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Adaptive preconditioners for nonlinear systems of equations
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Abstract

The use of preconditioned Krylov methods is in many applications mandatory for computing efficiently the
solution of large sparse nonlinear systems of equations. However, the available preconditioners are often sub-
optimal, due to the changing nature of the linearized operator. In this work we introduce and analyse an adaptive
preconditioning technique based on the Krylov subspace information generated at previous steps in the nonlinear
iteration. In particular, we use an adaptive technique suggested in [J. Baglama, D. Calvetti, G.H. Golub, L. Reichel,
Adaptively preconditioned GMRES algorithms, SIAM J. Sci. Comput. 20(1) (1998) 243–269] for restarted GMRES
to enhance existing preconditioners with information available from previous stages in the nonlinear iteration.
Numerical experiments drawn from domain decomposition techniques and fluid flow applications are used to
validate the increased efficiency of our approach.
© 2005 Elsevier B.V. All rights reserved.
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1. Problem description

In this work we are interested in the efficient solution of a sequence of linear systems of the form

Amxm = bm, (1)
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where Am is large and sparse. These problems usually arise from some linearization of a nonlinear system
of equations of the form

F(x) = 0, (2)

where F : Rn → Rn and x ∈ Rn. For example, in the case of Newton’s linearization of (2), Am is some
(preconditioned) approximation to the Jacobian matrix, while xm is the new update direction and bm is
the negative residual.

In the following, we make the following assumptions:

(i) Am are preconditioned matrices with a spectrum largely clustered;
(ii) Am+1 = Am + Em where ‖Em‖ → 0 as m → ∞;

(iii) we employ GMRES to solve (1).

The choice of iterative method is essential in the design of our preconditioners. In particular, ours is not
the first attempt to recycle Krylov information generated by GMRES in order to accelerate convergence.
Two main recurring ‘recycling’ themes are convergence acceleration/preconditioning in the context of
(i) restarted GMRES [1–4,11–13], and, more recently, (ii) linear systems with multiple right-hand sides
[5,7]. For symmetric and positive-definite problems, similar approaches can be found in [15,18,20]. We
note, also, the application of these ideas to sequences of systems of type (1) [9,14].

One distinguishing feature in the quest for an adaptive preconditioner is the idea of subspace invariance.
If available, one can either deflate (or shift to one) eigenvalues of the system matrix associated with this
subspace. The resulting eigenvalue distribution may thus be more favourable to convergence. In this spirit,
various deflation techniques and invariance-seeking algorithms have been devised. However, for realistic
applications the construction of such subspaces can be rather costly.

Our approach, based on [1], is more simplistic, but achieves one of the aims of the above invariance-
inspired techniques—that of shifting eigenvalues to one. As we show in the next section, this is achieved
directly (without further searches), given the GMRES information in the form of a Hessenberg matrix
and an Arnoldi basis. Moreover, our technique is positive-definiteness preserving.

The paper is structured as follows. In the next section we introduce our preconditioner and discuss
some of its properties. We also present and discuss a simple adaptive preconditioning approach for the
solution of (1). In particular, we describe how the use of block-preconditioners with GMRES can lead to
cost- and performance-efficient implementations of our adaptive preconditioners. Finally, to illustrate the
efficiency of our technique, we use two generic examples: domain decomposition for nonlinear elliptic
problems and the steady-state, incompressible Navier–Stokes equations.

2. Adaptive preconditioners

Let A ∈ Rn×n and let V TAV = H denote a Hessenberg decomposition of A, where V ∈ Rn×n is an
orthonormal matrix with columns vi , 1�i�n. Let V =[Vk Vn−k] denote a partition of the column space
of V such that V T

k AVk = Hk ∈ Rk×k is a nonsingular, irreducible Hessenberg matrix (i.e., with no zero
subdiagonal entries). Writing h = Hk+1,k , A satisfies

AVk = VkHk + hvk+1e
T
k
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and

V TAV =
(

Hk V T
k AVn−k

he1e
T
k V T

n−kAVn−k

)
=:

(
Hk F

hE G

)
,

where, with an abuse of notation, e1, ek are respective columns of In−k, Ik . Define now

M� := In − VkV
T
k + VkHkV

T
k + �vk+1v

T
k

with inverse

M−1
� = In − VkV

T
k + (Vk − �vk+1e

T
k )H−1

k V T
k . (3)

Our preconditioning approach is based on the following result.

Proposition 2.1. Let A have the Hessenberg decomposition V TAV = H and let M� be defined as in (3).
For all � �= h, � = 1 is an eigenvalue ofAM−1

� with multiplicity k − 1. If � = h, then

�(AM−1
h ) = {1} ∪ �(S(h)),

where � = 1 has multiplicity k and

S(h) := V T
n−kAVn−k − he1e

T
k H−1

k V T
k AVn−k .

Finally, if A is positive definite, then AM−1
� is positive definite provided h − � is sufficiently small.

Proof. Since

V TAV =
(

Hk F

hE G

)
, V TM�V =

(
Hk 0
�E In−k

)
,

the eigenvalues of AM−1
� satisfy

Hkx + Fy = �Hkx,
hEx + Gy = ��Ex + �y.

Thus, if � �= h, (eT
i , 0)T, 1�i�k − 1, are eigenvectors corresponding to � = 1. If � = h, (eT

k , 0)T also is
an eigenvector for � = 1, while for � �= 1, elimination of x from the first equation leads to the eigenvalue
equation S(h)y = (G − hEH−1

k F )y = �y.
Assume now that A is positive definite. Then the Schur complement S(h) is positive definite. To see

this, consider the real Schur decomposition A = QTT Q; then 0 < xTQTT Qx = zTA−1z, z = QTT Qx.
Since the inverse of A has the form

A−1 =
(∗ ∗

∗ S(h)−1

)
,

the choice z = (0, wT)T yields 0 < zTA−1z = wTS(h)−1w and hence S(h) is positive-definite.
Now, the non-unit eigenvalues � of AM−1

� satisfy

(S(h) + (h − �)
�

� − 1
EH−1

k F )y = �y
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and the final statement follows from the positive-definiteness of S(h) and standard perturbation theory
[10]. �

Remark 2.1. We note here that our result is different, and in a sense more general, than that of Baglama
et al. who considered the same preconditioned system under the assumption that V spans an invariant
subspace of A. Under this assumption, the preconditioner M leaves unchanged n − k eigenvalues of A
and shifts the other k to 1 (see [1]).

Remark 2.2. The matrix in the last eigenvalue problem in the proof is a rank-one perturbation of G =
V T

n−kAVn−k; moreover, only the first row of G is modified. As an immediate corollary, an application of
Gerschgorin’s theorem reveals that the union of disks where the eigenvalues lie remains almost unchanged,
with at most one having a different center and radius.

Let now A� = A + E denote a perturbation of A with ‖E‖��. The �-pseudospectrum of A is the set

��(A) = {z ∈ C : z ∈ �(A + E), for some E with ‖E‖��}, (4)

whose contour length L enters the following standard bound on the convergence of GMRES [19]:

‖rk‖�(2��)−1L(���(A)) min
pk(0)=1

max
z∈��(A)

|pk(z)|‖r0‖. (5)

The following result describes the suitability of M as a preconditioner for A�.

Proposition 2.2. Let A�, M be defined as above. Then the �-pseudospectrum of A�M
−1 satisfies

��(A�M
−1) ⊆ ��̃+�(AM−1)

for all ��0, where �̃ = �/�min(Ĥk+1), where Ĥk+1 ∈ Rk+1×k+1 is the Hessenberg matrix

Ĥk+1 =
(

Hk 0
�eT

k 1

)
.

Proof. Let F ∈ Rn×n such that ‖F‖��. Since �(A�M
−1 +F)=�(AM−1 +EM−1 +F) with ‖EM−1 +

F‖��/�min(Ĥk+1) + �, the result follows from definition (4). �

Thus, one can use (5) to relate the GMRES residuals rk
� corresponding to coefficient matrix A�M

−1 to
the tolerance tol used for the solution of the problem with coefficient matrix AM−1. Assuming

‖rk‖/‖r0‖�(2�(�̃ + �))−1L(���̃+�(AM−1)) min
pk(0)=1

max
z∈��̃+�(AM−1

)

|pk(z)|� tol,

we find using Proposition 2.2

‖rk
� ‖/‖r0

� ‖�(2��)−1L(���(A�M
−1)) min

pk(0)=1
max

z∈��(A�M−1)
|pk(z)|

�(2��)−1L(���̃+�(AM−1)) min
pk(0)=1

max
z∈��̃+�(AM−1

)

|pk(z)|

�(1 + �̃/�)tol.
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Thus, either a small value of � or a large value of � can ensure that preconditioning with M leads to
convergence to a fixed tolerance in approximately the same number of steps for all perturbations E of
maximum norm �. We note here that larger values of � would correspond to a large GMRES tolerance,
which is often employed in the early stages of Newton–Krylov algorithms [6].

The application of the above results to (2) is evident: we solve A1x1 = b1 using GMRES, which
yields a preconditioner M(1) of form (3). We then employ GMRES to solve a system with preconditioned
matrix (A1 + E1)M

−1
(1) = A2M

−1
(1) and construct M(2). The general preconditioner for Amxm = bm is then

given by

M−1
m = M−1

m−1M
−1
(m−1), m > 2, (6)

with M2 = M(1). The above definition raises the concern of cost as well as storage. Each of the pre-
conditioners Mm requires the storage of, and multiplication by, bases Vm of length km. While we have
control over the choice of km, smaller values usually lead to deterioration in performance. Our approach
to circumventing this problem is to work with matrices that have, or have been permuted to, a block
structure. Then a Schur complement approach coupled with a suitable starting guess leads to a GMRES
algorithm essentially for the Schur complement problem, with the advantage that the resulting Arnoldi
basis is small. An important example is the class of domain decomposition methods which lend them-
selves naturally to this strategy. Below we consider in some detail a generic block algorithm which is
both cost- and storage-efficient while preserving the advantages of the preconditioning strategy described
above.

2.1. A right-preconditioned block algorithm

Let A ∈ Rn×n have the following block-structure:

A =
(

A11 A12
A21 A22

)
, (7)

where Aij ∈ Rni×nj , i, j = 1, 2, with n2>n1 and such that A11 is invertible. Moreover, we assume
that there exists an efficient algorithm for applying the action of the inverse of A11. This is the case
for domain decomposition methods, for example where A11 is a block diagonal matrix, with blocks
obtained by discretizing some PDE problem on subdomains, while A22 is the matrix corresponding to
the boundary nodes. We also encounter the same structure in many applications of saddle-point type,
whether in the field of PDE (mixed finite-element discretizations of systems of PDE) or optimization
(constraint minimization programmes); moreover, in these applications also, the action of the inverse of
A11 can often be performed efficiently.

Consider now the following block-triangular preconditioner:

PR =
(

A11 A12
0 Ŝ

)
, (8)

where Ŝ is an approximation to the Schur complement S = A22 − A12A
−1
11 A21. Since

AP−1
R =

(
I 0

A12A
−1
11 SŜ−1

)
,
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an initial guess of the form

x0 = P −1
R b

yields an initial residual of the form r0 = (0, r̃0)T. If we seek rk in the Krylov space K(AP−1
R , r0, k), then

all residuals will take the same form rk=(0, r̃k)T. Moreover, sinceK(AP −1
R , r0, k) ≡ span0�j �k−1{rj },

the resulting Arnoldi basis is of the form

Vk =
(

0
Ṽk

)
.

Thus, one only needs to store and work with a basis Ṽk of lengthn2. In particular, for domain decomposition
methods n2 ∼ O(n

1/2
1 ); thus, the cost of GMRES preconditioned by the adaptive preconditioner M given

in (6) is O(n) provided

km2 ∼ O(n1/2),

where k =max1� i �m ki is the maximum size of the Arnoldi bases employed in M and m is the number of
nonlinear steps. In practice, for many nonlinear applications of interest the value of m is typically small
(m>n1/2) while the preconditioner combination MPR will guarantee a small value of k.

3. Numerical experiments

To illustrate the effectiveness of the approach described in Section 2, we consider two applications
arising from the discretization of partial differential equations: a domain decomposition approach for
solving a nonlinear reaction-convection-diffusion problem and the example of Navier–Stokes equations
discretized with mixed finite elements. Both problems were discretized as

A(x)x = (�L + N(x))x = b,

where � is a small parameter and L, N denote the linear and nonlinear parts of A. In both cases we
employ two linearization methods: Picard (fixed-point) and Newton. Thus, we solved the sequence of
linear systems

Amxm+1 := (A(xm) − 	T (xm))xm+1 = b − 	T (xm)xm =: bm,

where T (xm)=N(xm)−N ′(xm), and N ′ denotes the Jacobian of N with respect to x. Picard and Newton
linearizations correspond to choices 	 = 0 and 	 = 1, respectively. We employ the following stopping
criterion suggested in [6] for the Newton iteration: at each nonlinear step m we stop after k iterations of
GMRES if the residual rk satisfies

‖rk‖/‖bm − Amxm‖�c‖bm − Amxm‖q , (9)

where the choice for c, q varies from problem to problem.
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3.1. Nonlinear reaction-convection-diffusion problem

Consider the finite-element discretization of

−��u + (�b · ∇)u + u2 = f in 
,

u = 0 on �,
(10)

where f =1, 
=[−1, 1]2 and �b=(2y(1−x2), −2x(1−y2)). The problem was solved for �=1, 1/10 via a
domain decomposition approach, using 4, 16 and 64 subdomains. We stopped the nonlinear iteration when
the criterion ‖bm−Amxm‖/‖b0−A0x

0‖�10−6 was satisfied. We used the GMRES stopping criterion (9)
with c = 10−2 and q = 4/5. The initial guess for the nonlinear iteration was the zero vector. The structure
of the linearized matrices Am is that given in (7), where A11 is block-diagonal, with blocks corresponding
to nodes interior to each subdomain—this corresponds to a so-called non-overlapping Dirichlet–Dirichlet
domain decomposition method. Since the problem is nonsymmetric, we used as a first preconditioner Pm

the block-triangular matrix given in (8), where we naively chose the sparse approximation

Ŝ = A22 − A21 diag(A11)
−1A12,

in order to test our preconditioning approach. In this case, the eigenvalues of the preconditioned system
are either equal to one or equal to the eigenvalues of the preconditioned Schur complement SŜ−1. For
elliptic problems, it is known [17] that the condition number of S is of order h−1H−1 where h ∼ n1/2

is the size of the mesh and H is the average size of the subdomains. This typically leads to both mesh-
and domain-dependent convergence. As we see below, the choice Ŝ appears to remove only the second
dependence, given our iterative strategy (9) for the nonlinear process.

While various domain decomposition algorithms remove this dependence for certain applications, their
design is often problem-based and may require multi-level information in order to attain optimality. On
the other hand, our adaptive technique is a black-box preconditioner which can either replace or enhance a
Schur complement preconditioner. Moreover, as demonstrated below, our adaptive preconditioners appear
to remove both mesh- and domain-dependence.

The results for the Picard iteration are presented in Tables 1 and 3. We compared the two adaptively
constructed preconditioners Mm corresponding to � = 0 and � = h (cf. (3)). The average number of
iterations per nonlinear step (also displayed) excludes the first Picard step. This allows for a clearer and
fairer comparison between Pm and MmPm, since Mm = I for m = 1. The corresponding savings and
additional storage are presented in Tables 2 and 4 (Tables 1–4). In particular, we chose to calculate the
cost of the adaptive preconditioners only in matrix-vector products (matvecs) and add it to the overall
number of matrix-vector products. The savings presented are thus the relative reduction in matvecs and
precvecs (matvecs involving P −1

m ). The additional storage calculation also used as a reference the storage
required by the system matrix. We note here that the cost or storage of the first preconditioner Pm is not
of interest here and was not evaluated.

The performance of the adaptive technique can be summarized as follows:

(i) the mesh- or domain-dependence is virtually removed;
(ii) the savings increase with the size of the problem;

(iii) relative additional storage decreases with the size of the problem.
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Table 1
Total/average number of GMRES iterations with and without adaptive preconditioning—nonlinear elliptic problem using Picard
linearization

� = 1 AmP−1
m AmP−1

m M−1
m

#dom n # its # its (� = 0) # its (� = h)

4 11,425 131/24.2 41/6.2 38/5.6
45,377 181/33.4 54/8.0 50/7.2
180,865 310/48.5 80/10.2 73/9.0

16 11,585 191/35.6 57/8.8 52/7.8
45,953 272/50.6 76/11.4 72/10.6
183,041 467/73.5 113/14.5 107/13.5

64 16,641 195/35.4 53/7.0 48/6.0
66,049 283/51.4 72/9.2 68/8.4
263,169 392/71.0 97/12.0 92/11.0

Table 2
Savings in precvecs (P−1

m v) and matvecs (Amv) and additional storage (×nz(Am))—nonlinear elliptic problem using Picard
linearization

� = 1 � = 0 � = h

#dom n P−1
m v (%) Amv (%) ×nz(Am) P−1

m v (%) Amv (%) ×nz(Am)

4 11,425 69 65 0.10 70 68 0.11
45,377 70 68 0.06 72 71 0.07
180,865 74 73 0.05 76 75 0.05

16 11,585 70 60 0.35 72 63 0.36
45,953 72 66 0.24 74 67 0.24
183,041 76 71 0.18 77 73 0.18

64 16,641 73 55 0.73 75 60 0.75
66,049 75 63 0.50 76 65 0.51
263,169 75 68 0.34 76 70 0.34

In fact, for this application the improvement in convergence is remarkable, with savings between 69–93%
for precvecs and 55–90% for matvecs, while additional storage is minimal (a fraction of the storage for
the system matrix between 0.1–0.3 for the finest mesh).

We note also here that the difference in performance between the case � = 1 and � = 1
10 is explained

through the convergence of the Picard iteration. When �=1 the number of Picard iterations varied between
6 and 7, while for � = 1

10 we needed 33 iterations. In both cases, the number of GMRES iterations is
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Table 3
Total/average number of GMRES iterations with and without adaptive preconditioning—nonlinear elliptic problem using Picard
linearization

� = 1
10 AmP−1

m AmP−1
m M−1

m

#dom n # its # its (� = 0) # its (� = h)

4 11,425 543/16.7 89/2.5 79/2.1
45,377 775/23.8 111/3.03 89/2.3

180,865 1,099/33.8 121/3.2 102/2.6

16 11,585 971/29.7 118/3.1 99/2.4
45,953 1,375/42.1 144/3.6 117/2.8
183,041 1,934/59.3 173/4.2 148/3.5

64 16,641 1,104/33.7 114/2.8 101/2.3
66,049 1,589/48.5 130/2.9 119/2.6
263,169 2,266/69.2 173/3.8 145/2.9

Table 4
Savings in precvecs (P−1

m v) and matvecs (Amv) and additional storage (×nz(Am))—nonlinear elliptic problem using Picard
linearization

� = 1
10 � = 0 � = h

#dom n P−1
m v (%) Amv (%) ×nz(Am) P−1

m v (%) Amv (%) ×nz(Am)

4 11,425 84 80 0.25 85 81 0.31
45,377 86 84 0.15 89 87 0.17
180,865 89 88 0.08 91 90 0.09

16 11,585 88 78 0.84 90 81 0.94
45,953 90 84 0.51 91 87 0.53
183,041 91 88 0.31 92 90 0.32

64 16,641 90 73 1.73 91 74 2.05
66,049 92 84 0.99 93 85 1.16
263,169 92 87 0.66 93 90 0.68

similar over the first few Picard steps, with a very rapid decrease to a steady requirement of only a few
GMRES iterations (2–4) per nonlinear step. Since the case � = 1

10 requires far more nonlinear steps, the
outcome is a very low average number of iterations.

For the case of Newton’s iteration a similar performance behaviour was noticed which is why we chose
not to include the results here. However, we employed Newton’s method for the case of a more difficult
problem, the Navier–Stokes equations considered below.
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3.2. Navier–Stokes example

As a second application of interest, we considered the example of the steady-state incompressible
Navier–Stokes equations in an open bounded domain 
 ⊂ Rd

−��u + (u · ∇)u + ∇p = f in 
, (11a)

∇ · u = 0 in 
, (11b)

u = 0 on �, (11c)

where u is the velocity, p is the pressure and � the viscosity parameter. The resulting nonlinear systems
have the following saddle-point structure (see, e.g., [16]):

0 = F(x) = F(u, p) =
(

f

0

)
−

(
K(u) BT

B 0

) (
u

p

)
, (12)

where K(u) = �L + N(u) ∈ Rn1×n1 is nonsymmetric and possibly indefinite and BT ∈ Rn1×n2 has
nontrivial kernel spanned by the constant vector. Our two linearizations of (12) yield a sequence of
systems of the form

Amxm+1 :=
(

Km BT

B 0

) (
um+1

pm+1

)
=

(
f

0

)
−

(
	T (um) 0

0 0

) (
um

pm

)
=: bm,

where Km = K(um) − 	T (um) and T (um) = N(um) − N ′(um), with N the nonlinear part of K. As a first
level of preconditioning we employ the following block preconditioner:

Pm =
(

K̂m BT

0 −Ŝ

)
, (13)

where K̂m approximates Km and Ŝ the negative Schur complement S = BK−1
m BT. We used an inner

GMRES algorithm with block Gauss–Seidel preconditioning to solve systems with K̂m, while for Ŝ, we
employed the same choice as in [8] which given by

Ŝ−1 = M−1
p FpA−1

p ,

where Mp, Fp, Ap are, respectively, mass, convection-diffusion and laplacian matrices assembled on the
pressure space (see [8] for details). In particular, it is shown in [8] that for low-Reynolds number flows,
the preconditioned system has eigenvalues bounded independently of the size of the problem. However,
their clustering may not be optimal. As we show below, our second level of preconditioning will improve
convergence dramatically.

We present results for a standard test problem, the driven cavity flow, for three values of the Reynolds
number: 10, 100, 1000. The choice c = 10−2 in our stopping criterion (9) does not affect the number of
nonlinear iterations in our tests if we take q = 3

4 except for Re = 1000 where we set q = 1. We stopped
the Newton (outer) iteration when ‖F(xm)‖/‖F(x0)‖�10−10. The initial guess for the Newton iteration
was the zero vector except for the flow at Re = 1000, in which case we used the result of three Picard
iterations as a starting approximation to the solution.

As described in Section 2, in order to reduce storage, at each nonlinear iteration the GMRES starting
vector was x=P −1

m bm, which ensures that at each GMRES iteration the residual has the form rT =(0, rT
p ).
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Table 5
Driven cavity flow: total/average number of GMRES iterations with and without adaptive preconditioning

Re n AmP−1
m AmP−1

m M−1
m

10 4,771 113/21.2 51/8.8
18,755 91/21.0 49/10.5
74,371 98/22.7 56/12.2

100 4,771 227/30.3 102/12.4
18,755 208/32.5 103/15.0
74,371 174/32.6 97/17.2

1000 4,771 1,064/105.0 408/23.0
18,755 952/118.0 411/27.8
74,371 718/118.2 375/32.5

Table 6
Driven cavity flow: Savings in precvecs (P−1

m v) and matvecs (Amv) and additional storage (×nz(Am))

Re n P−1
m v (%) Amv (%) ×nz(Am)

10 4,771 55 45 0.21
18,755 46 37 0.19
74,371 42 31 0.20

100 4,771 55 37 0.44
18,755 50 32 0.41
74,371 44 25 0.38

1000 4,771 62 36 1.12
18,755 57 32 1.02
74,371 48 25 0.87

The resultingArnoldi basis vectors have also the same form, a fact which allows us to store a basis V of size
n2. Bearing in mind that for standard P2–P1 discretizations n1 = 8n2 in 2 dimensions and n1 = 24n2 in 3
dimensions, the storage reduction is significant. Moreover, the cost of applying the adaptive preconditioner
becomes almost negligible, as Table 5 shows. Finally, we note that relaxing the action of P −1 (say, by
an approximate inversion of Km) the exact Arnoldi basis will be of full length. However, we found that
storing only a basis of length n2 does not lead to deterioration in performance, provided the stopping
criterion employed for the solution of linear systems with P is of the same order as the outer GMRES
tolerance (Table 6).

Table 5 displays the number of GMRES iterations for the case where only Pm is employed and for the
case where the adaptive preconditioner (6) is additionally used with � = h. As before, we evaluate the
extra cost in matvecs involving the system matrix Am, with the resulting savings evaluated in precvecs
and matvecs.
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The gains for this problem also are considerable. In particular, the performance improvement is better
gleaned from the reduction in precvecs (between 42–48% for the largest problem), since in this case they
are more expensive than the matvecs. This is generally the case in practice, as efficient preconditioning
comes at a price. We also note here that the additional preconditioner preserves the independence of the
size of the problem achieved by the first preconditioning technique. Finally, we notice an increase in
precvec savings with increasing Reynolds number. The storage increases also, though we note that for all
Re, the extra storage required does not exceed the amount required for the matrix itself. In general, one
can use a storage-limiting strategy; we found that this always leads to deterioration in performance.

4. Summary

In this work we addressed the issue of constructing adaptively preconditioners for sequences of lin-
ear systems arising from nonlinear systems of equations. Our technique, though seemingly similar to
other Krylov subspace approaches (notably [1]), is different in that it does not try to construct an invari-
ant subspace, or extract some eigenvalue information. The preconditioners used are guaranteed to shift
eigenvalues to one, while preserving positivity in the case of positive-definite matrices. Moreover, our
approach is based on, and incorporates, a first level of preconditioning, which for many applications of
importance is available. Thus, our adaptive preconditioners can be seen as a performance enhancing tool.
We demonstrated that in certain situations this enhancement can be remarkable. In particular, domain
decomposition methods for nonlinear problems lend themselves quite naturally to our adaptive technique.
This leads us to conjecture that a black-box approach is possible, where algebraic domain-decomposition
approaches for nonlinear systems can be combined with our adaptive method to deal with the resulting
Schur complement problems. We expect future work to validate and contribute to this conjecture.
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