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a b s t r a c t

We consider three-point boundary value problems for a system of first-order equations in
perturbed systems of ordinary differential equations at resonance. We obtain new results
for the above boundary value problemswith nonlinear boundary conditions. The existence
of solutions is established by applying a version of Brouwer’s Fixed Point Theorem which
is due to Miranda.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study three-point boundary value problems in perturbed systems of first-order ordinary differential
equations at resonance. Consider

x′
− A(t)x = H(t, x, ε) = εF(t, x, ε) + E(t), 0 ≤ t ≤ 1, (1)

Mx(0) + Nx(η) + Rx(1) = ℓ + εg(x(0), x(η), x(1)), (2)

whereM,N and R are constant square matrices of order n, A(t) is an n× nmatrix with continuous entries, E : [0, 1] → R is
continuous, F : [0, 1] × Rn

× (−ε0, ε0) → Rn is a continuous function where ε0 > 0, ℓ ∈ Rn, η ∈ (0, 1) and g : R3n
→ Rn

is continuous. We see that ifM = 1, N = 0, ℓ = 0, g(x(0), x(η), x(1)) ≡ 0, and R = −1 or R = +1, then we have a periodic
or anti-periodic BVP, respectively.

The work was motivated by [1,2] which considered the problem of finding periodic solutions of perturbed systems. We
adapt that approach to study three-point boundary value problems in perturbed systems. We address the central question:
If ε is sufficiently small do (1) and (2) have solutions? We turn (1) into an integral equation and use (2) to reformulate the
problem to one of finding the zeroes of a nonlinear equation involving the initial condition x(0) = c. We use Brouwer’s
degree theory to compute the degree for ε = 0.

The three-point boundary value problem (1), (2) is called resonant or degenerate in the case that the rank of the matrix
L = n− r , 0 < n− r < n, that is the matrix L = M +NY0(η)+ RY0(1) is singular whereM,N and R are the constant n× n
matrices given in (1), and Y (t) is a fundamental matrix of linear system x′

= A(t)x and Y0(t) = Y (t)Y−1(0). In studying the
resonant case, we will use a finite-dimensional version of the Lyapunov Schmidt procedure (see [2]). The resonance case for
a system of first-order equations which is arising from a scalar second-order equation will appear in a forthcoming paper.
There we study in particular, the nonlinear boundary conditions which extend the following BVPs with linear boundary
conditions:

y′′
= f (t, y, y′) + e(t), 0 ≤ t ≤ 1, (3)

y′(0) = 0, y(1) = αy(η), (4)
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and

y′′
= f (t, y, y′) + e(t), 0 ≤ t ≤ 1, (5)

y(0) = 0, y(1) = αy(η), (6)

where η ∈ (0, 1), α ∈ R, and f : [0, 1] × R2
→ ×R is a continuous function, and e : [0, 1] → R is a function in L1[0, 1].

Feng and Webb [3] studied the existence of solutions of the BVPs (3), (4) and (5), (6). Both of the problems are resonance
cases under the assumption α = 1 for problem (3), (4) and αη = 1 for problem (5), (6). In these cases Ly = y′′ together
with (4), (6) respectively, is noninvertible. This is the so-called resonance case, and the Leray–Schauder continuation theory
cannot be applied directly, and hence they used the coincidence degree theory of Mawhin [4]. Their results allowed the
assumption on linear and nonlinear growth on f . Gupta [5] studied the solvability of (3), (4) where α = 1.

The existence of solutions to two-point, three-point, four-point or multipoint BVPs for ODEs at resonance have been
studied by a number of authors (see, for example [6–9,3,10,5,11–19]). A great amount of work has been completed on the
existence of solutions to BVPs for nonlinear systems of first-order ODEs at resonance which involve a small parameter (see,
for example [20–23]). The resonance case for discrete systems of first-order difference equations has been considered by
several authors (see for example [24–31]). In these cases, resonance happens when the associated linear homogeneous BVP
admits nontrivial solutions.

Our existence theorem applies a version of Brouwer’s Fixed Point Theorem which is due to Miranda (see Yang [32,33]).
Thus our results extend to three-point BVPs the approach to periodic solutions of perturbed systems of first-order

equations at resonance considered in [20,1,2].

2. Preliminary results

Lemma 1. Consider the system

x′
= A(t)x (7)

where A(t) is an n × n matrix with continuous entries on the interval [0, 1]. Let Y (t) be a fundamental matrix of (7). Then the
solution of (7) which satisfies the initial condition

x(0) = c (8)

is x(t) = Y (t)Y−1(0)c where c is a constant n-vector. Abbreviate Y (t)Y−1(0) to Y0(t). Thus x(t) = Y0(t)c.

Lemma 2. Let Y (t) be a fundamental matrix of (7). Then any solution of (1) and (7) can be written as

x(t, c, ε) = x(t) = Y0(t)c +

∫ t

0
Y (t)Y−1(s)H(s, x(s), ε)ds. (9)

Solution (9) satisfies the boundary conditions (2) if and only if

Lc = εN (c, α, η, ε) + d (10)

where L = M + NY0(η) + RY0(1), N (c, α, η, ε) = −(
 η

0 NY (η)Y−1(s)F(s, x(s, c, ε), ε)ds +
 1
0 RY (1)Y−1(s)F(s, x(s, c, ε),

ε)ds − g(c, x(η), x(1))), d = −
 η

0 NY (η)Y−1(s)E(s)ds +
 1
0 RY (1)Y−1(s)E(s)ds − ℓ


, and x(t, c, ε) is the solution of (1)

given x(0) = c.

Thus (10) is a system of n real equations in ε, c1, . . . , cn where c1, . . . , cn are the components of c. System (10) is sometimes
called the branching equations.

Next we suppose that L is a singular matrix. This is sometimes called the resonance case or degenerate case. Now we
consider the case rank L = n − r , 0 < n − r < n. Let Er denote the null space of L and let En−r denote the complement in
Rn of Er , i.e.

Rn
= En−r ⊕ Er(direct sum).

Let x1, . . . , xn be a basis for Rn such that x1, . . . , xr is a basis for Er , and xr+1, . . . , xn is a basis for En−r .
Let Pr be thematrix projection onto KerL = Er , and Pn−r = I−Pr , where I is the identitymatrix. Thus Pn−r is a projection

onto the complementary space En−r of Er , and

P2
r = Pr , P2

n−r = Pn−r and Pn−rPr = PrPn−r = 0. (11)

Without loss of generality, we may assume that

Prc = (c1, . . . , cr , 0, . . . , 0) and Pn−rc = (0, . . . , 0, cr+1, . . . , cn). (12)

We will identify Prc with cr = (c1, . . . , cr) and Pn−rc with cn−r
= (cr+1, . . . , cn) whenever it is convenient to do so.
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Let H be a nonsingular n × nmatrix satisfying

L = Pn−r . (13)

Matrix H can be computed easily. The nature of the solutions of the branching equations depends heavily on the rank of the
matrix L.

Lemma 3. The matrix L has rank n − r if and only if the three-point BVP (7) and Mx(0) + Nx(η) + Rx(1) = 0 have exactly r
linearly independent solutions.

Proof. Assume that rank L = n − r . Then there exist r linearly independent solutions h1, . . . , hr satisfying

Lhi = 0, 1 ≤ i ≤ r.

Let xi(t) = Y (t)hi where Y (t) is the fundamental matrix. Clearly xi(0) = hi and xi(t) are linearly independent solutions of
(7) and Mx(0) + Nx(η) + Rx(1) = 0. Conversely as x′

= A(t)x and Mx(0) + Nx(η) + Rx(1) = 0 has r linearly independent
solutions xi(t), 1 ≤ i ≤ r . Thus xi(t) are r linearly independent and satisfy Mx(0) + Nx(η) + Rx(1) = 0. So L has rank less
than or equal to n − r . The result follows. �

Next we give a necessary and sufficient condition for the existence of solutions of x(t, c, ε) of three-point BVPs for ε > 0
such that the solution satisfies x(0) = c where c = c(ε) for suitable c(ε).

3. Existence results

We need to solve (10) for c when ε is sufficiently small. The problem of finding solutions to (1) and (2) is reduced to that
of solving the branching equations (10) for c as function of ε for |ε| < ε0. So consider (10) which is equivalent to

L(Pr + Pn−r)c = εN ((Pr + Pn−r)c, α, η, ε) + d.

Multiplying (10) by the matrix H and using (13), we have

Pn−rc = εHN ((Pr + Pn−r)c, α, η, ε) + Hd, (14)

where HN ((Pr + Pn−r)c, α, η, ε) = −H(
 η

0 NY (η)Y−1(s)F(s, x(s, c, ε), ε)ds +
 1
0 RY (1)Y−1(s)F(s, x(s, c, ε), ε)ds −

g(c, x(η), x(1))) and

Hd = −H
∫ η

0
NY (η)Y−1(s)E(s)ds +

∫ 1

0
RY (1)Y−1(s)E(s)ds − ℓ


.

Since the matrix H is nonsingular, solving (10) for c is equivalent to solving (14) for c. The following theorem due to
Cronin [1,2] gives a necessary condition for the existence of solutions to the BVP (1) and (2).

Theorem 1. A necessary condition that (14) can be solved for c, with |ε| < ε0, for some ε0 > 0 is PrHd = 0.

Proof. Multiplying (14) by Pn−r and Pr , and using the notation in (11), we obtain

Pn−rc = εPn−rHN ((Pr + Pn−r)c, α, η, ε) + Pn−rHd, (15)

0 = εPrHN ((Pr + Pn−r)c, α, η, ε) + PrHd. (16)

Solving (14) is equivalent to solving (15) and (16) simultaneously for Pn−rc and Prc. If we can solve for c for each fixed ε such
that |ε| < ε0, then setting ε = 0 in (16) we have

0 = PrHd.

So the theorem follows. �

Remark 1. Now we solve (14) for c in terms of ε. Using PrHd = 0 which is a necessary condition of Theorem 1, we thus
obtain

Pn−rc = εPn−rHN ((Pr + Pn−r)c, α, η, ε) + Pn−rHd, (17)

0 = εPrHN ((Pr + Pn−r)c, α, η, ε). (18)

Let (17) have initial solution

ε = 0,
cr = cr0,
Pn−rc = Pn−rHd,
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where cr0 is given a constant vector. Let Prc = cr and Pn−rc = cn−r . Let

G(cr , cn−r , α, η, ε) = cn−r
− εPn−rHN (cr ⊕ cn−r , α, η, ε) − Pn−rHd.

If

det
∂G(cr , cn−r , α, η, ε)

∂cn−r


(ε=0,cr=cr0,c

n−r=Pn−rHd)
≠ 0,

andG(cr0, Pn−rHd, α, η, 0) = 0, then by the implicit function theorem (see [34, p. 222]), we can solveG(cr , cn−r , α, η, ε) = 0
for cn−r in terms of cr and ε in a neighbourhood of (cr , cn−r , α, η, 0) = (cr0, Pn−rHd, α, η, 0) such that there exists a unique
solution

cn−r
= cn−r(cr , ε). (19)

Moreover cn−r(cr , 0) = Pn−rHd since G(cr , cn−r , α, η, 0) ≡ cn−r
− Pn−rHd when ε = 0. Moreover cn−r(cr , ε) is a

differentiable function of cr and ε. Substituting (19) into (18) we reduce problem (17), (18) to that of solving

0 = εPrHN (cr ⊕ cn−r(cr , ε), α, η, ε). (20)

Next we divide (20) by ε and define a continuous mapping Φε : Rr
→ Rr , given by

Φε(c1, . . . , cr) = PrHN (cr ⊕ cn−r(cr , ε), α, η, ε). (21)

We set ε = 0. Thus define a mapping Φ0 : Rr
→ Rr such that

Φ0(c1, . . . , cr) = PrHN (cr ⊕ Pn−rHd, α, η, 0).

Definition 1. Let Er denote the null space of L and let En−r denote the complement in Rn of Er given in Section 2. Let Pr
be the matrix projection onto KerL = Er , and Pn−r = I − Pr , where I is the identity matrix. Thus Pn−r is a projection onto
the complementary space En−r of Er . If En−r is properly contained in Rn then Er is an r-dimensional vector space where
0 < r < n. If c = (c1, . . . , cn), let Prc = cr and Pn−r = cn−r , then define a continuous mapping Φε : Rr

→ Rr , given by

Φε(c1, . . . , cr) = PrHN (cr ⊕ cn−r(cr , ε), α, η, ε). (22)

By abuse of notation wewill identify Prc and cr when convenient andwhere themeaning is clear from the context so that in
defining Φε above from the context we interpreted PrHN as (HN1, . . . ,HNr). Similarly we will sometimes identify Pn−rc
and cn−r . Setting ε = 0, we have

Φ0(c1, . . . , cr) = PrHN (cr ⊕ Pn−rHd, α, η, 0)

where cn−r(cr , 0) = Pn−rHd; note that from the context cn−r(cr , 0) = Pn−rHd is interpreted as cn−r(cr , 0) = (Hdr+1,
. . . ,Hdn).

If Er = Rn and Pr = I , then Pn−r = 0. Since Pn−r = 0 it follows that the matrix H is the identity matrix. Thus define a
continuous mapping Φε : Rn

→ Rn, given by Φε(c) = N (c, α, η, ε). Setting ε = 0, we have Φ0(c) = N (c, α, η, 0).

We establish an existence theorem by applying a version of Brouwer’s Fixed Point Theorem which is due to Miranda
(see, [32], [33, p. 214–215] and [35, p. 171–172]).

Lemma 4 (Lemma 3, Yang [32]). Suppose there exist n pairs of numbers {ai}ni=1 and {bi}ni=1 such that ai < bi, i = 1, 2, . . . , n.
Let

Φ0(c) =


Φ1

0 (c1, . . . , cn), . . . , Φn
0 (c1, . . . , cn)


,

be n continuous functions defined in the box B : ai ≤ ci ≤ bi, i = 1, . . . , n. If each Φ i
0 has constant sign on each of the faces

ci = ai, ci = bi of B and these two signs are opposite, then the functions Φ1
0 , . . . , Φn

0 have at least one common zero in B.

Both, Corollary 1 and Remark 2 below, are due to Corollary 5 of [32] and [35, p. 171–172].

Corollary 1 (Generalized Intermediate Value Theorem). Suppose there exist {ai}ni=1 and {bi}ni=1 such that ai < bi, i = 1, . . . , n.
Let P = [a1, b1] × · · · × [an, bn]. Let Φ0(c) = Φ1

0 (c1, . . . , cn), . . . , Φn
0 (c1, . . . , cn), be n continuous functions defined in the

box B : ai ≤ ci ≤ bi, i = 1, . . . , n. Denote

Ri = {c ∈ P : c1, . . . , ci−1, ai, ci+1, . . . , cn},
Si = {c ∈ P : c1, . . . , ci−1, bi, ci+1, . . . , cn}, i = 1, . . . , n.
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If Φ i
0(b)Φ

i
0(e) ≤ 0, b ∈ Ri, e ∈ Si, i = 1, 2, . . . , n, then either Φ0(c) = 0 for some c ∈ ∂P or d(Φ0, P0, 0) ≠ 0, and Φ0(c) = 0

for some c ∈ P0. Note that if

Φ i
0(b)Φ

i
0(e) < 0, (23)

then

d(Φ0, P0, 0) =

∏
1≤i≤n

(signe∈SiΦ
i
0(c)) = ±1,

where P0
= (a1, b1) × · · · × (an, bn) is the interior of P.

Proof. The proof is similar to that of [35] and so is omitted. �

Remark 2. It is clear that d(Φ0, P0, 0) ≠ 0 exists as a consequence of (23), Φ0(c) ≠ 0, for c ∈ ∂P = ∪1≤i≤n(Ri ∪ Si). For any
one-dimensional mapping H : R → R,

d(H, (a, b), 0) = 0, if H(a)H(b) > 0, (24)
d(H, (a, b), 0) = ±1, if H(a)H(b) < 0. (25)

Compare the following theorem with Theorem 3.8, p. 69 of Cronin [2].

Theorem 2. If r = n, a necessary condition in order that (14) has a solution for each ε with |ε| < ε0 is d = 0, that is∫ η

0
NY (η)Y−1(s)E(s)ds +

∫ 1

0
RY (1)Y−1(s)E(s)ds = ℓ.

Theorem 3. If r = n, d = 0 and

Φε(c) = −

∫ η

0
NY (η)Y−1(s)F(s, x(s, c, ε), ε)ds −

∫ 1

0
RY (1)Y−1(s)F(s, x(s, c, ε), ε)ds + g(c, x(η), x(1)) (26)

satisfies

d(Φ0, Bk, 0) ≠ 0

for some k > 0, then (1), (2) has a solution x(t, c, ε) with x(0, c, ε) = c where c ∈ Bk ⊂ Rn and |ε| < ε0 for some ε0 > 0.
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