ϑ̃αi and βϑ̃ = ϑ̃β which imply ϑ̃DM(P )ϑ̃−1 =
−D−M(P ) on C

4 ⊗ Ffin. Since we have already seen that C
4 ⊗ Ffin is a core of DM(P ) in

Section 2.1, this equality holds as an operator equality. Hence, by the functional calculus, one
has ϑ̃f (DM(P ))ϑ̃−1 = f (−D−M(P )), where f is real-valued. In the case where f (s) = √

s2,
we have f (−D−M(P )) = f (DM(P )) because D−M(P )2 = DM(P )2 by the anticommutativity
between Mβ and DM=0(P ). Now one can conclude that ϑ̃ |DM(P )|ϑ̃−1 = |DM(P )| holds as an
operator equality. �
4.3. Comments on related models

The arguments in this section are applicable to other models, e.g.,

HNR,V = 1

2M

(
σ · (−i∇x + eA(x)

))2 + V (x) + Hf,

HNR(P ) = 1

2M

(
P − Pf + eA(0)

)2 + e

2M
σ · B(0) + Hf,

HV =
√(−i∇x + eA(x)

)2 + eσ · B(x) + M2 + V (x) + Hf

with V (x) = V (−x). As regards to HNR(P ), most of the arguments of Section 4.2 are valid.
However, for HNR,V and HV , we have to change the definition of j . HV is acting in the Hilbert
space L2(R3;C

2) ⊗ F. Each vector ϕ in L2(R3;C
2) ⊗ F has the form

ϕ = ϕ1 ⊕ ϕ2,

ϕi =
∑
n�0

⊕
ϕ

(n)
i (x; k1, λ1, . . . , kn, λn), i = 1,2.

In this case, we define j as

jϕ
(n)
i =

∑
n�0

⊕
ϕ

(n)
i (−x; k1, λ1, . . . , kn, λn), i = 1,2.

Then one can check that

j (−i∇x) = (−i∇x)j,

jA(x) = A(x)j,

j (iB(x)) = (iB(x))j,
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jV (x) = V (x)j,

jHf = Hfj,

namely, all these operators preserve the reality with the respect to this new j . Hence defining
the time reversal operator as ϑ = σ2J , one can see that HV commutes with ϑ . Thus using the
abstract Kramers’ degeneracy theorem, one concludes that each eigenvalue of HV is at least
doubly degenerate. A similar modification applies to HNR,V .

5. Energy inequalities

To make sure that there is no further eigenvalues close to E(P ) we will find self-adjoint
operators L+(P ) and L−(P ) such that

L−(P ) � H(P ) � L+(P ). (39)

L−(P ), L+(P ) are given below. They can be easily diagonalized. The min-max principle allows
us to obtain bounds as, e.g.,

Σ(P ) − E(P ) � Σ
(
L−(P )

) − E
(
L+(P )

)
and more precise information, since the spectrum of L±(P ) is available, see Section 6 for details.
(Here, for a self-adjoint operator T , Σ(T ) = inf ess.spec(T ) and E(T ) = inf spec(T ).)

Proposition 5.1 (Lower bound). For any 0 < γ < 1,0 � mph and P ∈ R
3, one has

H
(|P |u)

� L−(P )

with

L−(P ) = γ
√

P 2 + M2 + (1 − γ − eC1)Hf − eC2 (40)

for suitable constants C1,C2 > 0 which are independent of e and P , where u = (1,0,0).

Proof.

Step 1. Let HSL(P ) be the spinless Hamiltonian. In this step, we will show the following operator
inequality by extending the method in [13]:

HSL
(|P |u)

� γ
√

P 2 + M2 + (1 − γ − eC)Hf − eC (41)

with a strictly positive constant C independent of e and P . Clearly

(|P |u − Pf + eA(0)
)2 �

(|P | − Pf1 + eA(0)1
)2

.

Thus by the operator monotonicity of the square root (Lemma E.1), one has

HSL
(|P |u)

� γ

√(|P | − Pf1 + eA(0)1
)2 + M2 + Hf.
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Let f (s) = √
s2 + M2, s ∈ R. By Taylor’s theorem, one has

f
(|P | + s

) = f
(|P |) + f ′(|P |)s +

1∫
0

dt (1 − t)f ′′(|P | + ts
)
s2

with f ′(s) = s/
√

s2 + M2 and f ′′(s) = M2/(s2 +M2)3/2. Applying the functional calculus, we
have the following operator equality

√(|P | − Pf1 + eA(0)1
)2 + M2

=
√

P 2 + M2 + |P |√
P 2 + M2

(−Pf1 + eA(0)1
)

+
1∫

0

dt (1 − t)f ′′(|P | + t
(−Pf1 + eA(0)1

))(−Pf1 + eA(0)1
)2

. (42)

Since the last term in (42) is a positive operator, one obtains

√(|P | − Pf1 + eA(0)1
)2 + M2

�
√

P 2 + M2 + |P |√
P 2 + M2

(−Pf1 + eA(0)1
)

�
√

P 2 + M2 − Hf − ∥∥ω−1/2F01
∥∥(Hf + 1)

by the standard bounds |Pf1| � Hf and eA(0)1 � −‖ω−1/2F01‖(Hf + 1). This proves (41).

Step 2. We will show that

±(
HSL

(|P |u) − H
(|P |u))

� 3π

M

∥∥(
1 + ω−1/2)|k||F0|

∥∥(Hf + 1). (43)

To this end, we simply note that, by (14),

HSL
(|P |u) − H

(|P |u)
= − 1

π

∞∫
M2

ds
√

s − M2
(
s + (|P |u − Pf + eA(0)

)2)−1
eσ · B(0)

(
s + D̂

(|P |u)2)−1
,

where D̂(P ) = D(P )−Mβ . Noting the facts ‖eσ ·B(0)(Hf +1)−1/2‖ � 6‖(1 +ω−1/2)|k||F0|‖
and (D.2) in the proof of Lemma D.3, one can see that ‖(HSL(P ) − H(P ))(Hf + 1)−1/2‖ �
3π‖(1 + ω−1/2)|k||F0|‖/M . Now (43) is obtained.
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Step 3 (Proof of Proposition 5.1). From (41) and (43) it follows that

H
(|P |u) = HSL

(|P |u) + (
H

(|P |u) − HSL
(|P |u))

� HSL
(|P |u) − eC(Hf + 1)

� γ
√

P 2 + M2 + (1 − γ − eC1)Hf − eC2.

This proves the desired assertion in the proposition. �
Before we proceed, we remark the following. Let SO(3) be the rotation group. Then there

exists a unitary representation π of SO(3) such that

πgH(P )π−1
g = H

(
g−1P

)
(44)

for all g ∈ SO(3) and P ∈ R
3, see, e.g., [24]. Thus E(P ) is a radial function in P .

Since E(P ) is rotationally symmetric in P , one has an immediate corollary.

Corollary 5.2. Choose γ < 1 and e sufficiently small as e < e∗. One has

E(P ) � γ
√

P 2 + M2 − eC2

for all P ∈ R
3, where C2 is independent of e, P .

Proposition 5.3 (Upper bound). One obtains

H
(|P |u)

� L+(P )

with

L+(P ) = γ
[(|P |u − Pf

)2 + 2|P |(Hf + ∥∥ω−1/2|F0|
∥∥)

+ 4(Hf + 1)P 2
f + ∥∥(

1 + ω−1/2)|F0|
∥∥2 + ∥∥(

1 + ω−1/2)|F0|
∥∥2

(Hf + 1)

+ Hf + ∥∥|k|1/2|F0|
∥∥2 + M2]1/2 + Hf (45)

for all P .

Proof. Observe that

D
(|P |u)2 = (|P |u − Pf

)2 + 2
(|P |u − Pf

) · eA(0) + e2A(0)2 + eσ · B(0) + M2.

Using the fundamental inequalities in Appendix A, one has

|P |eA(0)1 � |P |(Hf + ∥∥ω−1/2|F0|
∥∥)

,

eA(0) · Pf � 2(Hf + 1)P 2
f + 1

2

∥∥(
1 + ω−1/2)|F0|

∥∥2
,

e2A(0)2 �
∥∥(

1 + ω−1/2)|F0|
∥∥2

(Hf + 1),
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eσ · B(0) � Hf + ∥∥|k|1/2|F0|
∥∥2

.

Applying the operator monotonicity of the square root (Lemma E.1), one concludes (45). �
By the above operator inequality, we immediately obtain

〈
η↑ ⊗ Ω,H

(|P |u)
η↑ ⊗ Ω

〉
� γ

√
|P |2 + 2|P |∥∥ω−1/2|F0|

∥∥ + 2
∥∥(

1 + ω−1/2
)|F0|

∥∥2 + ∥∥|k|1/2|F0|
∥∥2 + M2,

where η↑ = (1,0). Thus taking the rotational invariance of E(P ) in P into consideration, one
has a following corollary.

Corollary 5.4. One has

E(P ) � γ

√(|P | + eC3
)2 + M2 + e2C4 (46)

for all P , where C3 and C4 are independent of P and e.

6. Proof of Theorem 1.4

6.1. Proof of Theorem 1.4(i)

For a ∈ R
d , ‖a‖Rd means the standard norm in R

d . Then one has, for example, ω(k) =
‖(k,mph)‖R4 = ‖(|k|,mph)‖R2 . Applying the triangle inequality and Corollary 5.2, one gets

E(P − k) + ω(k)

� γ
∥∥(|P − k|,M)∥∥

R2 + ∥∥(|k|,mph
)∥∥

R2 − eC

� γ
∥∥(|P − k|,M)∥∥

R2 + γ
∥∥(|k|,mph

)∥∥
R2 + (1 − γ )

∥∥(|k|,mph
)∥∥

R2 − eC

= γ
∥∥(P − k,M)

∥∥
R4 + γ

∥∥(k,mph)
∥∥

R4 + (1 − γ )
∥∥(k,mph)

∥∥
R4 − eC

� γ
∥∥(P,M + mph)

∥∥
R4 + (1 − γ )mph − eC.

On the other hand, since ‖ω−1/2|F0|‖2 = O(e2) etc., one has, by Corollary 5.4, that

E(P ) � γ
∥∥(|P | + eC3,

√
M2 + O

(
e2

) )∥∥
R2

� γ
∥∥(|P | + eC3,M

)∥∥
R2 + γ

∥∥(
0,

√
M2 + O

(
e2

) − M
)∥∥

R2

� γ
∥∥(P,M)

∥∥
R4 + eC3 + O

(
e2).

Thus the desired assertion in the lemma follows. �
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6.2. Proof of Theorem 1.4(ii) and (iii)

We denote the infimum of spec(L−(P )) and ess.spec(L−(P )) by E−(P ) and Σ−(P ), respec-
tively. Clearly one has

E−(P ) = γ
√

P 2 + M2 − eC,

Σ−(P ) = γ
√

P 2 + M2 + (1 − γ − eC1)mph − eC2.

Let E+(P ) be the function of P which is appearing on the right-hand side of (46). Then using
similar arguments as in the proof of Theorem 1.4(i), one sees that

0 � E−(P ) − E+(P ) � C′e + O
(
e2) (47)

with e < e∗. (Here it should be noted that e∗ is independent of P .) Thus taking the fact E−(P ) �
E(P ) � E+(P ) into consideration, one has

0 � E(P ) − E−(P ) � C′e + O
(
e2) (48)

for e < e∗, which means E(P ) is close to E−(P ) uniformly in P . Also we note that

Σ−(P ) − E−(P ) � (1 − eC − γ )mph. (49)

Let E1(P ) be the first excited eigenvalue of H(P ) (or possibly be Σ(P ) if there is no such
excited state). Then by the operator inequality (40) and the min-max principle [21], one has

E1
(|P |u)

� Σ−(P ).

(Note that, by Proposition 4.2, E(P ) is always degenerate.) With the help of (44), one sees that
E1(P ) is radial and

E1(P ) � Σ−(P ) (50)

for all P ∈ R3. Thus, combining this with (48), we arrive at

E1(P ) − E(P ) � Σ−(P ) − E+(P )

� Σ−(P ) − E−(P ) + (
E−(P ) − E+(P )

)
� (1 − eC1 − γ )mph − C′e − O

(
e2)

for e < e∗. This proves (ii) in the theorem.
For a self-adjoint operator A, let EK(A) be its spectral measure for the interval (−∞,K)

and let Ppp(A) be the projection onto the linear space spanned by all eigenstates. Since, by
Proposition 5.1, one has the operator inequality L−(P ) � H(|P |u), the following property holds,

trPpp
(
H

(|P |u))
EΣ−(P )

(
H

(|P |u))
� trPpp

(
L−(P )

)
EΣ−(P )

(
L−(P )

) = 2
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by the min-max principle. Applying (44), one has that

trPpp
(
H(P )

)
EΣ−(P )

(
H(P )

) = trPpp
(
H

(|P |u))
EΣ−(P )

(
H

(|P |u))
� 2.

Thus H(P ) has at most two eigenstates with corresponding eigenvalue less than Σ−(P ). On the
other hand, one already knows that E(P ) < Σ−(P ) � E1(P ) for e < e∗ by (48), (49) and (50).
Therefore E(P ) is at most doubly degenerate.
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Appendix A. Second quantization and basic inequalities

Let h be a complex Hilbert space. The Fock space over h is defined by

F(h) =
∑
n�0

⊕
h⊗sn,

where h⊗sn means the n-fold symmetric tensor product of h with the convention h⊗s0 = C. The
vector Ω = 1 ⊕ 0 ⊕ · · · ∈ F(h) is called the Fock vacuum.

We denote by a(f ) the annihilation operator on F(h) with a test vector f ∈ h, its adjoint
a(f )∗, called the creation operator, is defined by

a(f )∗ϕ =
∑
n�0

⊕ √
n + 1f ⊗s ϕ(n)

for a suitable ϕ = ∑⊕
n�0 ϕ(n) ∈ F(h). By definition, a(f ) is densely defined, closed, and antilin-

ear in f . We frequently write a(f )# to denote either a(f ) or a(f )∗. Creation and annihilation
operators satisfy the canonical commutation relations

[
a(f ), a(g)∗

] = 〈f,g〉h1,[
a(f ), a(g)

] = 0 = [
a(f )∗, a(g)∗

]
on a suitable subspace of F(h), where 1 denotes the identity operator. We introduce a particular
subspace of F(h) which will be used frequently. Let s be a subspace of h. We define

Ffin(s) = Lin
{
a(f1)

∗ . . . a(fn)
∗Ω, Ω

∣∣ f1, . . . , fn ∈ s, n ∈ N
}
,

where Lin{. . .} means the linear span of the set {. . .}. If s is dense in h, so is Ffin(s) in F(h).
For a densely defined closable operator c on h, dΓ (c) : F(h) → F(h) is defined by

dΓ (c) � dom(c)⊗sn =
n∑

1 ⊗ · · · ⊗ c
j th

⊗· · · ⊗ 1 (A.1)

j=1
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and

dΓ (c)Ω = 0

where dom(c) means the domain of the linear operator c. Here in the j th summand c is at the
j th entry. Clearly dΓ (c) is closable and we denote its closure by the same symbol. As a typical
example, the number operator Nf is given by Nf = dΓ (1).

In the case where h = L2(R3 ×{1,2}), the annihilation and creation operator can be expressed
as the operator-valued distributions a(k,λ), a(k,λ)∗ by

a(f ) =
∑

λ=1,2

∫
R3

dk f̄ (k, λ)a(k,λ), a(f )∗ =
∑

λ=1,2

∫
R3

dk f (k,λ)a(k,λ)∗.

Let F be a measurable function on R3 and let the multiplication operator associated with F be
denoted by the same symbol: (Ff )(k,λ) = F(k)f (k,λ) for f ∈ L2(R3 × {1,2}). Then one can
formally express dΓ (F) as

dΓ (F) =
∑

λ=1,2

∫
R3

dk F (k)a(k,λ)∗a(k,λ).

For F(k) = ω(k), one has the expression (3) of Hf = dΓ (ω).

Lemma A.1. One has the following.

(i) ‖a(f )ϕ‖ � ‖ω−1/2f ‖‖H 1/2
f ϕ‖.

(ii) ‖a(f )∗ϕ‖ � ‖(1 + ω−1/2)f ‖‖(Hf + 1)1/2ϕ‖.
(iii) a(f ) + a(f )∗ � Hf + ‖ω−1/2f ‖2.
(iv) ‖(a(f ) + a(f )∗)ϕ‖ � 2‖(1 + ω−1/2)f ‖‖(Hf + 1)1/2ϕ‖.
(v) |〈ϕ,a(f )#1a(g)#2ϕ〉| � ‖(1 + ω−1/2)f ‖‖(1 + ω−1/2)g‖〈ϕ, (Hf + 1)ϕ〉.

Appendix B. Invariant domains

Lemma B.1. Let A be self-adjoint and H be positive and self-adjoint. Assume the following.

(i) (H + 1)−1dom(A) ⊆ dom(A).
(ii) |〈Hu,Au〉 − 〈Au,Hu〉| � C‖(H + 1)u‖2 for all u ∈ dom(A) ∩ dom(H).

(iii) [H,A](H + 1)−1 can be extended to a bounded operator.

Then one has eitAdom(H) = dom(H) for all t ∈ R.

Proof. See [5, Lemma 2]. �
Appendix C. Localization estimate

In this appendix, we will establish Lemma 3.1 which is essential for the proof of Theorem 1.3.
Unfortunately the proof is technically complicated because of the square root structure. We repeat
the statement which we want to prove.
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Lemma 3.1. Choose e as e < e∗. For all ϕ ∈ C
2 ⊗ Ffin ⊗ Ffin, one obtains

∣∣〈ϕ,
(
H(P ) − Γ̌ (J )∗H⊗(P )Γ̌ (J )

)
ϕ
〉∣∣ � oR(1)

∥∥(
H(P ) + 1

)
ϕ
∥∥2

,

where oR(1) is a function of R vanishing as R → ∞.

Proof. Let us define a Dirac operator by

D⊗(P ) = α · (P − Pf ⊗ 1 − 1 ⊗ Pf + eA(0) ⊗ 1
) + Mβ.

Then this is essentially self-adjoint on C
4 ⊗ Ffin ⊗ Ffin by Nelson’s commutator theorem with a

test operator Hf ⊗ 1 + 1 ⊗ Hf. We denote its closure by the same symbol. Remark that H⊗(P )

is defined by the similar way in Section 2.
We also introduce

D̂(P ) = D(P ) − Mβ, D̂⊗(P ) = D⊗(P ) − Mβ.

Using the formula (14), one has

∣∣D(P )
∣∣ = 1

π

∞∫
M2

dt
D̂(P )2 + M2

√
t − M2(t + D̂(P )2)

,

∣∣D⊗(P )
∣∣ = 1

π

∞∫
M2

dt
D̂⊗(P )2 + M2

√
t − M2(t + D̂⊗(P )2)

.

Hence

∣∣D(P )
∣∣ − Γ̌ (J )∗

∣∣D⊗(P )
∣∣Γ̌ (J )

= 1

π

∞∫
M2

dt
√

t − M2
(
t + D̂(P )2)−1{

D̂(P )G(P ) + G(P )D̂(P ) − G(P )2}

× (
t + D̃⊗(P )2)−1

,

where

G(P ) = D̂(P ) − D̃⊗(P )

with D̃⊗(P ) = Γ̌ (J )∗D̂⊗(P )Γ̌ (J ). Remark the following fact

∥∥G(P )(Nf + 1)−1
∥∥ � oR(1),

see, e.g., [9,15]. (It should be noted that the positive photon mass is crucial here.) By Lemma C.1
below, we estimate as
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∥∥(Nf + 1)−1(t + D̂(P )2)−1{
D̂(P )G(P ) + G(P )D̂(P ) − G(P )2}

× (
t + D̃⊗(P )2)−1

(Nf + 1)−1
∥∥

� 2
∥∥(Nf + 1)−1(t + D̂(P )2)−1

(Nf + 1)
∥∥∥∥(Nf + 1)−1G(P )

∥∥∥∥(Nf + 1)−1D̂(P )
∥∥

× ∥∥(Nf + 1)
(
t + D̃⊗(P )2)−1

(Nf + 1)−1
∥∥

+ ∥∥(Nf + 1)−1(t + D̂(P )2)−1
(Nf + 1)

∥∥∥∥(Nf + 1)−1G(P )
∥∥2

× ∥∥(Nf + 1)
(
t + D̃⊗(P )2)−1

(Nf + 1)−1
∥∥

� oR(1)
(
t−2 + t−3/2 + t−1)2

which implies∥∥(Nf + 1)−1(∣∣D(P )
∣∣ − Γ̌ (J )∗

∣∣D⊗(P )
∣∣Γ̌ (J )

)
(Nf + 1)−1

∥∥ � oR(1). (C.1)

We also note the fact∥∥(Nf + 1)−1(Hf − Γ̌ (J )∗(Hf ⊗ 1 + 1 ⊗ Hf)Γ̌ (J )
)
(Nf + 1)−1

∥∥ � oR(1) (C.2)

which is proven in [9]. Collecting (C.1) and (C.2), one sees that |〈ϕ, (H(P ) −
Γ̌ (J )∗H⊗(P )Γ̌ (J ))ϕ〉| � oR(1)‖(Nf + 1)ϕ‖2 holds.

Finally one has to show ‖(Nf + 1)ϕ‖ � C‖(H(P ) + 1)ϕ‖. The positive photon mass implies
‖(Nf + 1)ϕ‖ � C‖(Hf + 1)ϕ‖. Applying Lemma D.2 yields the desired results ‖(Nf + 1)ϕ‖ �
C‖(H(P ) + 1)ϕ‖. �
Lemma C.1. For all t > 0, one has the following:

(i) ‖(Nf + 1)(t + D̂(P )2)−1(Nf + 1)−1‖ � C(t−1 + t−3/2 + t−2).
(ii) ‖(Nf + 1)(t + D̃⊗(P )2)−1(Nf + 1)−1‖ � C(t−1 + t−3/2 + t−2).

Proof. (i) The essential idea is taken from [14]. First we will show that eitD̂(P )dom(Nf) =
dom(Nf). It suffices to check the conditions (i), (ii) and (iii) in Lemma B.1. Noting [Nf, D̂(P )] =
−α · (a(F0) − a(F0)

∗) on C
4 ⊗ Ffin, we can check all conditions in Lemma B.1 by Lemma A.1.

Using the formula

(
D̂(P )2 + t

)−1 =
∫
R

ds gt (s) e−isD̂(P )

with gt (s) = √
π/2t e−√

t |s|, we have

∥∥(Nf + 1)
(
D̂(P )2 + t

)−1
ϕ
∥∥ �

∫
R

ds gt (s)
∥∥(Nf + 1)e−isD̂(P )ϕ

∥∥ (C.3)

for each normalized ϕ ∈ dom(Nf). (We already know that eisD̂(P )ϕ ∈ dom(Nf).) Set I1(s) =
‖(Nf + 1)e−isD̂(P )ϕ‖ and I1/2(s) = ‖(Nf + 1)1/2e−isD̂(P )ϕ‖. Then one has
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d

ds
I1(s)

2 = 〈
e−isD̂(P )ϕ, i

[
D̂(P ), (Nf + 1)2]e−isD̂(P )ϕ

〉
= 〈

e−isD̂(P )ϕ,
(
eα · E(Nf + 1) + (Nf + 1)eα · E)

eisD̂(P )ϕ
〉
,

where E = ia(F0) − ia(F0)
∗. Accordingly using the standard estimate ‖|E|ϕ‖ � C‖(Nf +

1)1/2ϕ‖, one has

d

ds
I1(s)

2 � CI1/2(s)I1(s). (C.4)

Next we will estimate I1/2(s). Observe that

d

ds
I1/2(s)

2 = 〈
e−isD̂(P )ϕ, i

[
D̂(P ),Nf

]
e−isD̂(P )ϕ

〉
� e

∥∥|E|e−isD̂(P )ϕ
∥∥

� C
∥∥(Nf + 1)1/2e−isD̂(P )ϕ

∥∥
= CI1/2(s).

Solving this inequality, we get I1/2(s) � C|s| + I1/2(0). Inserting this result into (C.4), one has

I1(s) � I1(0) + Cs2 + C|s|I1/2(0).

Combining this with (C.3), we finally obtain the assertion (i) in the lemma.
Noting the fact Γ̌ (J )NfΓ̌ (J )∗ = Nf ⊗ 1 + 1 ⊗ Nf, one can apply the similar arguments in

the proof of (i) to show (ii). �
Appendix D. Auxiliary estimates

In this appendix, we always choose e as e < e∗.

Lemma D.1. For all P ∈ R3 and e � 0, one has∥∥∣∣D(P )
∣∣(Hf + 1)−1

∥∥ � |P | + 3 + 3e
∥∥ω−1/2F0

∥∥.

Proof. Noting Lemma A.1 and the fundamental fact ‖|Pf,i |(Hf + 1)−1‖ � 1 for i = 1,2,3, one
observes that

∥∥∣∣D(P )
∣∣(Hf + 1)−1

∥∥ = ∥∥D(P )(Hf + 1)−1
∥∥

� |P | +
∑

i=1,2,3

∥∥|Pf,i |(Hf + 1)−1
∥∥ + e

∑
i=1,2,3

∥∥A(0)i(Hf + 1)−1
∥∥

� |P | + 3 + 3e
∥∥ω−1/2F0

∥∥.

This proves the assertion. �
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Lemma D.2. For each n ∈ N, one obtains

∥∥H
n/2
f

(
H(P ) + 1

)−n/2∥∥ � const,∥∥∣∣D(P )
∣∣n/2(

H(P ) + 1
)−n/2∥∥ � const,

where const is independent of P .

Proof. In the similar way in the proof of [7, Lemma 8], one can show that both

H
n/2
f (H + 1)−n/2, |D|n/2(H + 1)−n/2 (D.1)

are bounded. Thus we conclude the assertion by the fact that ‖(H(P )+1)n/2ϕ‖ is continuous in
P for ϕ ∈ C

4 ⊗ Ffin. �
Lemma D.3. For each n ∈ N, we obtain∥∥(Hf + 1)n

(
t + D̂(P )2)−1(

H(Q) + 1
)−n∥∥ � const

(
t−1 + t−3/2 + · · · + t−n−1)

for every P,Q ∈ R
3, where const is independent of P and Q.

Sketch of proof. By Lemma A.1, one can see that eitD̂(P )dom(Hn
f ) = dom(Hn

f ). Let us write

Km/2(s) = ∥∥(Hf + 1)m/2e−isD̂(P )ϕ
∥∥

for a normalized ϕ ∈ dom(Hn
f ) with m � 2n. In the case where m = 1, one has

d

ds
K1/2(s)

2 = 〈
e−isD̂(P )ϕ, i

[
D̂(P ),Hf

]
e−isD̂(P )ϕ

〉
= 〈

e−isD̂(P )ϕ, iα · (a(ωF) − a(ωF)∗
)
e−isD̂(P )ϕ

〉
� CK1/2(s)

by the Schwarz inequality. Thus K1/2(s) � K1/2(0) + C|s| holds. In the case where m = 2, one
has, by the similar arguments in the above,

d

ds
K1(s)

2 � CK1/2(s)K1(s) �
(
K1/2(0) + C|s|)K1(s)

which implies K1(s) � K1(0) + C(K1/2(0)|s| + s2). Repeating this procedure, one can arrive at

Km/2(s) � Km/2(0) + C
(
K(m−1)/2(0)|s| + · · · + K1/2(0)|s|m−1 + |s|m)

.

Therefore using the formula

∥∥(Hf + 1)m/2(t + D̂(P )2)−1
ϕ
∥∥ �

∫
ds gt (s)Km/2(s)
R
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with gt (s) = √
π/2te−√

t |s|, one has, by putting m = 2n,

∥∥(Hf + 1)n
(
t + D̂(P )2)−1

(Hf + 1)−n
∥∥ � C

(
t−1 + t−3/2 + · · · + t−n−1). (D.2)

Finally using Lemma D.2, one concludes the desired assertion in the lemma. �
Lemma D.4. One has ∥∥[

Hf,
∣∣D(P )

∣∣](H(Q) + 1
)−2∥∥ � const

(
1 + |P |)

for all P , Q ∈ R
3.

Proof. By Lemma D.3 and the following standard formula

[
Hf,

∣∣D(P )
∣∣] = 1

π

∞∫
M2

ds
√

s − M2
(
s + D̂(P )2)−1[

Hf, D̂(P )2](s + D̂(P )2)−1
,

one computes

∥∥[
Hf,

∣∣D(P )
∣∣](Hf + 1)−2

∥∥
� 1

π

∞∫
M2

ds
√

s − M2
∥∥(

s + D̂(P )2)−1∥∥∥∥[
Hf, D̂(P )2](Hf + 1)−2

∥∥
× ∥∥(Hf + 1)2(s + D̂(P )2)−1(

H(Q) + 1
)−2∥∥

� C

π

∞∫
M2

ds
√

s − M2s−1(1 + |P |)(s−1 + s−3/2 + · · · + s−3)

= const
(
1 + |P |).

This completes the proof. �
Lemma D.5. For all P , Q ∈ R

3, one has

∥∥H(P )2(H(Q) + 1
)−2∥∥

�
(
C + |P − Q|)2 + C

(
1 + |P | + |Q| + |P ||Q|)(C + |P − Q|2).

Proof. First we will show that∥∥H(P )
(
H(Q) + 1

)−1∥∥ � C + |P − Q|.

To this end, observe that
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∥∥H(P )
(
H(Q) + 1

)−1∥∥
�

∥∥∣∣D(P )
∣∣(H(Q) + 1

)−1∥∥ + ∥∥Hf
(
H(Q) + 1

)−1∥∥
�

∥∥D(Q)
(
H(Q) + 1

)−1∥∥ + ∥∥α · (P − Q)
(
H(Q) + 1

)−1∥∥ + ∥∥Hf
(
H(Q) + 1

)−1∥∥
� C + |P − Q|

by Lemma D.2. Write

H(P )2(H(Q) + 1
)−2

= {
H(P )

(
H(Q) + 1

)−1}2 + H(P )
[
H(P ),

(
H(Q) + 1

)−1](
H(Q) + 1

)−1

= {
H(P )

(
H(Q) + 1

)−1}2 + H(P )
(
H(Q) + 1

)−1[
H(Q),H(P )

](
H(Q) + 1

)−2
.

Hence ∥∥H(P )2(H(Q) + 1
)−2∥∥

�
(
C + |P − Q|)2 + (

C + |P − Q|)∥∥[
H(Q),H(P )

](
H(Q) + 1

)−2∥∥.

Accordingly what we have to show next is to estimate the operator norm∥∥[
H(Q),H(P )

](
H(P ) + 1

)−2∥∥.

Observe that [
H(Q),H(P )

](
H(Q) + 1

)−2

= [∣∣D(P )
∣∣, ∣∣D(Q)

∣∣](H(Q) + 1
)−2 (D.3)

+ [
Hf,

∣∣D(P )
∣∣](H(Q) + 1

)−2
(D.4)

+ [∣∣D(P )
∣∣,Hf

](
H(Q) + 1

)−2
. (D.5)

Norm of (D.4) and (D.5) can be estimated by Lemma D.4. As to (D.3), note that∥∥∣∣D(P )
∣∣∣∣D(Q)

∣∣ϕ∥∥
�

∥∥∣∣D(0)
∣∣∣∣D(Q)

∣∣ϕ∥∥ + |P |∥∥∣∣D(Q)
∣∣ϕ∥∥

� C
(∥∥(Hf + 1)

∣∣D(Q)
∣∣ϕ∥∥ + |P |∥∥∣∣D(Q)

∣∣ϕ∥∥)
� C

(∥∥∣∣D(Q)
∣∣(Hf + 1)ϕ

∥∥ + ∥∥[
Hf,

∣∣D(Q)
∣∣]ϕ∥∥ + (

1 + |Q|)|P |∥∥(Hf + 1)ϕ
∥∥)

� C
((

1 + |Q|)∥∥(Hf + 1)2ϕ
∥∥ + ∥∥(

H(Q) + 1
)2

ϕ
∥∥ + (

1 + |Q|)|P |∥∥(Hf + 1)ϕ
∥∥)

� C
(
1 + |P | + |Q| + |P ||Q|)∥∥(

H(Q) + 1
)2

ϕ
∥∥.

In the above we have used Lemma D.4 from the line four to the next, and from the line five to
the final line, we have used Lemma D.1. Collecting the results, one obtains the assertion in the
lemma. �
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Lemma D.6. Let

Sk,λ(P ) = ∣∣D(P − k)
∣∣a(k,λ) − a(k,λ)

∣∣D(P )
∣∣.

Then one has ∥∥Sk,λ(P )∗
(
H(P − k) + 1

)−1∥∥ � C
(
1 + |k|)∣∣F0(k, λ)

∣∣,
where C is independent of k and P .

Proof. We will show that ‖(H(P − k) + 1)−1Sk,λ‖ � C(1 + |k|)|F0(k, λ)|. Let

Sk,λ = eik·xeix·Pf
[|D|, a(k,λ)

]
e−ix·Pf .

Then one has

FxSk,λF ∗
x =

∫
R3

⊕
Sk,λ(P )dP

for all (k, λ) ∈ R
3 × {1,2}. Hence it suffices to show that∥∥(Hk + 1)−1[|D − α · k|, a(k,λ)

]∥∥ � C
(
1 + |k|)∣∣F0(k, λ)

∣∣ (D.6)

where Hk = |D − α · k| + Hf, because

F ∗
x

∫
R3

⊕(
H(P − k) + 1

)−1
Sk,λ(P )dP Fx

= eix·Pf(Hk + 1)−1e−ix·PfSk,λ

= eix·Pf(Hk + 1)−1e−ix·Pf eik·xeix·Pf
[|D|, a(k,λ)

]
e−ix·Pf

= eix·Pf(Hk + 1)−1[|D − α · k|, a(k,λ)
]
eik·xe−ix·Pf .

To this end, we remark that, with D̂ = D − Mβ ,

[|D − α · k|, a(k,λ)
]

= 1

π

∞∫
M2

ds
√

s − M2
(
s + (D̂ − α · k)2)−1[

(D̂ − α · k)2, a(k,λ)
]

× (
s + (D̂ − α · k)2)−1

= − 1

π

∞∫
M2

ds
√

s − M2
(
s + (D̂ − α · k)2)−1{

(D̂ − α · k)eα · Fx(k,λ)

+ eα · Fx(k,λ)(D̂ − α · k)
}(

s + (D̂ − α · k)2)−1
. (D.7)
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Assume, for a while, that

∥∥(Hk + 1)
(
s + (D̂ − α · k)2)−1

(Hk + 1)−1
∥∥ � C

(
s−1 + s−3/2 + s−2). (D.8)

We note the following two estimates:

∥∥(Hk + 1)−1(D̂ − α · k)α · Fx(k,λ)
∥∥

= ∥∥(H + 1)−1D̂α · F0(k, λ)
∥∥

� C
∣∣F0(k, λ)

∣∣ (D.9)

and

∥∥(Hk + 1)−1α · Fx(k,λ)(D̂ − α · k)
∥∥

= ∥∥(H + 1)−1α · F0(k, λ)(D̂ + α · k)
∥∥

�
∣∣F0(k, λ)

∣∣∥∥(H + 1)−1D̂
∥∥ + |k|∣∣F0(k, λ)

∣∣∥∥(H + 1)−1
∥∥

� C
(
1 + |k|)∣∣F0(k, λ)

∣∣, (D.10)

because D̂(H + 1)−1 is bounded and e−ik·xHk = He−ik·x, e−ik·x(D̂ − α · k) = D̂e−ik·x . Collect-
ing (D.7), (D.8), (D.9) and (D.10), one has

∥∥[|D − α · k|, a(k,λ)
]
(Hk + 1)−1

∥∥
� 1

π

∞∫
M2

ds
√

s − M2s−1C
(
1 + |k|)∣∣F0(k, λ)

∣∣(s−1 + s−3/2 + s−2)

= C
(
1 + |k|)∣∣F0(k, λ)

∣∣.
This is what we want to show.

Finally we will prove (D.8). Basic strategy is similar to the proof of Lemma D.3. Let

Jn/2(s) = ‖(Hk + 1)n/2e−is(D̂−α·k)ϕ‖, n = 1,2 for ϕ ∈ dom(Hk) with ‖ϕ‖ = 1. Then, since
[D̂ − α · k,Hk] = [D̂,Hf] = α · (a(ωFx) − a(ωFx)

∗), one can easily modify the proof of
Lemma D.3 to conclude that

J1(s) � J1(0) + C
(
J1/2(0)|s| + s2), J1/2(s) � J1/2(0) + C|s|.

Thus, using the formula

(
t + D̂2)−1 =

∫
R

ds gt (s)e
−isD̂

with gt (s) = √
π/2t e−√

t |s| and modifying the proof of Lemma D.3, one can arrive at (D.8). �
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Appendix E. Operator monotonicity of the square root

Lemma E.1 (Operator monotonicity of the square root: unbounded version). Let S and T be two
positive self-adjoint operators (not necessarily bounded) with dom(S1/2) ⊇ dom(T 1/2). Assume
that S � T . Then one has dom(S1/4) ⊇ dom(T 1/4) and

√
S �

√
T .

Proof. Set En = ES([0, n]) where ES(·) is the spectral measure of S. Define Sn = E
1/2
n SE

1/2
n .

Then one has S � Sn � 0 for all n ∈ N. Thus Sn � T holds for all n ∈ N. Now one has

(εT + 1)−1Sn(εT + 1)−1 � (εT + 1)−1T (εT + 1)−1 (E.1)

for every ε > 0. Since both sides of (E.1) are positive and bounded, one can apply the operator
monotonicity of the square root for bounded positive operators [18] and obtain√

(εT + 1)−1Sn(εT + 1)−1 �
√

(εT + 1)−1T (εT + 1)−1

for all ε > 0. Taking ε ↓ 0 first, we have
√

Sn �
√

T for each n ∈ N. It follows that, for f ∈
dom(T 1/4), one has

n∫
0

λ1/2 d
∥∥ES(λ)f

∥∥2 �
〈
f,

√
T f

〉

by the spectral theorem. Now taking n → ∞, we conclude that f ∈ dom(S1/4) and 〈f,
√

Sf 〉 �
〈f,

√
T f 〉 by the monotone convergence theorem. �
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