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Markov processes X, on (X, Fx) and Y, on (Y, Fy) are said to be dual with respect to the
function f(x, y) if E f(X, y)=E,f(x, Y,) for all xe X, ye Y, t =0. It is shown that this duality
reverses the role of entrance and exit laws for the processes, and that two previously published
results of the authors are dual in precisely this sense. The duality relation for the function
fix, y) = 1{,<,; is established for one-dimensional diffusions, and several new results on entrance
and exit laws for diffusions, birth-death processes, and discrete time birth-death chains are
obtained.
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1. Introduction

There are several notions of duality in the Markov process literature. In this
paper we will be concerned with a type of duality that has proved quite useful in
the study of certain interacting particle systems. We will show that this duuity
reverses the role of entrance and exit laws. Furthermore, we will show that Theorem
3.2 of 3] and Theorem 2.2 of [29] are ‘auaal’ in precisely this sense. Several new
results for entrar:ce and exit laws for diffusions, birth-death processes, and birth-
death chains are obtained, and the uestions raised in [3] are resolved. A duality
relation for one-dimensional diffusions is established which should be of indepen-
dent interest. We begin with the definition of duality [25, p. 204].

Let X,, t =0 be a temporally homogeneous Markov process on the measure space
(X, Fx) with transition function p,(x,du), and let Y, r=0 be a temporally
homogeneous Markov process on the measure space (Y, Fy ) with transition function
q.ly,dv).
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Definition. Let f be a bounded measurable function f: X X Y »[0, ). X, and Y,
are called dual with respect to f if foreachxe X, ye Y, t=0,

E.f(X,y)=E,f(x,Y)). (1.1)

Many interacting particle systems have dual processes. For example, the basic
contact process of Harris [15, 16 is a set valued Markov process which is self-dual
for the function f(x,y)=1,,,-4 (1 is the indicator function of B). Additional
examples and applications of this duality can be found in [14, 17, 18]. For different
choices of f see [18, 33], and many of the references in [14, 25].

For another source of dual processes consider the stochastically monotone pro-
cesses (on the real line) of Daley [5]. X, is said to be stochastically monotene if
for each v and ¢, P,(X,<y) decreases as x increases. Under mild continuity
restrictions Siegmund [30] proves that a stochastically monotone process has a dual
process (which is stochastically monotone) with respect to the function f(x,y)=
1 {x= v}

To present our basic result concerning this duality we need two definitions of
Dynkin [7]. For measures u and functions g we will write

up ) = J' w(dx)px, )
X

and
pglx)= j pix, du)glu).
X

Unless otherwise noted a measure is either a sigma-finite positive measure or a
fin:te signed measure.

Definition. An entrance law v for X, (or p,) is a family v = {v,},.ix of measures v,
on (X, Fy) such that

vep=Vsn SER, =0, 1.2)

Definition. Anexitlaw h for X, (orp,)is afamily & = {h,},. of measurable functions
k., - X -0, ) such that

ph...=h, seR 1=0. {1.3)

An exit law i will be called bounded if sup,, h,(x) <0,

Of course it is possible to consider various modifications and generalizations of
these definitions. For the most general case and applications of entrance and exit
laws, the papers of Dynkin [7, 8, 9, 10], Folimer [12], and Spitzer [32] should be
consulted. For our purposes it will suffice to give two simple interpretations of
entrance and exit laws.
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If h is a bounded exit law for X,, the formula #(x, s) = h_.(x) defines a bounded
space time harmonic function A, and of course the converse is true. This means
that exit laws give information about rail fields (see [27]). If v is an entrance law
of probability measures for p,, then it is possible to construct a probability measure
P" and a Markov process & with time parameter set R and transition function p,
(i.e. P&+ €T €, —0<u<s)=p,(&, ') as. P’ fors € R, t - 0). Conversely, given
such a measure P” and process &, the formula v, (I") = P* (¢, € I') defines an entrance

nrecent twa mare dofinitione
Pl WIWARIL LVY LS AAAVE W WAWIRRALLENVI AT,
TRl eufelnnee A cmnncrzsn 2 e IV D Y io s desedocil], £ne £ 8 £ 11 . ~ U
Uennition. A measurc u on (r, r/y) 1S aamissiote jor j ii, 10r ail x € X,
r 1 y N y A > mn
J @ay)jix,y)=u
v
Definition. A nonnegative measurable function g on (X, Fx) is representable by f
if there exists a unigue measure ¢ on ( F. ) euch that
11 there exists a umque measure u on (Y, fy ) such that
— { e dAdwYFIy w) farall vy ~ ¥V
= Gy )X, y) 10fdauX €A,

An entrance law v = {v,} will be called admissiblc if each v, is admissibie and an
exit law i = {h,} will be called representable if each 4, is representable.

Our main result shows that the duality equation (1.1) reverses the role of entrance
and exit laws for dual processes.

Theorem 1. Let X, and Y, be dual with respect to f.
(i) Suppose v is an admissible entrance law for Y, and we define

Tl L. — [} o 32 2yvit 1as £ae VWV
1NeH n = \lgjsewr IS AN EXIT 1AW JOF A,
TN S TS SR 1 SRR S SN V2 th each k. ha o ranEaCA Fa O
(1) SQUPPOSE 1T 1Y A TEPreSeEriuuie Xt luw Jor Ay, Wl 1 €QCr rig ricutni CpresSeriiiaon
1 Ay T — I - 1‘ A\ 2
(1.4). Then v ={v}sen is an enirance law for Y,
n e T ity e b SIS TR IR N D ol I JURIE B ISR DY oA A — L. | P
Frootx. l"()r Ul ll Sufil l CES 10 SnOW 1nat #, dennea Oy Ul.4) SAUSHCS Pertg o = M. USITH
S U SEU LIV R B TSRy 2 iy
the hypothesis that v is an entrance law and the duality equation (1.1} we obtain
pihg e dx) = ' p,(kx,du)J v Ady)fle,y)
Ix Jy
:‘- 1 (d \(n_{,\ duflee v)
J S [\ IJ Frissy faan jiRessy 5 g
Y X
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= J v_s-(dy) j q.(y, dv)f(x, v)
Y Y

=J- v s(dv)fix,v)=he(x).
Y

For (ii) we assume p,h, ., = h, and v = {v,} satisfies (1.4) so that the duality equation
implies

J. vq.(dy)f(x,y)=ph _s(x)=h_; _(x)
Y

for seR, 1=0. Since h . ,(x) admits a unique representation of the form
[y ptdyifx,y), veqi = vser.

It is an interesting problem to determine whether or not a given Markov process
has nonconstant bounded exit laws or nonconstant entrance laws of probability
measures. In the following section a fairly complete discussion of this question is
presented for the class of birth-death processes. In Section 3 some results on the
structure of these laws are presented. The duality of monotone processes is con-
sidered for the class of one-dimensional diffusion processes with continuous speed
functions in Section 4. Results for discrete time birth-death chains are given in
Section S.

2. Birth—death processes

A birth-death processon X ={0,1,2,...}or X*={-1,0, 1,...} with birth rates
A, death rates u,, makes transitions

n-n+1 atrateA,, n->n—1 atrateu,. 2.1

We assume A, >0 for n =0 and u, >0 for n = 1. If u,= 0 (reflection at 0) the
process has state space X; if wy>0 we set w ; =A | =10 (absorption at —1) and
the process has state space X*. As in [20] we define

A()Al T '/\n |
o =1, Ty = n=1.

1

M fon

If the rates satisfy the condition

X 1 n
('(/\n‘ Hat! L T .\_ me = +3X,
n ATy Kk o
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then there is a unique Mrrkov process X, which makes trarsitions (2.1). See [20]
for a precise formulation and proof of this result. We will only consider rates which
satisfy this condition.

We will now discuss the duality theory for birth~death processes. It will be most
convenient to follow Van Doorn [36] instead of Siegmund [30]. Consider the
transformation of rates

A¥=pn, wml¥=A, (2.2)

(and hence 7} =Ao/A.ma). f C(AS, w) holds, the rates A, u ¥ determine a unique
birth-death process X ;. Assuming uo=0, so that X, has state space X, then
wd =A0>0, s0 X7 has state space X *. We introduce the condition

n-1 1

o0
D(ARQ “LN): Z ﬂﬂ z
n=1 k=0 ATk

= +00,
and note that C(A,, u.) is equivalent to DA, u¥), and C(A¥, u¥) is equivalent
0 D{A,, u,). As Van Doorn [36] points out, + is a natural boundary point if
and only if both C\A,, ) and D(A,, 1) hold.

Van Doorn proves ([36, Theorem 3.1] but see also Siegmund [30]) that if X is
the birth—death process with rates A,, i, (wo=0) which satisfy both C(A,, u,,) and
D(A,, u,), then

P(X,<y)=P,X{=x), xeX, yeX* (2.3)

That s, X, and X} are dual with respect to the function f(x, y) = 1{,<,). This duality
equation does not seem to admit a ‘path decomposition’ type proof. One easy
consequence of this equation is that X has positive probability of escaping to
infinity if and only if X is positive recurrent.

Another form of this duality can be expressed in terms of hitting times. Fix i <j
andletA,, u, be birth-deathrateswithA; = u; = u; = 0 (i.e. i isreflecting, j absorbing)
and A,, wu, positive otherwise. The dual rates A¥, u¥ defined by (2.2) satisfy
w¥i=AF,=AF,=0 (i.e. j—1 is reflecting and i — 1 absorbing.) Let 7, (r¥) be
the first hitting time of x for X, (X ¥). Then a consequence of the duality equation
(2.3) is

Piry<t)=F; \(t{") s1). (2.4)

It should be noted that this equation depends on the assumptions that i is reflecting
for X, and j —1 is reflecting for X .
The following result of Rosler [29] and Fristedt and Orey [13] was proved for

diffusions, but of course holds for birth-death processes. The symbol = denotes
weak convergence.

Theorem 2. Let X, be a birth-death process with rates A,,, . (o =0) which satisfy
C(Ap, n). Then the following conditions are equivalent.
(a) X, has a nonconstant bounded exit law.
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(b) There are numbers t;, > © and a probability measure ¢ such that

Pilre — 1y edu):; ¢d(du) ask o0,

(c) lim Ey(ry) = +00, lim Varg(7) <00,
k-»x k —»
[s o ] 'L s o n Lo o 1 2

@ L ——Fme=to, Ym¥m(l —)<w
n=0AnTy k=0 n=4 k=0 i=n AT

Several comments are in order here. Each of these conditions is equivalent to
X, havirg a nontrivial tail field (see [13] and [29]). In fact, if (b) holds, then
7« — Iy » a.e. to a random variable which generates the tail field. Since recurrent
birth-death processes have trivial tail fields, Theorem 2 is a theorem about transient
processes.

The equivalence of (c) and (d) is a calculation which can be made using difference
equations or the technique of Theorem 2 of [13]. The relation (c) = (b) follows
from a standard result about sums of independent random variables. The relation
(b) = (¢) was (apparently) first proved by Karlin and McGregor [21]. The key fact
is their observation (see also [22]) that for each k there are positive numbers a}*’,
j=1,2....,k,depending only on A, u,, for n <k, such that

‘ k ¢Ak )
Ese"=1] ,,—f,'——_—, reR. (2.5)
j-14a; - it
That is, under Py, 7, is equal in distribution to the sum of k independent exponential
random variables. This depends on the fact that is reflecting. Using this fact it is
not hard to show that for ¢ # 0, |[E(e"™)| » 0 if Vary(7,) » + 0. This proves (b) = (c).

The corresponding result for entrance laws is remarkably similar.

Theorem 3. Let X, be a birth-death process with rates A,, w, (no=0) which satisfy
CiA,, ). Then the following conditions are equivalent.

(a) X, has a nonconstant entrance law of probability measures.

iby There are numbers t, — % and a probability measure ¢ such that

Pty -1, edu) 5 d(du)as k - 0.

i hm E 7)) = + 23, lim Var (7)< .
k -x k -x
Lo S R -

(d) Y om Y —— =+0c, ) y ( ¥ 17,) <00,
w1 k0 AR n o 0AR Ty k-0 ART \j 7 e

Note that a process which satisfies (b) must be recurrent. The relations (a) < (b),
wi4padi, and (¢ = (b) can be found in [3] (the birth-death version of Theorem
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3.2), [2, Lemma 4.3], and [2, Theorem 4.2]. The new result is (b) = (c), which
resolves the two questions raised at the end of [4]. The difficulty lies in the fact
that 7o, under Py, has no known simpie representation like (2.5).

Proof of (b) = (c). The Chebyshev estimate

P(ro—t|<M)<P.(ro=t —~M)<E(r0)/t ~-M

and the fact that f, - o0 imply that (b) cannot hold unless E (7) » . The argument
for Varg (7o) is more involved.

Let X; denote the birth-death process with the same rates as X,, except that
reflection occurs at x (A% =0), and let 7§ be the first hitting time of 0 for X;. We
will zhow that a consequence of (b) is

P.(rk—t edu) > ¢(du) ask >, (2.6)

Once this is done, the rest is easy. By the remark after Theorem 2, especially
equation (2.5), (2.6) implies lim, .« Var, (18) < o0, By calculating this limit in terms
of birth—death rates, one finds that the second sum in (d) must be finite, and hence
limg .00 Varg (7o) <00, which is the desired result (since (d) & (c)).

The proof of (2.6) is based on the two equations

7(x,0)—1t(x, 0) il(x, y)+7(x, y)—tx, y)+7(y, 0)—t(y, 0) (2.7)
and
75(x, 0)—t(x,0) i["‘()c, yI+7 0 y) —Hx, y)+H1(y, 0)—1(y, 0), (2.8)

where 0 <y <x, @ denotes equality in distribution, ¢(x, y) =1, —t,, the superscript
x refers to the process X, and the random variables /(x, y), 7(x,y), 7(x, ) and
r(y, 0) are defined as follows. For the process starting at x, let 7(x, y) =,, let

lx,y)=sup{tr=0: X, =x and 7, <t},

and let 7(x,y)=7(x,y)—{(x,y). Thus 7(x,y) is a copy of the time it takes the
process to go from x to y, [(x, y) is the last ‘ime the process is at x before hitting
y, and 7(x, y) is a copy of the time it takes the process to go from x to y conditional
on not returning to x before hitting v. Finally, 7(y, 0) is a copy of the (ime it takes
the process to go from y to 0, and i; taken te be independent of all other random
variables. Equations (2.7) and (2.8) tollow from the strong Markov property.

To exploit (2.7) and (2.8) effectively we need the following.
Lemma. Fore >0, 8 >0 there exists a finite M = M (¢, §) such that:

(i) Prx,y)—tix, y)|=8)<eif M=y =<
(i) Plix,y)=8)=¢if M=y =ux.
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(iii) PU*(x,y)=8)<P(l(x,y)=4).

(iv) 7(x,y) i-T"‘(x, y).
(v) Piz"(y,0)edu) = P(r(y,0)edu) as x » 0,

Proof. (i) By the strong Markov property, for 0<y <x,

7ix, ) —t(x, 0) = Tix, y)—tx,y)+7(y, 0)—t(y, 0)

where 7(x, y) and (y, 0) are independent. Property (i) follows from this decomposi-
tion and the convergence of 7, — fi.
(ii) Fix 8 >0 and define 75(x) =inf{t =8§: X, =x}. Then

P.ir, —1lx,¥) 2 18) =P (1, —tlx, ¥) =28, 7a(x) < 7,)

=j Pou<t,rs(xyedu)Pe(ry —tix,y)+u =15)
5

X

ZJ. Piu<t,ts(x)edi)P (1, —t(x,y)= —;_5)
&
= P (15(x) <7y )P(T, — 1k, y) = —38).

That 1s,

|

Plrix. v)—t(x, y)1=18) = P (75(x) < ) P(7{x, y) = t{x, ¥) = —35).

In view of (i), it is clear that for large x and y, P,(75(x)<7,) must be small. This
implies (i) since P(l(x, y)=8) =< P (75(x)<T,).

(i) & (v) It is possible to construct a coupling of the processes X, and X/, say
(X, X/, such that if (z, z) is the initial state for the coupled system, and z <,

P..(X! <X forallt=0,withX; =X, forOst<r,)=1.
If we take (z,z)=(x,x), then {*(x, y)<[(x, y) a.e. and (iii) is immediate. If we take
z.zy=(v,y)then 7y =71, on {ry<7,}. Thus
Piz (v, ) #Z 7(v, )= P (7, < 70)
and this tends to zero as ¥ - X, proving (v).
tivi This is obvious, since X, and X,. conditional on not hitting x, are the same
process.
Finally, the proof of (2.6) is as follows. By the lemma, for x and v sufficiently
large, lix, viand [ (x, v) can be made arbitrarily smalt, and

S
Flx,vi-Hx, v) =7 (x, y)—1(x, v).

Thus in 2.7y and (2.8), the difference between 7(x, 0)—t(x, 0) and 7" (x, 0) —£(x, )
is the differeace between 7(v, 0) -1y, 0) and 7'y, 0) —z{v, 0). By the Lemma, this
difference goes to zero as x » ¢, This proves (2.6).
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A completely different approach to proving (b) = (c) of Theorem 3 can be based

on the following proposition and duality arguments. All that is needed is Theorem
2 and (d) = (c) = (b) of Theorem 3.

Propesition. Let X, be a birth-death process with rates A,, p, (no=0) which satisfy
C(Any ) and D(A,, o). Let X be the process with rates A}, u* defined in (2.2).
Then X, has a nonconstant bounded exit law if and only if X has a nonconstant
entrance law of probability measures.

Proof. Suppose v* ={v¥};cqis a nonconstant entrance law of probability measures
for X . Equation (1.4) becomes

x—1
hi(x)= ¥ v .y}, xeX, (2.9)
y=—1
and by Theorem 1, {A,} is a bounded exit law for X, and is clearly nonconstant.
Now suppose that & = {h,}g is a nonconstant exit law for X,. It is possible to
define v _({y}) by (2.9), but there is no guarantee that v _, is positive, so we proceed
as follows. By Theorem 2, (d) must hold. Using the transformation (2.2) we see
this is equivalent to

¢ n-1 1 x: 1 n 1 2 2

- :}: ) — -l -~ 5

Y omn Y = 1o, Y == - *( ¥ 17,‘-“) <00,
n=1 k:()Akﬂ'k n '()/\nﬂ'n k‘:(!Akﬂ'k LRS!

Thus (d) of Theorem 3 holds for the rates A}, u¥. Since (d) = (a) we conclude
X{ has a nonconstant entrance law of probability measures.

3. Exitlaws °

In this section X, will denote a virth-death process with strictly positive rates A,,
. (except p,(,\= 0) which satisfy C(A,, u.). Let H be the set of bounded exit laws
h =1{h,} for X, and let H,, be the set of those {h,} in H such that each h, is a
monotone nonincreasing fui.ction. We have shown that H,, can be identified wit!
the set of entrance laws of finite measures for the dual process X ;. In this section
we will examine in more detail the stru.ture of H and H,,.

Let B be the set of bounded Borel functions g:R—-[0, ) and let B,, be the set
of those functions in B which are right continuous and monotone nondecreasing.
We will identify functions which agree a.e. (Lebesgue measure).

If X, has a nonconstant boundcd exit law, then it has a nontrivial tail field
generated by T =lim, .« 7. — Eor, (see [13]). The random variable T is tail field
measurable and the distribution function of 7 has a Lebesgue derivative which is
strictly positive on R.

Theorem 4. Let X, be . birth-death process with strictly positive rites Ay, n (€xcept
wo = 01 which satisfy C\\,, ) and condition (d) of Theorem 2. Then there isa 1:1
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onto correspondence ¢ from B to H given by
(Pg)s(x)=Eg(T —s), xeX,seR. (3.1)

Furthermore, if ¢, is the restriction of ¢ to B,,, then ¢, is a 1:1 onto correspondence
from B, to H,,.

Proof. Suppose that g € B. An application of the Markov property, using the fact
that T is tail field measurable, shows that ¢g defined in (4.1) is an exit law. Now
suppose h € H. The Markov property and the definition of an exit law show that
h.(X,} is a martingale. Since h,(X;) is bounded, and is right continuous with left
limits (this follows from the sample path properties of X, and the exit law definition
which implies that A(x) is continuous in s for fixed x ), the martingale convergence
theorem applies. There is a random variable H =0 such that 4,(X,)»> H a.s. and
in L' as t -»00. Since H must be tail field measurable there exists some g € B with
H =g(T) as., and it is easy to show h,(x) = E,g(T —s).

Suppose g € B,.. Then g has a unique re presentation

5:(}"=J 1h,.z,,;1/(dU)
[ 2c,x)
where v is a (finite) Borel measure [ -0, 00). By Fubini

‘d)mg’s(—x’:J‘ E_(]{T (;u)V(dll )
[ 2.2

To show ¢,.g € H,, it suffices to show that E, 1+ , .., is nonincreasing in x for fixed
s and w«. But this is simple since

PAT -s=u)=1limPir.=s+u+E,r.)

2 X

=zlim Pyir, =s+u+Eyr,)=P (T —s=u)

if v >x.

Now suppose h € H,,. As before h,(X,)—»g(T) ass. as t > o for some ¢ € B, and
h.(x)=Eg(T -s). To show g is nondecreasing let 2, = {w|h,(X,) > g(T)} ar.a sup-
pose w,, w02y, with Tw,; < Tw,. If t, =7,(w,), then X (w;) =X, (w>) for all n
sufficiently large, and hence h, (X, (w1))<h, (X, (w,)) for all n sufficiently large.
Taking limits we obtain g(T(w,)) = g(T (w>)). Since the density of T is everywhere
positive, ¢ is nondecrzasing. Finally, we take the unique version of g in .?,.. This
completes the proof.

One consequence of Theorem 4 is that each & € H,, has a unique representation
of the form

Iz\i.tb::J. El ... vidu)
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where v is a finite Borel measure on [—00, o). It is clear from this representation
that if H ., is the set of A € H,, with sups, fi;(x) = 1, then the set of extreme points
of H,, is {h", —co<u <oolh¥(x)=P(T>s+u)}. We interpret h~ = as h; *(x)=1
for all s, x, the constant exit law. Observe that h* =h",,, and hence that except
for translation, there is only one nonconstant extremal exit law in H .. This type
of result for entrance laws has been pointed out in [4].

4. Diffusions

The results of the previous sections can be extended to one-dimensional
diffusions. For simplicity, we will only consider diffusions on [0, %) with +c0
inaccessible and O either absorbing or reflecting. The scale function is S, the speed
measure is m, and we will call M (x) = m ((0, x ]) the speed function. Unless otherwise
noted, all facts quoted about diffusions can be found in Chapter 16 of Breiman's
book [1]. In this section we will examine the scale and speed functions for birth-
death process, convert the duality transformation (2.2) to a scale and speed transfor-
mation, and then apply Stone’s work on weak convergence to obtain th= duality
result for diffusions.

Let A, in (o= 0) satisfy C(A,, wn) and D (A,, pn), with A ¥, u ¥ defined by (2.2).
Following Feller [11] we define

0, x=0,
— (4.1a)
Vix)= x 1 Ao
, x=1,
k=0 AT
" 0, x=-1,
-—l“ =() (4.1t
VEx)= ¢ o =5 -0)
1 x—1 1
—t z 7 X/l,
Mo K=0A KTk
and
1 X \; .
Ux)=— Y m, x=0, U*x)= Y =F, x=0. (4.2)
0 k=0 k=0

The functions V and U (and V* und U*) act as scale and speed functions for
birth-death processes, exactly as § and M act for diffusion processes. Using (Z.2)
we see that

V¥x)=U(x), U*x)=Vix+1), x =0. (4.3)

This shows that (2.2) is really an interchange of scale and speed, and motivates the
following definitions.
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For increasing functions § and M we define
S*(x)=M(x), M*x)=S(x) (4.4)
and the conditions C(S, M), D(S, M) by

C(S,M): j M(x)dS(x)=+00,
(0,)

DS, M): J S(x)dM (x)= +00.
(0,20)

Note that C(A,, u,,) isequivalentto C(V, U)and D(A,, ) isequivalentto D(V, U).
As in the birth—death case, C(S,M) and D(S, M) imply that +00 is a natural
boundary point.

To state the duality result we need some additional notation. Let C? be the set
of bounded real value functions with bounded continuous second derivatives on
{0, o0), and define

_1dd Npec2. 9 _}
Af =3 =of. feD(m—{feC = =0,
ax-L_d 4 feD(A*) ={feC*:A*f(0)=0}
T T2 dM* ds*” - ‘ -

isee [26]). A diffusion with generator A has 0 as an instantaneous reflecting
boundary, while a diffusion with generator A* has () as an absorbing boundary.

Theorem 5. Let S and M be positive, continuous, strictly increasing functions on
[0, 20), which satisfy C(S, M) and D (S, M). Let X, be the diffusion with generator A
and let X be the diffusion with generator A*. Then forall x, y =0, t =0,

P X, <y)=P, X} >x). 4.5)

That is, X, and X" are dual with respect to the function f(x, y) = 1;,.c,;. C'bserve
that we assume the speed measure has no atoms; this is necessary for § to be
continuous.

Sketch of proof. Fix x, y >0 and construct a sequerce of birth-death processes
X" with state space X "', scale and speed functions V'"’ and L', and correspond-
ing dual processes X,”'* on X'"'* with scale and speed functions V'"'™* and U"'*,
such that:

(i) X" and X'""* become dense in [0, c0).

i) V'S U™ M, V"™ 5 8% U™ 5 M* pointwise.

dii) CV'™, U™ and D(V'™, U'™) hold.
By Stone's results in [34] and [35] we conclude that for each fixed ¢, X,(n)— X,
and X;"'* - X7 Since M and M* are (by hypothesis) continuous, P, (X, =y)=
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P,(X¥ =x)=0 for x >-0. By taking limits of the duality equaticn
P (X" <y) =P, (X" *=x),

we have
P.(X,<y)=P,X{ =x),

or

P.(X,<y)=P,(X{>x), x,y>0.

This equation (unlike the previous one) holds if one or both of x, y are zero. This
completes the argument.

We will now state the entrance law result for diffusions, and will omit the proof,
which parallels the proof of Theorem 3. The exit law result can be found in [13]
or [29].

Theorem 6. Let X, be a diffusion on [0, ) with +0 inaccessible and 0 accessibie.
Suppose X, has scale function S and speed function M. Then the following are
equivalent.

(a) X, has a nonconstant entrance law of probability measures.

(b) There are numbers t, - © and a probability measure ¢ such that

P (to—t, edu)itﬁ(du)asx - 00,

(C) l]m ‘Ex (T()) = 400, lim Varo(T()) <0,

X >0 X >0

(d) j S(x)dM (x) = +o00, j (M (00)—Mx))’S(x) dS(x) < 0.
0 0

As with Theorem 3, the new result i (b) = (c) (and an alternate proof of this
fact can be based on the duality theory, at least in the case when the speed function
M is continuous).

We would like to present two examples of dual diffusions. The first example was
well known to Levy (see [30]). If X, is Brown:an motion reflected at 0 and X is
Brownian motion absorbed at 0, a direct calculation shows (3.5) is satisfied.
However, neither X, nor X possess ncnconstant exit or entrance laws.

For the second example it is helpful to rzwrite the generators in terms of
infinitesimal drift and variance coefficients. If

1 2
5 d‘;l ;%f(x)=%azfuf"(x)wfx)f’fx), x>0,
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then the formulas in [26, Section 1.4] and (3.4) imply (see also [4, p. 924])

1 d
2 dM*

d 1d
ag;f(x)=50'2(x)f"(x)+[£ d—x-crz(x)—u(x)]f’(x), x>0.

Consider the pair of dual generators
Af(x)=1f"x)+xf'(x), x>0,f(0)=0,
A*f(x)=3f"(x)-xf(x), x>0,f"(0)=0.

The diffusion X} with generator A* is the Ornstein-Uhlenbeck process with
absorption at 0. The dual diffusion X, with generator A has a drift away from 0
instead of towards 0. X has nonconstant entrance laws (see [3]) and therefore X,
has nonconstant exit laws (and a nontrivial tail field).

5. Discrete time birth-death chains

Once again let X ={0, 1, 2, ...} and consider the discrete time birth-death chain
X, which is a Markov chain with transition function

pix), y=x+1,

(x )__‘r(x), y=x
pieyi= qix), v=x-1,

0, otherwise.

Here p, r and ¢ are strictly positive (except q(0)=0) and p +q +r=1. It is rather
curious that, unlike the continuous time chains in Section 2, not every chain X,
has a dual X ¥ which satisfies

P.(X,<=y)=PJX} =x). (5.1)
It is not difficult to cstablish that (5.1) holds if and only if

PAXT =x)=P, (X1<y)-P (X, <y)=0.
A simple calculation shows this is equivalent to

px)=plx+D+rix+1), x=0.

Unless this rathzr stringent condition is satisfied, the duality equaticn (5.1) is
unavailable.

A duality will exist for the case r =0 if we consider not X, but Y, = X,,.. It can
be shown that a dual process Y exists and satisfies the basic duality equation. In
view of this fact it is not surprising that the analogues of Theorems 2 and 3 are
valid. The result for exist laws can be found in [28]. We will not use the duality,

but instead will state and give a direct proof of part of the entrance law result,
assuming r = (0.
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Theorem 7. Let X, be a birth-death chain with transition function given in (5.1),
r=0,q(0)=0and 0<p(x)<1 for all x = 1. Then the following are equivalen:

(a) X, has a nonconstant entrance law of probability measures.

(b) There are constants t, - %0 and a probability measure ¢ on Z such that

P.(to—1t, edu)—w>¢(du) asn - oo,

(c) lim Var, (7o) <00,

n-»oo

(d) Y pny<oco,
n=1

Proof. The only difficult part of this result not in [2] is (b) = (c), which is the new
result. The proof is as follows. On an appropriate probability space define indepen-
dent random variables o,, n =1, where o, is a copy of the time it takes the chain
to go from n to n — 1. The convergence in (b) implies that the sum Y o, — (t, — . 1)
must converge a.s. Therefore by Borel-Cantelli for any >0, Y., P(lo, -
(tn — 1, -1)| > £) <00. According to results of [28], P(o, =j) is maximized by taking
j=1.So0,if £ <3,

Y Plon—tta—=tr)|>6)= ¥ Pllon—1>e)= % 1-Plag,=1)

n=1 n=1 n o=l

=Y 1l—-q(n)= X p(n).

n=1 1=1

i

Since Y. ., Pllan ~ (ta —tx -1)|>€) <0, (d) holds.
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