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Markov processes X, on (X, F'x) and Y, on (Y, F,,) are said to be dual with respect to the 
function f(x, y) if E,,J’(X,, y) = E,f(x, Y,) for all x E X, y E Y, t b 0. It is shown that this duality 
reverses the role of ‘entrance and exit laws for the processes, and that two previously published 
results of the authors are dual in precisely this sense. The duality relation for the function 
f(x, y) = 1 ix<,,) is established for one-dimensional diffusions, and several new results on entrance 
and exit laws for diffusions, birth-death processes, and discrete time birth-death chains arc 
obtained. 
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1. Introduction 

There are several notions of duality in the Markov process literature. In this 

paper we will be concerned with a type of duality that has proved quite useful in 

the stu.dy of certain interacting particle systems. We will show that this du&rty 

reverses the role of entrance and exit laws. Furthermore, we will show that Theorem 

3.2 of [3] and Theorem 2.2 of [29] are ‘oclal’ in precisely this sense. Several new 

results for entrance and exit laws for diffusions, birth-death processes, and birth- 

death chains are obtained, and the’questions raised in [3] are resolved. A duality 
relation for one-dimensional diffusions is established which should be of indepen- 

(dent interest. We begin with the definition of duality [25, p. 204) 

Let Xt, I 2 0 be a temporally homogeneous Markov process on the measure space 

(X, F,) with transition function ~p,(x, du ), and let Yt, t 3 0 be a temporally 

homogeneous Markov process on the measure space ( Y, FY 1 with transition function 
q,(y, do ). 
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Definition. Let f be a bounded measurable function f : X x Y + [0, 00). Xt and Yl 

are called dual with respect to f if for each x E X, y E Y, t 2 0, 

(1.1) 

Many interacting particle systems have dual processes. For example, the basic 

contact process of Harris [ 15, 16j is a set valued Markov process which is self-dual 

for the function f(.r, y ) = 1 {xr\y f-Ml (ln is the indicator function of B). Additional 

examples and applications of this duality can be found in [14, 17, 181. For different 

choices of f see [ 18, 333, and many of the references in [ 14,251. 

For another source of dual processes consider the stochastically monotone pro- 

cesses (on the real line) of Daley [5]. X, is said to be stochastically monotone if 

for each y and 1, Px (X,f d y ) decreases as x increases. Under mild continuity 

restrictions Siegmund [30] proves that a stochastically monotone process has a dual 

process (which is stochastically monotone) with respect to the function f(,q y) = 

11 k’ V}. 

To present our basic result concerning this duality we need two definitions of 

Dynkin [7]. For measures p and functions g we will write 

/q,(r) - 
J 

p (dx )p,(x. IT 
X 

and 

Unless otherwise noted a ~WCLWW is either a sigma-finite positive measure or a 

finite signed measure. 

Definition. An entruncs IW v for XI (or pI) is a family v = {c’,},~~ of measures V, 

on (X, F,u I such that 

l’spl = v, t II s E R, t 20. (1.3 

Definition. An exit law h for X, (or p, ) is ~1 family h = (II, i5;;* of measurable functions 
I:, : X -+ [O, XI such that 

p,h, l , = It,, s E R, t 3 0. (1.3) 

An ezrit law h will be called hounded if sup\., h,(s ) < cc. 

Of course it is possible to consider various modifications and generalizations of 

these definitions. For the most general case and applications of entrance and exit 

laws, the papers of Dynkin 17, 8, 9, HI], Fiillmer [12], and Spitzer [32] should be 

Ctrn(tultcd. For our purposes it will sufhce to give two simple interpretations of 
cntrancar and exit laws. 
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If h is a bounded exit law for Xl, the formula 6(x, s ) = h & ) defines a bounded 

space time harmonic function h, and of course the converse is true. This means 

that exit laws give information about tail fie2d.s (see [27]). If Y is an entrance law 

of probability!measures for pI, then it is possible to construct a probability measure 

P” and a Markov process & with time parameter set R and transition function pt 

(i.e. P”(&+, E r I &, --a3 < u S s) = p, (&, f) a.s. P” for s E R, t G= 0). Conversely, given 

such a measure P” and process &, the formula v,(r) = P”(& E r) defines an entrance 

law. 
The main result of this section shows that the duality equation t 1.1) reverses the 

role of entrance and exit laws for dual processes. Before stating this result we 

present two more definitions. 

Definition. A measure p on ( Y, Fy ) is admissible for f if, for all x E X, 

Definition. A nonnegative measurable function g on (X, &) is representable by f 

if there exists a unique measure p on ( Y, FY) such that 

g(x) = J p (dy )P(x, y ) for all x E X. 1’ 
An entrance law v = {v,} will be called admissible if each v, is admissible and an 

exit law /z = {h,<} will be called representable if each h, is representable. 

Our main result shows that the duality equation (1.1) reverses the role of entrance 

and exit laws for dual processes. 

Theorem 1. Let X, and Y! be dual with respect-to f. 
(i) Suppose w is an admissible tintrance law for Yt and we define 

h, (x ) = J v T(dy)fk ,,I. 
k 

( 1 A 

Then h = {h,),E18 is an exit liz w for X,. 

(ii) Suppose h is a representable exit law for X,, with each h, having representation 
( 1 A). Then u = (v..). 5 s E ila is an entrance !~Iz* for Y,. 

Proof. For (i, it s&ices to show thal 11, defkd by ( 1.4) satisfies PJI,, , = h,. liskg 
the hypothesis that 1’ is an entrance law and ihe duality equation t 1.1) we obtain 
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= J v-,-,(dy) qr(y,Wfk 0) 
Y J Y 

= J v ,rdu)f(x, U) =h,W. 
Y 

For (ii) we assume plh, +I = h, and Y = {v,} sdtisfies ( 1.4) so that the duality equation 

implies 

J w,(dy )f(x, y I-- ph -Ax ) = h -_s -t(x) 
Y 

= J ys+, (dy >f(x, y ) 
Y 

for s E R, I 2 0. Since h \ ,(A- ) admits a unique representation of the form 

j’y p (dy )#‘(L y ), qY, = vs +I. 

!t is an interesting problem to determine whether or not a given Markov process 

has nonconstant bounded exit laws or nonconstant entrance laws of probability 

measures. In th? following section a fairly complete discussion of this question is 

presented for the class of birth-death processes. In Section 3 some results on the 

structure of these laws are presented. The duality of monotone processes is con- 

sidered for the class of one-dimensional diffusion processes with continuous speed 
functions in Section 4. Results for discrete time birth-death chains are given in 

Section 5. 

2. Birth-death processes 

A birth-death process on X = (0, 1, 2, . . .} or X* = {-I, 0, 1, . . .} with birth rates 

A,, death rates cc, makes transitions 

n -+ n + 1 at rate A,,, II -+ 0 - 1 at rate pll. 12.1) 

We assume A, 3 0 for n HI and flrl >O for tz 3 1. If puci = 0 (reflection at 01 the 

process has state space X; if p. > 0 we set p 1 = A 1 = 0 (absorption at - 1) and 

the process has state space X*. As in [2O] we define 

If the rates satisfy the condition 
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then there is a unique Mzrkov process Xr which makes trarsitions (2.1). See [20] 

for a precise formulation and proof of this result. We will only consider rates which 

satisfy this condition. 

We will now discuss the duality theory for birth-death processes. It will be most 

convenient to follow Van Doorn [36] instead of Siegmund 301. Consider the 

transformation of rates 

AZ= Pn+l, d =&a (2.2) 

(and hence 7~: = AO/h,n7rn). If C(A& pz) holds, the rates AZ, p,* determine a unique 

birth-death process XT. Assuming PO= 0, so that Xt has state space X, then 
I_C~ = A,> 0, so XF has state space X”. We introduce the condition 

a3 n-l 1 
DMn,~td: c nn k;O~=+o% 

n=l 

and note that C(A,, pn) is equivalent to D(Az, pz), and C(Az, I_c~) is equivalent 

to D(A,, pn). As Van Doorn [36] points out, +OO is a natural boundary point if 

and only if both Cth,, p,) and D (A,, F~) hold. 
Van Doorn proves ([36, Theorem 3.11 but see also Siegmund [30]) that if Xt is 

the birth-death process with rates An, p, (p. = 0) which satisfy both C(A,, p,, ) and 

D(A,, I-L,, ), then 

f~(x,~y)=fy(x~‘-x), xEX,yEX*. (2.3) 

That is, Xt and X,* are dual with respect to the functionf(x, y) = l+++ This duality 
equation does not seem to admit a ‘path decomposition’ type proof. One easy 

consequence of this equation is that XT has po:;itive probability of escaping to 

infinity if and only if Xl is positive recurrent. 

Another form of this duality can be expressed in terms of hitting times. Fix i Cj 

and let A,, p,, be birth-death rates with Ai = pi = pi = 0 (i.e. i is reflecting,/ absorbing) 

and A,,, p, positive otherwise. The dual rates AZ, p: defined by (2.2) satisfy 
/_& =Ajk-l =Aj!-l = 0 (i.e. j - 1 is reflecting and i - 1 absorbing.) Let 7x (r,* ) be 

the first hitting time of x for Xl (XT ), Then a consequence of the duality equation 

(2.3) is 

It should be noted that this equation depends on the assump+ions that i is reflecting 

for X, and j - 1 is reflecting for Xf . 
The following result of Rasler [2 31 arid Frnstedt and Orey [ i3] was proved for 

diffusions, but of course holds for birth-death processes. The symbol l denotes 

weak convergence. 

Theorem 2. Let X, be a birth-death process with rates A,,, p,, t&O T= 0) which Wisf) 

C(A,, p,). Then the following conditions clre equivalent. 
(a) Xt has a ,rzonconstant bounded exit law. 
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(b) There are numbers tk -* 00 and a probability measure C$ such that 

Several comments are in order here. Each of these conditions is equivalent to 

Xl having a nontrivial tail field (see [13] and [29]). In fact, if (b) holds, then 

7/, - tk + a-e. to a random variable which 1;enerates the tail field. Since recurrent 

birth-death processes have trivial tail fields, Theorem 2 is a theorem about transient 
processes. 

The equivalence of (c) and (d) is a calculation which can be made using difference 

equations or the technique of Theorem 2 of [ 131. The relation (c) 3 (b) follows 

from a standard result about sums of independent random variables. The relation 

0~) *(c) was (apparently) first proved by Karlin and McGregor [21]. The key fact 

is their observation (see also [22]) that for each k there are positive numbers aik’, 
; -2 1,2 . . . . . k, depending only on An, pn, for n s k, such that 

&i.c’fTk) = j-i --$- , MR. 
; -1 a, 

(2.5) 

That is, under Pr,, Tk is equal in distribution to the sum of k independent exponential 

random variables. This depends on the fact that 0 is reflecting. Using this fact it is 

not hard to show that for t # 0, IEo(eifTk)~ + 0 if Var&k) + + 00. This proves (b) + (c). 

The corresponding result for entrance laws is remarkably similar. 

Theorem 3. Let X, be a birth-death process with rates A,,, gu, (JUT 20) which satisfy 
CM,,, p,, ). Then the following conditions are equivalent. 

( a I X, lrt~s a llonconstant en trance law of probability measures. 
i h i i%w arc ?wnhm !k - 00 arzd a probability measure d such that 

Pk(~,1 -tpzdrr) +&du)ask 430. 

Qtc that a process which satisfies (t-11 must be recurrent. The relations (a) e(b), 

1~ i t+ d 1, md (cl 3 (1~ I WI be found in [3] (the birth-deal h version of Theorem 
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3.2), [2, Lemma 4.31, and [2, Theorem 4.21. ‘The new result is (b)*(c), which 
resolves the two questions raised at the end of [4]. The difficulty lies in the fact 
that rO, under Pk, has no known simpie representation like (2.5). 

Proof of (b) + (c). The Chebyshev estimate 

and the fact that tk + 00 imply that (b) cannot hold unless E&) + 00. The argument 
for Vark(TO) is more involved. 

Let X: denote the birth-death process with the same rates as X,, except that 
reflection occurs at x (A: = 0), and let 75 be the first hitting time of 0 for X:. We 
will :ihow that a consequence of (b) is 

Pk (4 -t,Edu)&(du) ask+m. (2.6) 

Once this is done, the rest is easy. By the remark after Theorem 2, especiallly 
equation (2.5), (2.6) implies limk+oo Vark (75) < CO. By calculating this limit in terms 
of birth-death rates, one finds that the second sum in (d) must be finite, and hence 

limk,, Vat-&) < 00, which is the desired result (since (d) W (c)). 

The proof of (2.6) is based on the two equations 

3 

7(x, O)-f(x, 0) =2(x, y)+?(x, y)-t(x, y)+7(y, w-f(y, 0) (2.7) 

and 

T~~(x,o)--c(x,o) ~l”(x,y)+il.(X,!.)-t(X,y)+Tl(y,O)-fly,()), (2.8, 

where 0 < y CX, 9 denotes equality in distribution, t(x, y ) = t, - t,, the superscript 

x refers to the process X:, and the random variables Qx, y ), 7(x, y ), i(x, y ) and 
r( y, 0) are defined as follows. For the process starting at x, let 7(x, y ) = T,, let 

I(x, y ) = sup{r 2 0: Xt = x and T, < t}, 

and let 7(x, y) = 7(x, y ) -4(x, y ). Thus 7(x, y) is a copy of the time it takes the 

process to go from x to y, I(x, y ) is the last time the process is at x before hitting 

y, and 7(x, y ) is a copy of the time it takes the process to go from1 x to y conditional 

on not returning to x before hitting K Finally, ~(y, 0) is a copy of the time it takes 

the process to go from y to 0, and i.; taken to be independent of all other random 

variables. Equations (2.7) and (2.6) follow from the strong Markov property. 

To exploit (2.7) and (2.8) effectively we need the following. 
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(iii) P(l”(x, y)XS)SP(Z(x, y)N). 
LT 

(iv) 7(x, y Y =7xk y 1. 

(v) P@(y, O)EdU) :P(r(y,O)Edu)asx+m. 

Proof. Ci) By the strong Markov property, for 0 d y d x, 

7(x, 0) - t (x, 0) 2 7(x, ,I)-r(x, y)+7(y, 0)-r& 0) 

where 7(x, y ) and ~(y, 0) are independent. Property (i) follows from this decomposi- 

tion and the convergence of rk -tk. 

iii, Fix S >O and define TA(x) = inf{r 28: X, =x). Then 

In visw of (i,, it is clear that for large x and y, Px bA(x ) < T, ) must be small. This 

implies(ii)sinceP(l(x,y)~S)~P,(~~(x,K~,.L 

(iii) & w It is possible to construct a couyiirzg of the processes X, and X:, say 

r;X,, X: I, such that if (2, z ) is the initial state for the coupled system, and 2 s x, 

P,,.I ,LX: 5 XI for all 1~ 0, with X: = Xr for 0 5 t G 7, ) = 1. 

If we take (2, z ) = ix, x 1, ttt en 1’ (x, y ) s I(x, y ) ax. and (iii) is immediate. Hf we take 

iT . v=(v.yf then :ro= L, 6 r:t on (Q < T, ). Thus 

and this ttnds to zero as s -+,s, proving W. 
tit I This is oh~ious, since X, and X:. conditional on not hitting s. are the same 

process. 

Finally, the proof of (2.6) is as follows. By the lemma, for s and ~1 sufficiently 

large, ILY, v I and I’ !x, J* I can be made arbitrarily smalF, and 

‘I’hus in 2.71 and C)o, the difference between TLK, 0) - t(x, 0) and ~‘(x, 0) - t(s, 0) 

I\ the Jiffcrcncc hctwecn r(v, 01 r(!~, 0) and T’ (~1, 0) -t(!*, 0). Hy the Lemma, this 
diffcrcncc gcxs 10 M-O as .Y + X. This proves (2.61. 
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A completely different approach to proving (b) 3 (cj of Theorem 3 can be based 
on the following proposition and duality arguments. All that is needed is Theorem 
2 and (d) 3 (c) * rb) of Theorem 3. 

Proposition. Let Xt be a birth-death process with rates A,, p,, (~0 = 0) which satisfy 
C(A,, CL,,) and D(A,, pn). Let XF be the process with rates h z, plz defimed in (2.2). 
Then Xl has a nonconstant bounded exit law if and only if X? has a nonconstant 
entrance law of probability measures. 

Proof. Suppose V* = {u,*},~~ is a nonconstant entrance law of probability measures 
for Xfic. Equation (1.4) becomes 

X--l 

h,(X)= C mo I), x E x (2.9) 
y=-I 

and by Theorem 1, {h,} is a bounded exit law for X, and is clearly nonconstant. 

Now suppose that h ={hs}sER is a nonconstant exit law for Xl. It is possible to 
define ~_~({y)) by (2.9), but there is no guarantee that u -s is positive, so we proceed 

as follows. By Theorem 2, (d) must hold. Using the transformation (2.2) we see 
this is equivalent to 

II 

Thus (d) of Theorem 3 holds for the rates AZ, &. Since (d) 3 (a) we conclude 
XT has a nonconstant entrance law of probability measures. 

3. Exit laws ’ 

In this section X, will denote a Arth-death process with strictly positive rates A,,, 

I_c,, (except p0 = 0) which satisfy C(A,, p,). Let H be the set of bounded exit laws 
h ={h,} for X< and let H,, be the set of those {h,} in H such that each 12, is a 

monotone nonincreasing futction. We have shown that H,,, can be identified wit!! 

the set of entrance laws of finite measures for the dual process Xf. In this section 

we will examine in more detail the struture of H and H,. 

Let B be the set of bounded Bore1 functions g : R-+[O, 00) and let B,, he the set 

of those functions in B which #are right continuous and monotone nondecreasing. 

We will identify functions which agr-ee a.e. (Lebesgue measure). 
If X, has a nonconstant boundtd exit law, then it has a nontrivial tail field 

generated by T = limz +3c 7: - Eo7, (see [13]). The random variable T is tail field 

measurable and the distribution function of T has a Lebesgue derivative which is 

strictly positive on R. 

Theorem 4. Let X, be d birth-death process with strictly posititv rrites A,,, p,, krt’cpt 
pr, = Oi which satiyf)p CL\,,, p,) and corhdition (d) of Theorem 2. 77~1 there is LC 1 : 1 
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on to correspondence q5 from B to pi given by 

(4&)5(x) =E,g(T--s), MX,SElR. (3.1) 

Furthermore, if &, is the restriction of q5 to B,, then &, is a I : 1 onto correspondence 
from B, to H,,,. 

Proof. Suppose that g E B. An application of the Markov property, using the fact 

that T is tail field measurable, shows that 4g defined in (4.1) is an exit law. Now 

suppose h E H. The Markov property and the definition of an exit law show that 

/r,CX,) is a martingale. Since h,(X,) is bounded, and is right continuous with left 

limits (this follows from the sample path properties of Xt and the exit law definition 

which implies that h,(x ) is continuous in s for fixed x ), the martingale convergence 

theorem applies. There is a random variable H 2 0 such that hl(Xf) +Ii a.s. and 

in L’ as t + 00. Since H must be tail field measurable there <exists some g E B with 

H =#T) a.s., and it is easy to show h,(x) =E,g(T-s). 
Suppose g E 61,. Then g has a unique representation 

whcrc v ic; a (finite) Bore1 measure [ -00,~). By Fubini 

To show &g E H,, it suffices to show that E, l{~ \ r_u} is nonincreasing in x for fixed 

s and II. But this is simple since 

Him P,(~=~.~+u+E~~~~)=P~(T-s~~~) 
,‘*x 

if y ;CL 

1\1Tow suppose I2 f H,. As before h,(X, ) -+ g(. T) a.s. as t -+ W for some g E B, and 
/Z,LK I = E,gtT -s). To show g is nondecreasing let R,,={wih,(X,)-+g(T)} zx;;r sup- 

pose w 1, C~)Z 5 Ro, with ‘I21 < Tw2. If t,, = T,(o~ ), then X&J !) >X,JO~) for all 11 

sufficiently large, and hence It,, (.X1, (W 1 )) s /zI,, (X,, (wz) 1 for all n sufficiently large. 

T&ing limits we obtain go T(w,)) s g( T(tc~~)). Since the density of T is everywhere 

positive, g is nondecrzasing. Finally, WC take the unique version of g in . ?,*. ‘This 

completes the proof. 

One consequence of Theorem 4 is that each lz E N,,, has a unique reprewntation 

of the form 
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where v is a finite Bore1 measure on [--a, 00). It is clear from this representation 
that if HL is the set of h E H,,, with SUP~,~ h,(x) = 1, then the set of extreme points 
of Hk is (h”, --oOdu<aOlh,“(x)=P,(T>s+u)}. We interpret h-” as h,“(x)= 1 

for all s, x, the constant exit law. Observe that hy = h y,,, and hence that except 
for translation, there is only one nonconstant extremal exit law in Hk. This type 
of result for entrance laws has been pointed out in [4]. 

4. Diffusions 

The results of the previous sections can be extended to one-dimensional 
diffusions‘ For simplicity, we will only consider diffusions on [0, 00) with +OO 
inaccessible and 0 either absorbing or reflecting. The scale function is S, the speed 
measure is m, and we will call M(x) = m ((0, x]) the speed function. Unless otherwise 
noted, all facts quoted about dbffusions can be found in Chapter 16 of Breiman‘s 
book [l]. In this section we will examine the scale and speed functions for birth- 
death process, convert the duality transformation (2.2) to a scale and speed transfor- 
mation, and then apply Stone’s work on weak convergence to obtain tha duality 
result for diffusions, 

Let L Pn (CL0 = 0) satisfy C(A,, pn) and D(h,, pn), with AZ, pc defined by (2.2). 
Following Feller [ 1 l] we define 

x =o, 
(4.h) 

x 31, 

x = 0, - 

and 

(4. lb) 

(4.2) 

The functions V and U (and V* 2nd U*) act as scale and speed functims for 

birth-death processes, exactly as S md M act for diffusion processes. Using (2.2) 

WC: see that 

F(x) = U(x ), u*(x) = V(x + l), x HO. (4.3) 

This shows that (2.2) is really an interchange of scale and speed, and motivates the 
following definitions. 
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p,w =x)=Oforx :*O. E)y taking limits of the duality equaticn 

P,(Xj”’ sy) =Py(Xjn’*>X), 

we have 

Px(X,<y)=Py(XF %), x,y>O. 

This equation (unlike the previous one) holds if one or both of x, y are zero. This 

completes the argument. 

We will now state the entrance law result for diffusions, and will omit the proof, 

which parallels the proof of Theorem 3. The exit law result can be found in 1131 

or [29]. 

Theorem 6. Let XI be a diffusion on [0, m) with +W inaccessible and 0 accessibk 
Suppose Xl has scale function S and speed function M. Then the following are 
equivalent. 

(a) Xt has a nonconstant entrance law of probability measures. 
(b) There are numbers t, + 00 and a probabili’ty measure C$ such that 

aTI 00 

W I S(x) dM(x) = +q I (M(W)-Mx))*S(x)dS(x)<oo. 
0 0 

As with Theorem 3, the new result 1~ (b) 3 (c) (and an alternate proof of this 

fact can be based on the duality theory, at least in the case when the speed function 
M is continuous). 

We would like to present two examples of dual diffusions. The first example was 

well known to Levy (see [30]). If Xl is Erownran motion reflected at 0 and Xt is 

Brownian motion absorbed at 0, a direct calculation shows (3.5) is satistied. 

However, neither Xf nor Xf possess ncnconstant exit or entrance laws. 
For the second example it is helpful to rewrite the generators in terms of 

infinitesimal drift and variance coefficients. If 

? d d 
2dMdSfiX)=~OZIX)f”(X)+Y(X)f’IX), x >O, 
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then the formulas in [26, Section 1.41 and (3.4) imply (see also [4, p. 9241) 

1 d id 1 d 
- .- --f(.u) = - 
2 rdlM* dS* 

$cr2(x)fl’(x) + 
2 

-cTz(x)-EI,(x) 
dx 

1 f’(x), x >o. 

Consider the pair iof dual generators 

A,f(x)=+"(x)+xf'(x), x ‘,O,f'(O)==O, 

A*f(x)=;f"(x)-xf'(x), x,O,f"(O)=O. 

The Idiffusion XF with generator A* is the Ornstein-Uhlenbeck process with 

absorption at 0. The dual diffusion Xf with generator A has a drift away from 0 

instead of towarlds 0. XF has nonconstant entrance laws (see [3]) and therefore Xt 

has nonconstant exit laws (and a nontrivial tail field). 

5. Discrete time birth-death chains 

Once again let X = (C),1,2, . . .} and consider the discrete time birth-death chain 

Xn, which is a Markov chain with transition function 

p(x), )‘=x+l, 

p(.u, y ) ==. 
ex ), y =x9 

q(x), y=x-1, 

I(), otherwise. 

Here p, r and y are strictly positive (except q(0) = 0) and p + q + r = 1. It is rather 

curious that, un1ik.e the continuous time chains in Section 2, not every chain X, 

has a dual Xz which satisfies 

P,(X” 5 J?) = PJX:: 2X). 0.1) 

It is not difficult -to establish that (5.1) holds if and only if 

PJXT =x)=P,_1(X1~y)-P,(X*~y)~O. 

A simple calculaltion shows this is equivalent to 

p(x)qm + l)+r(x + l), x 20. 

Unless this rath+:r stringent condition is satisfied, the duality equatic:n (5.1) is 

unavailable. 

A duality wr/l e:vist for the case r = 0 if we consider not Xn but Yn =X2,,. It can 

be shown that a ldual process Yz exists and satisfies the basic duality equation. In 

view of this fact it: is not surprising that the analogues of Theorems 2 and 3 are 

valid. The result for exist laws can be found in [28]. We will not use the duality, 

hut instead will state and give a direct proof of part of the entrance law result, 
kt5\unping r i= 0. 
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Theorem 7. Let X,, be a birth-death chain with transition function given in (5. l), 
r=O,q(O)=Oand O<p(x)<l forallx 3 1. Then the following are equivalemr 

(a) X,, has a nonconstant entrance law of probability measures. 
(b) There are constants t, -) 00 and a probability measure C$ on Z such that 

P,(qx--tn E du) &4(du)asn+a. 

(4 lim Var, (To) < 00. 
n+xI 

(4 f p(n)==4 
n-l 

Proof. The only difficult part of this result not in [2] is (b) =3(c), which is the new 
result. The proof is as follows. On an appropriate probability space define indepen- 
dent random variables cn, n 2 1, where on is a copy of the time it takes the chain 
to go from II to n - 1. The convergence in (b) implies that the sum C u,, - (t, - t, .- 1) 

must converge a.s. Therefore by Borel-Cantelli for any E > 0, xz:-_ 1 P&T,, - 

(t, -t&l :-vz) < 00. According to results of [28], P(u~ =j) is maximized by taking 
j=l.So,if~:<i, 

? P(I (7, - (&I -L1)IW~ f P&c* -II%)= f l-P(cr,,=l) 
11 = 1 n = 1 tt L- 1 

= f l-qO=,,~lp(~L 
n=l 

Since Cz= 1 P(lcr, - (t, - t, _ 1 )) > F ) < q (d) holds. 

Acknowledgments 

It is a pleasure to thank R. Durrett, E. B, Dynkin, and F. Spitzer for many useful 
comments about this work. 

References 

111 
I21 
[31 

II41 

PI 

L. Breiman, Probability (Aadison Wesley, MA, 196rl). 
J.T. Cox, Entrance Eaws for Markov chains, Arm. Probab. 5 (1977) 533-549. 
J.T. Cox, On one-dimensional diffusions with time parameter set (-00, a), Anti. Probab. 5 ( 19771 
807-813. 
J.T. Cox, Further results on one-dimensional diffusions with time parameter set t-m, COO), Ann. 
Probab. 7 (1979) 537-542. 
D.J. Daley, Stochastically monotone Markov chains, Z. Wahrsch. Verw. crebietc 10 ( 1968) 
305-317. 



‘1 

211 

127 

iZ9] 

! ic 

1.L. Doob,, Stochastic Processes (Wiley, New York, 1953). 
E.B. Dynkin, Entrance and exit spaces for a Markov process, Actes Congress Int. Math., t. 2 
‘1970) 507-512. 
E.B. Dynkin, The initial and final behavior of trajectories of a Markov process, Russian Math. 

3urveys 26 (1971 I 165-182. 
E.B. Dynkin, Integral representation of excessive measures and functions, Russian Math. Surveys 

27 ( 1972) 43-84 
E.B. Dynkin, Duality for Markov processes, in: A Friedman and M. Pinsky, eds.: Stochastic 

Analysis (Academic Press, New York, 1978). 
W. Feller, The birth and death processes as diffusion processes, Journ de Math. 38 (1959) 301-345. 
H. Fiillmer, On the potential theory of stochastic fields, Bull. Inst. Internat. Statist. 46 (1975) 
362-370,405-408. 
B, Fristedt and S. Orey (1978). The tail a-field of one-dimensional diffusions, in: A. Friedman 
and M. Pinsky, eds., Stochastic Analysis (Academic Press, New York, 1978). 
D. Griffeath, Additive and cancelative interacting particle systems, Lecture Notes in Mathematics 
7211 (Springer, New York, 1979). 
T. IE. Harris, Contact interactions on a lattice, Ann. Probab. 2 (1974) 969-988. 
TX. Harris, On a class of set-valued Markov processes, Ann. Probab. 4 (1976) 175-194. 
T.EI. Harris. Adclitive set-valued Markov processes and percolation methods, Ann. Probability 6 
(19’78) 355-3; 8. 
R. Holley and D. Stroock, Dual processes and their application to infinite particle systems, Adv. 
Malth. ( 1976). 
S. Karlin, Total Positivity I (Stanford University Press, Stanford, CA., 1968). 
S. Karlin and J.L. McGregor, The differential equations of birth-and-death processes and the 
Stieltjes moment problem, Trans. Amer. Math. Sot. 85 (1957) 489-546. 
S. Karlin and J. L. McGregor, Coincidence properties of birth. and-death processes, Pacific J. 
Math. 9 (1959) ; 109-l 140. 
J. Keilson, Log-concavity and log-convexity in passage time densities of diffusion and birth-death 
processes, J. Appl. Prob. 8 (1971) 391-398. 
J.G. Kemeny, J.L. Snell and A.W. Knapp, Denumerable Markov Chains (Springer, New York, 
19’76). 
H. Kunita and T. Watanabe, Markov processes and Martin boundaries, Part I, Illinois J. Math. 9 
I 19’651485-526. 
T. Liggett. The stochastic evolution of interacting particles, Lecture Notes in Mathematics 598 
(Springer, New York, 197?) pp. 187-248. 
P. Mandl, Analytical Treatment of One-Dimensional Markov Processes (Springer, New York, 
I9158). 
S. Orey, Limit , ‘-heorems for Markov Chain Transition Probabilities (Van Nostrand Reinhold, 
London, 197 1). 

, 

U. Riisler, Das O-l Gesetz der terminalen o-Algebra Harrisirrfahrten, Z. Wahrsch. Verw. Gebiete 
37 I 1977) 227-232. 
U. Rossler, The tail T-field of time homogeneous one-dimensional diffusion processes, Ann. 
ProbaRility 7 ! 19 79) %7-857. 
D. Siegmund, The equivalence of absorbing and reflecting barrier problems for stochastical 
mclnotone Markov process.:s, Ann. ?robability 4 (1976) ‘11-F-924. 
F.L. Spitzer, Interaction of Markov processes, Adv. Matil. 5 (1970) 246-290. 
F.l_ Spitzer, Phase transition in one-dimensional nearest-neighbor systems, J. Func. Anal. 20 
11c,7sr 240-255. 

F.I.. Spitzer. Intinite systems with locally 1 xacting components, Ann. Probability ( 198(l), to 
appt’ar. 
C..I. Stone, Limit theorem!; for birth-and-death processes and diffusion processes, Ph.D. thesis, 
Stanford Univeniity, CA, 1061). 
C.-l. Stone, Limit theorems for random walks, birth-and-death processes, and diffusion processes. 
lllinoi\ 3. Math. 7 I 19631 6:18-6,60. 
E..j. ‘c’an Darn. Stochastic monotonicity of birth-death processes, Adv. Appl. Probab. 12 (1980) 

.?. T. Cox, U. Riisler / Entrance and exit laws 


