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Distribution of fodrin in the keratinocyte, both in vivo and in
vitro, was examined by immunofluorescence microscopy. In
the rat epidermis in vivo, fodrin was localized in the cell
periphery of the spinous layer of all the skins studied. In only
the Easal layer of the thick skin, however, fodrin was seen
intensely in the cytoplasm.

As in vitro keratinocytes, a mouse cell line (Pam 212)
cultured in low (0.06 mM) as well as standard (1.87 mM)
Ca?* was examined. In low Ca?*, fodrin was observed
throughout the cytoplasm without marked accumulation ir-
respective of the cell density. The cytoplasmic labeling in
low Ca2* looked filamentous and became aggregated when
cells were treated with cytochalasin B; at least some of the
aggregates coexisted with those of F-actin. In contrast, fodrin

distribution was not affected with colchicine. On the other
hand, in standard Ca?*, the protein became concentrated
along the cell periphery and less conspicuous in the cyto-
plasm as the cells reached confluency. When cells were
transferred from low to standard Ca?*, the distribution of
fodrin changed accordingly within 180 min.

The present results indicate that fodrin in the keratinocyte
is likely to be associated with actin filaments and that it takes
two different ways of distribution both in vivo and in vitro.
The peripheral and the cytoplasmic labeling of in vivo and in
vitro cells are likely to correspond. It may be that fodrin
changes its localization according to the cell’s proliferative
activity. | Invest Dermatol 94:724-729, 1990

n the cultured epidermal cells, many changes are induced by

increasing extracellular Ca?* concentration. In medium

with low Ca?* (<0.1 mM), the cells proliferate with the

characteristics of basal cells and do not form cell-cell con-

tacts; when transferred to medium with a standard Ca?* con-
centration (> 0.1 mM) (“calcium switch”), they begin to stratify
and form desmosomes as well as adherence junctions [1-5]. As
assumed from the formation of intercellular junction, changes occur
in the cytoskeleton. Distribution of keratin filaments [3] and actin
filaments [4,5] has been reported to change, due to the calcium
switch.

Fodrin is one of the spectrin-like proteins found in a wide variety
of cells and is assumed to comprise the skeletal framework of the
plasma membrane [6]. Although several functions have been postu-
lated about fodrin, the most interesting characteristic is that the
protein in conjunction with other peripheral membrane proteins
can bind to both integral membrane proteins and cytoskeletal pro-
teins, and thus may be able to transmit alterations occurring on the
cell surface to the cell interior (for reviews, see [7,8]). Although a
protein immunoreactive with erythrocyte spectrin was reported to
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exist in the epidermal cell of both in vivo and in vitro [9], it has not
been examined whether there is any change in the proteins’ locali-
zation in correlation with the cell’s proliferation and differentia-
tion.

We have conducted immunolocalization studies of fodrin in ker-
atinocytes, in vivo and in vitro. We will present the results of immu-
nofluorescence microscopy of fodrin in the rat epidermis in vivo and
Pam 212 cells [10] kept in low as well as standard Ca?*. The cell line
retains characteristics of epidermal cells and has the ability to differ-
entiate [10]. The results show that distribution of fodrin is different
between basal and spinous cells of the in vivo thick epidermis and
that the two different distributions are reproduced in keratinocytes
in vitro by changing extracellular Ca?* concentration. This is the
first report to show that fodrin translocates between the cell periph-
ery and the cytoplasm by a change of cellular ionic environment.

MATERIALS AND METHODS

Preparation of Antibodies and Immunoblotting Fodrin was
isolated and purified from rat brains as described [6]. Spectrin was
prepared from rat erythrocytes [13]. Antibodies to fodrin and spec-
trin were produced in rabbits and purified by affinity chromatogra-
phy using the respective antigen immobilized on glutaraldehyde-
activated AcA 22 Ultrogel (LKB, Sweden) [14]. Monospecificity of
the antibodies was confirmed by immunoblotting. Extracts of the
rat epidermis and Pam 212 cells were prepared in a solubilizing
buffer (15 mM Tris/HCI, pH 8.0, 2.5% sodium dodecyl sulfate
[SDS], 20% sucrose, 2% f-mercaptoethanol, and 0.02% bromo-
phenol blue), separated on 7.5% polyacrylamide slab gels contain-
ing 0.1% SDS according to Laemmeli [15], and transferred electro-
phoretically to nitrocellulose paper as described [16]. The
nitrocellulose paper was incubated with the primary antibodies for
180 min, and then with horseradish peroxidase-conjugated goat
anti-rabbit IgG (Cappel, USA) for 30 min at room temperature.
Positive bands were visualized by diaminobenzidine reaction.
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Preparation of Tissues In Vivo The rat skin was excised from
the nipple and immediately fixed with 3% formaldehyde (freshly
depolymerized from paraformaldehyde) in 0.1 M sodium phos-
phate buffer, pH 7.4, for 60 min at room temperature. The tissue
was stored in 0.5% formaldehyde at 4°C until cryosectioning.

Cells Pam 212 cells, a generous gift from Dr. Stuart H. Yuspa [10],
were maintained in Dulbecco’s modified Eagle’s minimal essential
medium no. 1 (DMEM) with penicillin (100 units/ml) and strepto-
mycin (100 ug/ml), and supplemented with 15% fetal bovine
serum (GIBCO, USA). For subculturing, 0.2% trypsin and 0.25
mM EDTA were used to detach cells. 2 X 105 cells were plated in
35-mm plastic dishes with 2 ml DMEM and incubated at 37°C in a
humidified incubator with 95% air and 5% CO,. Low Ca?* me-
dium was prepared using calcium-free DMEM supplemented with
15% chelex-100 (Bio-Rad, USA) treated fetal bovine serum and the
Ca?* concentration was adjusted to 0.06 mM by adding an appropri-
ate amount of CaCl,.

To produce an “instant” confluent monolayer of cells, 2 X 106
cells trypsinized and resuspended in low Ca?* medium were re-
plated in a 35-mm dish. The medium change, from low Ca2* (LC)
to standard Ca®* (SC), was instituted at 24 h after initiating the
cultures.

Some of the cells were treated with 30 uM eytochalasin B (dis-
solved in DMSO at the final concentration of 0.5%) [11] or with 20
UM colchicine [12] and incubated for 1 h at 37°C in the CO, incu-

bator. Control cultures were incubated in the medium with 0.5%
DMSO.

Indirect Immunofluorescence Microscopy of Cells on Cov-
erslips PAM 212 cells cultured on coverslips were indirectly im-
munolabeled for fodrin. The cells in the LC and SC media were
fixed with 3% formaldehyde (freshly depolymerized from parafor-
maldchyde) in 0.1 M sodium phosphate buffer, pH 7.4, for 10 min
at room temperature; rinsed with PBS containing 10 mM glycine;
and treated sequentially with 1% Triton X-100 and 2% gelatin for
10 min each. They were then incubated with the rabbit anti-fodrin
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Figure 1. Immunoblots of rat epidermis and Pam 212 cells with anti-fodrin
antibody. Erythrocyte ghosts (lane a), extracts of rat epidermis (lane b), and
Pam 212 cells (lane ¢) were subjected to SDS-PAGE, and transferred to
nitrocellulose paper and incubated with rabbit anti-spectrin (lane a) or rabbit
anti-fodrin (lanes b and ¢). The anti-fodrin antibody reacted solely with a
240-kd band in extracts of rat epidermis and Pam 212 cells. The anti-fodrin
antibody did not react with spectrin.
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Figure 2. Immunofluorescence microscopy of fodrin. Semi-thin frozen
sections of the rat thick skin in the nipple. Fodrin is labeled diffusely in the
cytoplasm of the basal cells (arrows), but is confined to the cell periphery in
upper layers. Bar, 10 ym.

Figure 3. Immunofluorescence microscopy of fodrin in Pam 212 cells in
low Ca?*, (a) Single and (b) confluent cells. In both cases, labeling for fodrin
is seen in the cytoplasm. In confluent cells, filamentous pattern is particu-
larly apparent with little accumulation along the cell surface. Bar, 10 um.
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antibody (10 ug/ml) for 30 min, rinsed, incubated with fluorescein-
labeled goat anti-rabbit IgG (Cappel, USA) (20 pg/ml) for 30 min,
rinsed, and mounted on glass slides with 90% glycerol. Some cells
were also labeled with rhodamine-phalloidin (Molecular Probes,
USA). Control was taken by omitting the primary antibody, result-
ing in minimal background fluorescence. Cells were observed with
a VANOX photomicroscope (Olympus, Japan) equipped with epi-
fluorescent illumination and a phase-contrast device. The speci-
mens were photographed on Kodak Tri-X film.

Indirect Immunofluorescence Microscopy of Semi-Thin
Frozen Sections The rat skin in vivo was prepared as above. Pam
212 cells grown on plastic dishes in the LC and SC media were
detached with repeated pipetting, rinsed with PBS, and fixed with a
mixture of 3% formaldehyde and 0.05% gluataraldehyde in 0.1 M
sodium phosphate buffer, pH 7.4, for 30 min at 4°C. The rat skin
and the cell pellet embedded in 1% agar were infused with 2.3 M
sucrose and rapidly frozen in liquid nitrogen. Semi-thin frozen sec-
tions (0.5-1.0 um in thickness) were cut in a Reichert-Jung UL-
TRACUT E ultramicrotome with a cryoattachment (Austria) [17].
Sections treated with 1 mg/ml sodium borohydride for 10 min to
quench autofluorescence were immunolabeled and observed as de-
scribed above for cells on coverslips.

RESULTS

Immunoblotting Immunoblots were made with the polyclonal
anti-fodrin and anti-spectrin antibodies (Fig 1). Erythrocyte ghosts
were reacted with the anti-spectrin antibody to show the level of
240 kd. In extracts of the rat epidermis and Pam 212 cells, only a
band at the same level as a-spectrin reacted positively with the
anti-fodrin antibody.

The Rat Epidermis In Vivo The thick skin taken from the
nipple was examined for localization of fodrin. The protein showed
diﬁf‘rcnt distribution in the basal cells and in the other keratino-
cytes: in the former, it was observed diffusely in the cytoplasm,
whilein the latter it was seen only along the cell periphery (Fig 2).
The difference between basal and spinous layers both in staining
pattern and intensity was consistent. No specific fluorescence was
observed in the stratum corneum.

The Keratinocyte In Vitro Pam 212 cells grown on coverslips
were immunolabeled for fodrin and observed en face by immuno-
fluorescence microscopy. In single cell in the LC medium, fodrin
was observed in the cytoplasm (Fig 3a). Confluent cells in the LC
medium showed filamentous labeling of fodrin throughout the cy-
toplasm and accumulation of the immunolabeling was not seen in
the cell periphery (Fig 3b). In contrast, cells in the SC medium
showed different distribution of fodrin dependent upon the cell
density; in cells isolated singly (Fig 4a) and of small colony (Fig 4b),
the protein was seen to be in the cytoplasm, while in cells at con-
fluency (Fig 4c) it appeared markedly concentrated along cell-cell
contacts and the cytoplasmic labeling was not seen.

When confluent cells were transferred from the LC medium to
the SC medium, cell-cell contacts became apparent within 60 min
by phase-contrast observation. But at this point, fodrin labeling
occurred in the cytoplasm as well as in the cell peripery (Fig 5a). The
cytoplasmic labeling decreased gradually and finally fixed at 180
min after the transfer, fodrin was seen to be almost confined to
cell-cell contacts (Fig 5b).

To confirm the cytoplasmic labeling in the LC medium as well as
the surface labeling in the SC medium, semi-thin frozen sections of
confluent Pam 212 cells detached from culture dishes were prepared
and immunolabeled for fodrin. The labeling was seen intensely in
the cytoplasm of the confluent cells grown in the LC medium (Fig
6a), whereas it was observed only along the cell surface, and not in
the cytoplasm, of the confluent cells in the SC medium (Fig 6b).

In order to examine if the filamentous localization of fodrin in
cells in low Ca2* is related to actin filaments and /or microtubules,
cells were treated with either cytochalasin B or colchicine, fixed,
and labeled for fodrin. By the addition of cytochalasin B, labeling
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Figure 4. Immunofluorescence microscopy of fodrin in Pam 212 cells in
standard Ca?*. (a) Single cell, (b) small colony, and (c) confluent cells. In (a)
and (b), fodrin is labeled in the cytoplasm, while in (¢ it is limited to cell-cell
contacts and cytoplasmic labeling is scarce. Bar, 10 ym.
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Figure 5. Immunofluorescence microscopy of fodrin in confluent Pam 212
cells transferred from low Ca?* to standard Ca?*. (a) 60 min and (b) 180 min
after the transfer. At 60 min after the transfer (a), cells are labeled in the
cytoplasm as well as in the cell periphery, butat 180 min (b), the labeling for
fodrin is mostly in cell-cell contacts. Bar, 10 um.

for fodrin became aggregated in the cytoplasm (Fig 7a). Labeling of
the same specimen with rhodamine-phalloidin showed that F-actin
also became aggregated in cytochalasin B-treated cells and that fo-
drin and F-actin coexist in some, if not all, aggregates (Fig 7b). On
the contrary, colchicine did not affect the labeling for fodrin (pho-
tograph not shown). Cells in the SC medium did not show any
change in the distribution of fodrin and F-actin even when treated
with either cytochalasin B or colchicine (photograph not shown).

DISCUSSION

Cultured keratincoytes have been used frequently as a model system
to study the mechanism of differentiation in vivo. The cells prolif-
erate more rapidly in low Ca?* than in standard Ca?*, but only in
the latter environment do they stratify and show some characteris-
tics of keratinized cells. Many morphologic and biochemical
changes caused by the change in Ca?* concentration have been
reported [1,2]. Pam 212 cells used in the present experiment also
respond to the change of the Ca?* concentration, and therefore
compare well with the in vivo results. There have also been several
studies on the cytoskeleton of the keratinocytes [3 - 5], but not much
has been known about proteins of the cell membrane except for
those in the desmosome.

Fodrin is a protein isolated from the brain [6], which shares many
properties with erythrocyte spectrin [7,8]: ability to bind to ankyrin;
taking a rod form of about 200 nm; ability to bind to actin, which

Figure 6. Immunofluorescence microscopy of fodrin in frozen semi-thin
sections of Pam 212 cells. The cells grown confluent in culture dishes with
low (a) and standard (b) Ca®* were detached and embedded in agarose.
Semi-thin frozen sections were immunolabeled with the affinity-purified
antibody. Labeling for fodrin is seen diffusely in the cytoplasm except for the
nucleus in the low Ca**. In contrast, the labeling is observed only along the

cell-cell contact in standard Ca2*. Bar, 10 ym.

affinity is increased by band 4.1; and ability to bind to calmodulin in
a Ca?* -dependent manner [18,19]. In collaboration with ankyrin
and band 4.1-like proteins, fodrin can act as an intermediate be-
tween the cell membrane and the cytoskeleton.

A protein of the spectrin family, called p230 [20], was reported to
exist along the periphery of in vivo human keratincoytes and in the
ventral surface and cell-cell contact area of in vitro human keratino-
cytes [9]. But skins from the different body areas were not com-
pared, nor was the influence of the extracellular Ca?+ concentration
examined. Moreover, p230 crossreacts with erythrocyte a-spectrin,
while fodrin does so only partially [7,8]. Although it needs further
examination, it is possible that p230 and fodrin are not crossreactive
and thus show ditferent localization.

Changes in the extracellular calcium concentration have been
reported to affect the solubility of fodrin in Madin-Darby canine
kidney (MDCK) cells [21]. However, it was not known whether
localization of fodrin changes under the experimental condition. In
the present study, immunocytochemistry of frozen sections con-
firmed that fodrin, found only along the cell surface in SC medium,
is localized in the cytoplasm of Pam 212 cells in LC medium. The
mechanism which induces the translocation of fodrin is not known
yet. Since de novo synthesis is not necessary to induce the change of
the fodrin's solubility property in MDCK cells [21}, it is likely that
some post-synthetic modification of the protein is involved. Since
fodrin is a major calmodulin-binding protein, calmodulin might
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Figure 7. Double immunofluorescence microscopy of (a) fodrin and (b)
E-actin in Pam 212 cells in low Ca?*. Fodrin was labeled with affinity-puri-
fied antibody and FITC conjugated secondary antibody, while F-actin was
labeled with rhodamine-phalloidin. Both fodrin and F-actin appear to form
aggregates, some of which coincided with each other (arrows). Bar, 10 ym.

affect fodrin’s localization in some manner. The fact that prolifera-
tive keratinocytes in low Ca** contain more calmodulin than the
basal monolayer cells in standard Ca** [22] does not contradict with

the above assumption. Although only speculative, it is interesting to
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study whether binding of calmodulin to fodrinina Ca?*-dependent
manner influences the distribution of fodrin.

By changing calcium concentration, desmosomal proteins in
human keratinocytes are known to accumulate at the cell periphery
in a similar time course as taken by fodrin [3]. Moreover, the accu-
mulation of desmosomal proteins is accompanied by a rearrange-
ment of keratin filaments. Although direct correlation between fo-
drin and desmosomal proteins and between actin filaments and
keratin filaments may not exist, it is interesting that two different
sets of peripheral membrane proteins and cytoskeletal filaments are
changed in distribution almost simultancously.

Although fodrin is confined to the cell membrane in most cells
[6,23,24], several examples have been reported in which fodrin is
found in the cytoplasm Y] 4,25-32]: fodrin is seen either associated
with actin filaments [14,25-27], microtubules [28-30], or mem-
brane organelles [26,30,31], or distributed in the cytoplasm not
associated with other known structures [14,32]. In the present ex-
periment, it was shown that by treatment with cytochalasin B, a
reagent which specifically depolymerizes actin filaments, distribu-
tion of fodrin was changed. Codistribution of fodrin and F-actin
after cytochalasin B treatment indicates that fodrin is likely to be
attached to actin filaments at least partially. But it is not clear
whether the attachment is direct and to what extent it occurs. It
cannot be denied that fodrin may also exist independent of actin
filaments.

The keratinocytes which have abundant cytoplasmic occurrence
of fodrin, basal cells in vivo, and keratinocytes cultured in low Ca?*
in vitro share another characteristic. That is, they are both rapidly
proliferating cells. We do not know how the distribution of fodrin
affects the cell growth, or vice versa. But presence of fodrin is
reported to affect many properties of the plasma membrane includ-
ing the fluidity of the lipid bilayer [33], distribution of integral
membrane proteins [34]. The protein localization might be related
to the very basic character of the cell.
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