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Continuum electrostatics models for ions inwater provide apparent long range electrostatic explanations for the
forces on ions. However the electro-chemical free energy of solvation of ions resides largely in thefirst twowater
layers, which control the interfacial behavior of the ions and require explicitmodeling to capture their distinctive
behaviors. The resulting short range forces produce such surprising charge density-dependent behaviors as ion
adsorption onto nonpolar surfaces, like charge aggregation of ions, and substantial ion pairing preferences,
which arise largely from the affinity of specific ions for individual watermolecules. Specific ion effects controlled
by the localwater affinity of the ion showadiagnostic change of sign between strongly hydratedNa+ andweakly
hydrated K+ and between strongly hydrated F− andweakly hydrated Cl−, in both casesmarking the strength of
water–water interactions in bulk solution, a critical benchmark missing from continuum electrostatics models.
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1. Introduction

1.1. Continuum electrostatics theories for ions in water fail in complex
environments or concentrated solutions

A comprehensive theoretical framework for describing the behav-
ior of ions in water was first developed in the early part of the 20th
century [1,2]. These macroscopic models were cast in terms of long
range electric fields in a structureless dielectric continuum, and
seemed to work for dilute solutions (salt concentrations no larger
than 10 mM); thus many people assumed that the models had cap-
tured the key determinants of how ions behave in water. But new ex-
perimental tools, computational capabilities, and a great deal of
structural and functional information on biological systems reveal
dramatic failures in the ability of the original models to explain the
behavior of ions in more concentrated or complex environments
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[3,4]. Among the most surprising developments of the past twenty
five years are the demonstration by Washabaugh and Collins in
1986 that ions of low charge density adsorb onto weakly hydrated
surfaces, driven by the release of weakly held water which becomes
strongly interacting water in bulk solution [5]; the demonstration
by Collins in 1997 that ion pairing preferences are controlled by the
water affinity of the ions [6]; and the demonstration by Glusker and
co-workers in 1994 [7] and by Merz and co-workers in 1998 [8]
that ions of high charge density leak substantial amounts of charge
onto the solvent. In short, the early macroscopic continuum electro-
statics models fail dramatically over issues of granularity and the
omission of chemistry.

Today the most sophisticated work in solution electrostatics is
being done by those studying the role of charges in proteins [9] and
the effects of salts on them [10,11]. These proteins typically have
well defined structures whose charged amino acids residues can be
selectively changed by site specific substitution, and whose solubility
and stability can be altered by specific ion effects from added salts.
Part of this interest in proteins is driven by the increasing use of
monoclonal antibodies as therapeutic agents by the pharmaceutical
industry and their requirement for stable, concentrated solutions of
these antibodies [10,11]. Further undercutting the apparent initial
success of the early macroscopic continuum electrostatics models is
the fact that the most important current problem in protein electro-
statics where fundamental understanding is missing is how to explain
why electrostatic forces are so weak in these systems [[9], and other
references listed below]. The answer appears to be that in the high di-
electric constant regime of water the long range electric fields are
fairly weak to begin with, and those generated by the positive and
negative ions largely cancel out, leaving the local interfacial effects
and chemistry to dominate. First of all, by examining hydration free
energies via energetic partitioning of the potential distribution theo-
rem, Beck has recently shown that about half of the free energy of
the electro-chemical solvation of ions is manifested in the first layer
of water molecules [12,13]. Since we have earlier shown that the
first two water layers must be modeled explicitly to capture their dis-
tinctive behaviors [14,15], it therefore follows that the majority of the
electro-chemical free energy of ion solvation is involved in the local
interfacial behavior of ions, not in long range effects. And second of
all, not only are biological systems moderately concentrated (the eu-
karyotic cytosolic K+ concentration alone is about 160 mM [16]), but
also dielectric spectroscopy indicates that the constituent ions of sim-
ple salts are usually within two water molecules of each other in
moderately concentrated solutions [17]. Some have acknowledged
the dominance of these microscopic short range forces by adapting
hybrid models which explicitly model the first water layer adjacent
to an ion while treating the far-field electrostatics with a dielectric
constant [12,18–20]. Hybrid quantum mechanical/molecular dynam-
ics approaches have also been developed in which the first hydration
sphere of the ion is treated quantum mechanically and subsequent
hydration layers are treated by molecular dynamics [21].

The purpose of this review is to examine the evidence for the
dominant role of the water affinity of ions and of chemical processes
involving ions in the control of their behavior in water. This review is
organized in the following way: In Section 2 we give at least nine ex-
amples illustrating that electrostatic interactions in water are weak;
in Section 3 we summarize the evidence that ion–water interactions
have some covalent character for ions of high charge density, that
is, that charge transfer to solvent (and thus quantum chemistry) is
important for these ions; in Section 4 we describe the inability of con-
tinuum electrostatics theories to treat the following seven fundamen-
tal issues involving ions in water: weakly hydrated ions (chaotropes),
chemistry, granularity in general, the strength of water–water inter-
actions, contact ion pair formation, the stronger interaction of anions
with water as compared to cations; and charge density dependent ion
behaviors; in Section 5 we present the basic facts of ion charge density
dependent strength of hydration; in Section 6 we describe three tech-
niques tomeasure thewater affinity of ions, explain how ions ofmatch-
ing water affinity form contact ion pairs thus lowering their solubility
(with important biological implications); explain how the water affinity
of an ion rather than the charge itself defines its biological role; andmen-
tion that water affinity is the origin of Hofmeister effects; in Section 7we
attempt to evaluate the role of ion polarizability; in Section 8, as an aid to
the design and interpretation of experiments, we provide a current
summary of the forces and processes that underlie ion-protein interac-
tions; and in Section 9we conclude that it will require explicitmodeling
of aqueous solutions with quantum chemistry to accurately represent
the local forces that control the behavior of ions in water and make
life possible.

2. Experimental evidence that electrostatic interactions in water
are weak

2.1. Crystallographic and solution evidence for “electrostatics defying”
behaviors

2.1.1. Anionic phosphate binds rapidly to anionic protein sites
The controlling influence of water affinity and of short range

chemical processes in the behavior of ions in water is dramatically
illustrated by the approach of negatively charged inorganic phos-
phate to its negatively charged binding site on the E. coli phosphate
binding protein at a near diffusion controlled rate [22]; when bound,
the shortest hydrogen bond (2.4 Å) between the buried and completely
dehydrated inorganic phosphate and the protein iswith the carboxylate
side chain of Asp56 as determined by X-ray crystallography [23]. The
M. tuberculosis ABC phosphate transport receptor protein is almost
completely covered with negative charge, and the two shortest hydro-
gen bonds between the bound inorganic phosphate and the protein
are with the carboxylate side chains of Asp83 (at a distance of 2.52 Å)
and Asp168 (at a distance of 2.54 Å) [24]. Many other instances are
also known of anionic ligands binding to patches of negative charge
on proteins [25].

2.1.2. Cationic arginine side chains often stack on top of each other in
proteins

A particularly striking instance of water affinity effects overriding
repulsive charge–charge forces is the tendency of positively charged
arginine side chains to stack on top of each other in protein struc-
tures. An X-ray crystallographic dataset of 266 protein dimers is
found to have about 22% of the positively charged arginine side chains
mutually paired (stacked on top of each other) within subunits and
an additional 17% paired (stacked on top of each other) across inter-
faces; that is, about 40% of the arginine side chains in proteins are
stacked on top of each other [4,26]. The driving force for the forma-
tion of these stacked cationic moieties is actually three-fold: (a) a
slight offset of the positively charged guanidinium groups such that
partial charges of the same sign on specific atoms are not directly
on top of each other; (b) the release of weakly held water upon com-
plex formation to become strongly interacting bulk water; and (c) fa-
vorable dispersion interactions between the stacked guanidinium
groups [4].

2.1.3. Anionic sulfate ions can be found inside anionic nucleic acids
Large anions are easy to see in X-ray structures whereas the small

(sometimes mobile) IA cation counterions are difficult to see and to
identify [151]; nonetheless, they are there, and allow the close inter-
mingling of what are essentially neutral salts. For example, di-anions
such as sulfate can bind directly to neutral amino groups inside poly-
anionic nucleic acids as determined by X-ray crystallography. Specif-
ically, sulfate binds to the (A)N6 or (C)N4 in the deep (major) groove
of A–U and G–C pairs, and to (G)N2 in the shallow (minor) groove of
G–C pairs [27].
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2.2. The surprising behavior of ions at interfaces

2.2.1. Ions of low charge density adsorb onto weakly hydrated solutes
and surfaces

We demonstrated in 1985 [14], 1986 [5] and 1995 [28], that ions
of low charge density adsorb to the nonpolar surface [29] of Sepha-
dex® G-10, whereas continuum electrostatics models predict that all
ions should be repelled from nonpolar surfaces via image forces
[30–32]. We may conclude that the water molecules detected by
NMR in 1964 and 1967 which have increased tumbling rates in solu-
tions of ions with a low charge density [14,33–35] are immediately
adjacent to the ions (as also directly shown by solution neutron dif-
fraction [36]), and their release to become strongly interacting bulk
water provides a driving force for forcing large monovalent ions of
low charge density to the interface, as shown by the temperature de-
pendent adsorption of these ions onto Sephadex® G-10 [5]. Therefore,
the electric field coming out of these ions is not strong enough to ori-
ent the immediately adjacent water molecules, and its long range ef-
fects are probably modest. The behavior of the ions in these systems
seems to be controlled more by the local properties of water affinity
and perhaps polarizability than by long range electric fields.

2.2.2. Ions of low charge density adsorb to the air–water interface
Molecular dynamics simulations of the air–water interface also

show that ions of low charge density adsorb to the interface [3,37,38].

2.3. More surprising characteristics of phosphate binding to proteins

2.3.1. Phosphate binds most commonly to the neutral glycine backbone
Because amide protons (pKa~15) are more acidic than water pro-

tons (pKa=15.74), anions of high charge density (such as F− [39] and
Cl− [40,41], discussed in Section 8.1.1) often bind to protein amide
groups. The neutral glycine residue is themost commonprotein binding
site for negatively charged phosphate groups, and nearly a third of all
protein binding sites for negatively charged phosphate do not employ
ion pairing interactions [42]. Phosphate interactions with proteins (at
neutral or charged sites) can be quite strong; in several cases, the inter-
action of the non-reacting phosphodianion group of enzyme substrates
with the enzyme is responsible for about 12 kcal/mol of transition state
stabilization (corresponding to an enzyme rate enhancement of about
109) [43].

2.3.2. Phosphate-protein binding energetics are independent of the
charge on phosphate

Further illustrating the attenuated role of charge in aqueous sys-
tems, a pH dependent isothermal titration calorimetry study of the
binding of phosphate and sulfate to a charged protein binding site
found no dependence of the binding energetics on the charge of the
anion, and concluded that “charge–charge interactions are not the
dominant factor in binding” [44].

2.4. The surprising properties of protein salt bridges

2.4.1. The stability of protein salt bridges shows little dependence on
charge

A dramatic illustration of the importance of chemical processes in
protein stability was the systematic substitution with both alanine
and glycine of all the charged residues (including salt bridges and
charged hydrogen bonds) in Staphyloccal nuclease and characterization
of the stability of the resulting mutants by guanidine hydrochloride
denaturation using intrinsic tryptophan fluorescence to quantify the
equilibrium between native and denatured states; these studies led to
the conclusion that “ionizable amino acids contribute to stability
predominantly through packing and bonding interactions that do not
depend on their electrostatic charge” [9].
2.5. The surprising locality of electrostatic effects

2.5.1. Trivalent cations bind to strongly cationic proteins
The strongly cationic hen egg white lysozyme hydrolyzes the

strongly anionic cell wall of bacteria invading the egg, illustrating the
tendency of biological macromolecules to use multiple charges to har-
ness electrostatic forces. Even so, hen egg white lysozyme, which has
a net charge of about +10 at pH 4.5, easily binds the trivalent Yb3+

metal ion at an active site carboxylate [45,46], indicating no strong
long range interaction between the Yb3+ ion and the many other posi-
tive charges on the protein.

2.6. Apparent protein stabilization by optimizing surface charge–charge
interactions

2.6.1. Electrostatic stabilization of the redesigned protein occurs primar-
ily in the folding transition state

Optimizing native state surface charge–charge interactions in the
human protein acylphosphatase was accomplished with amino acid
substitutions at 5 positions, 3 of which led to charge reversal and 2
of which introduced new charges, yielding an active protein stabi-
lized by 10 °C or 9 kJ/mol [47]. Similar results were obtained with
the Cdc42 GTPase and the Fyn SH3 domain, but examination of the ki-
netics of protein folding of the latter showed that it was actually sta-
bilized primarily by an 8-fold acceleration in the folding rate [48],
casting doubt on the importance of the putative moderately long-
range electrostatic interactions in the native state that motivated
the protein redesign.

3. Evidence for charge transfer to solvent (chemistry) in
ion–water interactions

3.1. Ions of high charge density leak substantial amounts of charge onto
the solvent

“Charge transfer to solvent” is associated with ions of high charge
density because of the substantial chemical (covalent) character of
their interaction with water. Ions of high charge density are strongly
hydrated; they have positive Jones–Dole viscosity B coefficients [6]
and positive apparent dynamic hydration numbers (the number of
water molecules that move with the ion as it diffuses through solu-
tion) [15]. The carboxylate group has an apparent dynamic hydration
number of 2.0 and leaks 22% of its charge onto the solvent [8]; the
Mg2+ ion has an apparent dynamic hydration number of 5.8 and
leaks 40% of its charge onto the 5.8 attached water molecules [7];
the Cr3+ ion has a dynamic hydration number of 9.6 and a pKa of
4.3 (representing complex equilibria) [49] such that a full unit of pos-
itive charge has been dissociated as a proton into the solution at pH 7.
Additionally, the quantum theory of atoms in molecules indicates that
Cl−, which structures the first shell water molecules in spite of having
a water affinity slightly weaker than the strength of water–water in-
teractions in bulk solution [50], transfers 0.2 negative elementary
charges to the first shell water molecules [51], and UV resonance
Raman spectroscopy detects a Cl−→(H2O)6 charge transfer transi-
tion in the form of a strong enhancement of the pre-resonance
Raman intensity of the water bending modes [52]; this may also ex-
plain the affinity of the Cl− for the relatively acidic protons of the as-
paragine side chain amide (see Section 8.1.1, below). The phosphate
mono-anion, such as that in DNA, has an apparent dynamic hydration
number of 1.9 (part of a cone of six water molecules hydrating the
negative charge) [53] and although NMR evidence suggests charge
transfer to solvent is important [54], the exact amount appears not
to have been calculated. However, since the apparent dynamic hydra-
tion numbers of the carboxylate and phosphate mono-anion are sim-
ilar, their charge transfer to solvent is probably also similar. While the
charges on proteins tend to act as isolated charges, DNA has a partial
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shell of attached negatively charged water molecules and thus be-
haves as a partial polyelectrolyte [[55]; see also [56]], whereas com-
pact forms of RNA have a more complete shell of negatively charged
water molecules and behave as full polyelectrolytes [55]. The isolated
charges on proteins form ion pairs with their counterions according
to the Law of Matching Water Affinities (see below), whereas poly-
electrolytes behave as an ensemble of charges, and their interactions
with their monovalent counterions are indirect (mediated by water
molecules) with a preference for the monovalent cation of highest
charge density (Li+) [55]. Continuum electrostatics models attribute
polyelectrolyte behavior to long range electric fields, whereas poly-
electrolyte behavior shown by polymers containing strongly hydrated
ions probably arises from short range chemical processes leading to
charge transfer to solvent. See also Section 8.1.2, below, on ions of
high charge density.

4. The limitations of continuum electrostatics theories

4.1. What is a chaotrope? (Fig. 1)

4.1.1. A weakly hydrated ion is called a chaotrope
A chaotrope is an ion (or solute) which in bulk solution binds

water less strongly than water binds itself in bulk solution [5], noth-
ing more and nothing less. People have struggled to understand chao-
tropes, not only because of their misleading name, but also because
weakly hydrated ions simply do not exist in the world defined by con-
tinuum electrostatics theories, which does not address the strength of
water–water interactions or the stoichiometric involvement of water
in the association and dissociation of ions with other ions, solutes and
surfaces.

Two distinctive behaviors of weakly hydrated ions are [ i ] their
adsorption onto nonpolar surfaces [5,14] and onto weakly hydrated
counterions [6] driven by the release of weakly held water which be-
comes strongly interacting water in bulk solution, and [ ii ] their “re-
lease” of adjacent water molecules to hydrate nearby solutes [5,14].
Neither behavior can be generated by continuum electrostatics
models, which predict that all ions should be repelled from nonpolar
surfaces by “image forces” [30–32]. Weakly hydrated ions (chao-
tropes) do not exist and their properties cannot be duplicated in con-
tinuum electrostatics models.

4.2. The role of chemistry in ion–water interactions (charge transfer to
solvent)

4.2.1. Continuum electrostatics theories exclude chemical processes
Continuum electrostatics theories assume that everything is strict-

ly electrostatics — that chemistry and quantum chemical calculations
for ions of high charge density can be ignored. Given the facts sum-
marized in Sections 2 and 3 above and 8.1.2 below, the resulting er-
rors are likely to be substantial.

4.3. The problem of granularity (Fig. 2)

4.3.1. Continuum electrostatics theories exclude the water affinity of ions
and other issues

In summary, many of the failings of continuum electrostatics the-
ories can be traced to their attempt to treat water as a passive (mac-
roscopic), featureless dielectric. That water is composed of individual
(microscopic) molecules which interact with individual ions in
charge density-dependent ways is known as the issue of granularity.
These short range electro-chemical processes actually dominate the
behavior of ions in the high dielectric constant regime of water,
even though continuum electrostatics model provide only apparent
long range electrostatic explanations for all behaviors. As shown in
Fig. 2, continuum electrostatics theories assumes that the long range
electrostatic interaction between full charges (the long arrow above
the green dielectric slab) dominates the behavior of ions in water,
whereas the behavior of ions in complex, moderately concentrated
solutions actually correlates with the short-range charge density-
dependent electro-chemical interaction of ions with the adjacent
ghost water molecules or with the acidic protons or unshared elec-
tron pairs of macromolecules.

The charge density of ions and the strength of water–water interac-
tions are critical omissions of continuum electrostatics theories. The
charge density of ions determines their chemical affinity for the acidic
protons or basic unshared electron pairs of water or biological macro-
molecules. Bulk water acts as a reservoir for the stoichiometric partici-
pation of water molecules in ion association and dissociation; the
availability of this water is determined by the strength of water–water
interactions. Use of the term “ionic strength” in the context of using
NaCl to prevent protein aggregation often implicitly invokes interven-
ing long range electric fields as assumed by continuum electrostatics
models [1,2,15], but in reality it is almost certainly due to the binding
of weakly hydrated Cl− to weakly hydrated positive protein charges
according to the Law of Matching Water Affinity (as can be seen in X-
ray structures [40,58,59] and MD simulations [60] with a Kd for Cl− of
about 150 mM [61,62]. For example, weakly hydrated protein positive
charges bind to theweakly hydrated sulfonate anions of Congo Redmi-
celles [63], but added NaCl blocks the interaction, almost certainly via
Cl− binding to the protein positive charges. Additionally, anions induce
the reversible oligomerization of a fusion protein in the sequence (from
most effective) I−>Br−>Cl−>F− (to least effective), the mechanism
being the suppression of electrostatic repulsion between key arginyl
and lysyl residues by direct anion binding to these protein positive
charges [64]. The strongly hydrated F− acts as an inert (non-binding)
analog of the weakly hydrated Cl− at comparable concentrations
[65,66], but will bind to acidic protein hydrogen atoms at higher con-
centrations [11,60,67]. Since Cl− and F− should have very similar long
range electricfields, their dramatically different behaviorswith proteins
must arise from different short range forces – specifically, the weaker
affinity of Cl− for water [6] and the higher affinity of F− for acidic pro-
tons [68].

The large differences in the effects of specific ions on lysozyme crys-
tallization correlate with the water affinity of the added ions as mea-
sured by their Jones–Dole viscosity B coefficients; the most weakly
hydrated anions bind most strongly to the enzyme and crystallize the
enzyme at the lowest added salt concentration [69–71]. The visualiza-
tion of the bound anions in the resulting X-ray structures [40,72–75] es-
tablishes beyond a reasonable doubt that these anions act by a direct
binding mechanism as opposed to “ionic strength” (screening) effects
mediated by long range electric fields.

4.4. Additional assumptions of continuum electrostatics theories

4.4.1. Continuum electrostatics theories do not contain the strength of
water–water interactions, a critical benchmark for ion behavior

There are a large number of specific ion effects in water which
change sign between F− and Cl− (or more crudely, between F− and
I−) for anions or between Na+ and K+ for cations. Examples include
Jones–Dole viscosity B coefficients [6], the surface potential difference
at the air–water interface [76], Hofmeister effects on protein stability
[77], the apparent size of ions on Sephadex® G-10 [too large (F−,
Na+) or too small (I−, K+)] [5,28], and molecular dynamics simula-
tions of the behavior of ions at the air water interface (F− repelled
from the interface and I− adsorbed to the interface) [3]. The change
in sign corresponds to the strength of water–water interactions in
bulk solution (something that does not exist in continuum electro-
statics models) and implies that the short range phenomenon of
water affinity is the source of the specific ion effects rather than long
range electric fields.

In addition to the assumptions already mentioned, continuum
electrostatics theories assume cations and anions of the same size to



Fig. 1. Limitations of continuum electrostatics theories.Continuum electrostatics theories omit weakly hydrated ions (chaotropes), chemical processes (including charge transfer to
solvent), the charge density of ions, and the strength of water–water interactions in bulk solution; they impose long range (macroscopic) electrostatic explanations for the forces on
ions, even when these forces arise largely from short range (microscopic) electro-chemical interactions with the acidic protons and unshared electron pairs of molecules (which
may be net neutral) such as water.
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have the same enthalpy of hydration, whereas anions of a given size
are actually more strongly hydrated than cations (Fig. 3) [6]. There
are at least two reasons for the stronger hydration of the anions.
First, quantum mechanical calculations indicate that the anions,
which interact with the hydrogen atom of water, allow intra-shell hy-
drogen bonding of the solvating waters, whereas cations, which inter-
act with the oxygen atom of water, do not [79]. Second, charge
transfer between ion and solvent characterizes strong hydration,
and water accepts negative charge from anions more efficiently
than it gives up negative charge to cations.

Continuum electrostatics theories deal mostly with point charges,
either positive or negative. Thus all monovalent cations are considered
equivalent and all monovalent anions are considered equivalent. In the
real world, monovalent anions vary from the small, strongly hydrated
and usually protein stabilizing (F−) to the large, very weakly hydrated
Fig. 2. What are the controlling forces on ions inwater?Continuum electrostatics theories
assume that the controlling forces on ions in the high dielectric constant regime of water
arise strictly from long range electrostatic interactions between formal charges (indicated
by the long double-headed arrow at the top of the green, featureless dielectric slab)
whereas the behavior of ions in biological systems is actually controlled largely by the
short range electrostatic and chemical interactions between ions and the adjacent water
molecules (the carboxylate and the ghost water molecules shown in the figure), as mea-
sured by Jones–Dole viscosity B coefficients, solution neutron diffraction, gel sieving chro-
matography on Sephadex® G-10, and other physical techniques. The charge distribution
on the atoms of the carboxylate are taken to be those for the glutamate side chain in
Ref. [57]; i.e., −0.82 for the each of the oxygens and +0.81 for the carbon.
and usually protein denaturing (SCN−). A range of effects also exists
for monovalent cations. Since the physical basis for ion specific effects
is mostly the changing charge density-dependent water affinity
(which is not in the model) relative to the strength of water–water in-
teractions in bulk solution (which is also not in the model), simply
drawing a circle around a point charge to correct for its actual size in a
dielectric continuum does not address the fundamental issue. For ex-
ample, in a recent continuum electrostatics treatment of the partition-
ing of ions at a water–oil interface, “the information indicating which
ion is a kosmotrope andwhich one is a chaotrope is taken as an external
input and is based on the ionic viscosity B coefficient that is measured
experimentally” (this number is a measure of the water affinity of the
ion), and then the behavior of the ions within each class was assumed
to be determined by polarizability, hydrophobic and dispersion interac-
tions rather than by the differences in thewater affinity of the ions [80].
Fig. 3. Charge density dependent strength of hydration.The difference between the par-
tial molar entropy of the ion and that for water in water in cal °K−1 mol−1 is plotted on
the ordinate; thus, ΔSII is the local entropy change for turning a water molecule into an
ion [12]. The crystal radii of the ions in angstroms are plotted along the abscissa. Posi-
tive values of ΔSII (lower portion of figure) indicate water that is more mobile than bulk
water. Negative values of ΔSII (upper portion of figure) indicate water that is less mobile
than bulk water. Kosmotropes are in the upper portion of the figure; chaotropes are in
the lower portion of the figure. Adaption of data of G.A. Krestov as presented in Ref.
[78].
Reprinted with permission of John Wiley & Sons, Inc. © 1972.
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5. Ion charge density dependent strength of hydration

5.1. The charge density of ions controls their water affinity; the water
affinity of ions controls their behavior

Fig. 3 shows the difference between the partial molar entropy of
the ion and that for water in water (y-axis) vs. the crystal radius of
the ion in angstroms (x-axis); thus, ΔSII is the local entropy change
for turning a water molecule into an ion [13]. Small ions of high
charge density (kosmotropes, shown above the line) bind adjacent
water molecules tightly, thus immobilizing them, whereas large
monovalent ions of low charge density (chaotropes, shown below
the line) actually “free up” adjacent water molecules, allowing more
rapid motion than in bulk solution. F− and K+ are approximately the
same size, but F− is strongly hydrated whereas K+ is weakly hydrated
for the reasons described above. Fig. 4 illustrates “how to think about
ions.” The horizontal line represents the strength of water–water inter-
actions, with the small, strongly hydrated ions above the line and the
large, weakly hydrated ions below the line. The zwitterionic “virtual
water molecule” on the right contains a positive portion with a radius
of 1.06 Å which does not alter the tumbling rate of pure water and a
negative portion with a radius of 1.78 Å which also does not alter the
tumbling rate of pure water.

6. The importance of water affinity

6.1. Measuring water affinity

The water affinity of a solute has traditionally been measured by
various colligative methods, for example, by the solvent vapor pres-
sure deviation of solutions from the mole fraction of the solvent
(i.e., from Raoult's Law). We have found gel sieving chromatography
on Sephadex® G-10 [5,15,28], Jones–Dole viscosity B coefficients [6]
and solution neutron diffraction [36,81] to be the three most useful
ways to characterize the water affinity of ions.

6.1.1. Sephadex® G-10 counts the attached water molecules that move
with an ion of high charge density (i.e., determines the dynamic hydra-
tion number of the ion)

Sephadex® G-10 is most useful for characterizing strongly hydrat-
ed ions, which are separated by gel sieving and yield the number of
attached water molecules that flow through the column with the
ion; weakly hydrated ions are separated by adsorption to the surface
Fig. 4. How to think about ions in water.Division of the group IA cations and the VIIA
halide anions into (strongly hydrated) kosmotropes and (weakly hydrated) chao-
tropes. The ions are drawn approximately to scale. A virtual water molecule is repre-
sented by a zwitterion of radius 1.78 Å for the anionic portion and 1.06 Å for the
cationic portion. In aqueous solution, Li+ has 0.6 tightly attached water molecules,
Na+ has 0.25 tightly attached water molecules, F− has 5.0 tightly attached water mol-
ecules, and the remaining ions have no tightly attached water [15].
of the column, and the results are harder to interpret because of the
possible involvement of ion polarizability. Sephadex® G-10 may be
thought of as nonpolar [29] beads containing pores of uniform size.
Polyglutamic acid (MW 13,700) is excluded from the pores, flowing
around the beads and thus taking a short path through the column,
eluting early: this is the excluded volume. H2O18 penetrates the
pores, flowing through the beads and taking a long path through
the column, eluting late: this is the included volume. The gel sieving
relative elution position varies from 0 (the excluded volume) to 1
(the included volume). Polymers of glycine (n=2–6) appear not to
show preferential interactions with water (except for a small devia-
tion arising from the C-terminal carboxylate) and are thus used to cal-
ibrate the column according to molecular weight; these polymers
tend to have an extended conformation [82]. The observed molecular
weight is that of a neutral salt plus any attached water, and is
expressed as the number of water molecules associated with an ion
as it diffuses through the column (the Apparent Dynamic Hydration
Number, or ADHN). Since the ADHN of a salt is the sum of the ADHN's
of the constituent ions, the ADHN of an ion can be determined by
chromatographing the ion of interest as a Cl− or K+ salt, ions which
have ADHN=0 while not interacting significantly with the column.
The data are plotted as log10 molecular weight (x-axis) vs the relative
elution position (the y-axis); the log10 is required to convert from a
hydrodynamic radius to a volume or molecular weight. The experi-
ments are conducted at 30 °C, and the flow rate through the
1 m×1.6 cm diameter column is 1.2 ml/min; each experiment takes
from 2.5 to 12 h. The sample is added to the column as 0.6 ml of a
0.1 M solution. Only ion-specific detection methods are used to char-
acterize the column effluent: radioisotopes are used when available;
otherwise specific colorimetric methods are used. The most informa-
tive points of comparison between gel sieving chromatography and
other techniques are where natural discontinuities occur: the change
from weak to strong hydration between K+ and Na+ and between F−

and Cl− as determined by Jones–Dole viscosity B-coefficients [6]; the
change from weak to strong second-shell hydration between Mg2+

by [as shown by solution X-ray diffraction [83]] and Be2+ [as shown
by ab initio molecular orbital calculations [84] and solution neutron
diffraction studies [85] or Cr3+ [as shown by solution neutron [86] and
X-ray diffraction [87] and the change from an inner sphere coordination
number of six for Mg2+ [83] to four for Be2+ [84,85]. The Apparent
Dynamic Hydration Numbers (Table 1) determined by gel sieving chro-
matography on Sephadex® G-10 are in complete agreement with these
calibration points from other techniques.

The ADHN for H+ is 1.9–2 at 0.1 M, indicating the dihydrate (Zundel
proton) [88]. Photoelectron spectroscopy experiments combined with
electronic structure calculations [89] performed at 3–4 m H+ concen-
tration favor the Eigen core (H3O+) form of the proton. A solution neu-
tron diffraction study of 6 MHCl also found an H3O+ core, participating
in three short and strong hydrogen bonds to produce the (hydrated)
Eigen proton (H9O4)+ [90]. X-ray absorption experiments extending
from 0.1 M to 6 M H+ combined with molecular dynamics calculations
[91] also find evidence favoring the Eigen core (H3O+) at high H+ con-
centrations “while the proton is less localized to a specific water under
Table 1
Apparent dynamic hydration numbers.

Cations ADHN Anions ADHN

Cr3+ 9.6 PO4
3− 5.1

Mg2+ 5.9 HPO4
2− 4.0

Ca2+ 2.1 H2PO4
− 1.9

H+ 1.9 (Zundel) HCO2
− 2.0

Li+ 0.6 F− 5.0
Na+ 0.22 HO− 2.8 (trihydrate)
K+ 0 Cl− 0

Source: Ref. [15].
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Fig. 5. The radial distribution functions g10(r) for Li+, Na+, water, and K+ in liquid
water. These curves measure the density of the solution as a function of the distance
from the isotopically substituted ion, and effectively measure the distance from the
monovalent cation to the nearest solvent oxygen. The curve labeled “H2O” measures
the oxygen-oxygen distance in liquid water. Both neutron and X-ray diffractions
were used to generate these data. Reprinted from [36]. The radial distribution for Li+

is drawn assuming a coordination number of six; subsequent experiments suggest a
number closer to four, with no major effect on the results presented here.
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less acidic conditions”. The results from these different techniques are
internally consistent: the hydrated form of H+ appears to vary with
concentration, changing from the dihydrate at 0.1 M to the tetrahydrate
at 3–4 m and above, where no bulk water exists. The ADHN for HO- is
2.8 (i.e., the trihydrate), consistent with experimental and theoretical
results [92]. The coordination number of F− is about 5 [67], and thus
matches the number of tightly bound waters (the ADHN). Of the ions
shown in Table 1, only Cr+3 has tightly bound water in the second hy-
dration layer.

6.1.2. The Jones–Dole viscosity B coefficient is a scaling factor that mea-
sures the water affinity of an ion relative to the strength of water–water
interactions

The Jones–Dole viscosity B coefficients have the advantage of giving
the same quantitative measure for both strongly and weakly hydrated
ions, and of avoiding the involvement of interfaces. The viscosity of a
salt solution can easily be measured, for example, by determining the
time required for a solution to flow through a small hole in the bottom
of a tube. The results can be fitted to the following polynomial in c, the
concentration of the salt, up to about 0.1 M for binary strong electro-
lytes:

η=ηo ¼ 1þ Ac1=2 þ Bc

where η is the viscosity of a salt solution and ηo is the viscosity of pure
water at the same temperature; A is an electrostatic term that is essen-
tially 1 formoderate salt concentrations; and B is a directmeasure of the
strength of ion–water interactions normalized to the strength ofwater–
water interactions in bulk solution. Since the B coefficient of a salt is the
sum of the B coefficients of the constituent ions, extracting ion-specific
B coefficients is straight-forward. Table 2 presents Jones–Dole viscosity
B coefficients for a series of ions of biological significance. We see first
that the Jones–Dole viscosity B coefficient separates the ions into the
same two groups as does Sephadex® G-10, with positive B coefficients
for strongly hydrated ions and negative B coefficients for weakly hy-
drated ions. The point at which the Jones–Dole viscosity B coefficient
changes sign represents ideal behavior as defined by the strength of
water–water interactions in bulk solution (no preferential interactions).
Within each group the ions are also ordered in the same manner,
according to the charge density on the atoms to which the water mole-
cules are attached. Second, we see that the negative charges on proteins
(carboxylates) are strongly hydrated, whereas the positive charges on
proteins (derivatives of ammonium) are weakly hydrated. And third,
we see that the major intracellular anions (carboxylates and phos-
phates) are strongly hydratedwhereas themajor intracellularmonova-
lent cations (K+ and the positively charged amino acid side chains) are
weakly hydrated. Thismismatch inwater affinity between themajor in-
tracellular anions and cations is important because it ensures that the
charges on macromolecules remain free of counterions; this increases
the solubility of the macromolecules (since only net neutral complexes
Table 2
Jones–Dole viscosity B coefficients.

Cations B Anions B

Mg2+ 0.385 PO4
3− 0.590

Ca2+ 0.285 CH3CO2
− 0.250

Ba2+ 0.22 SO4
2− 0.208

Li+ 0.150 F− 0.10
Na+ 0.086 HCO2

− 0.052
K+ −0.007 Cl− −0.007
NH4

+ −0.007 Br− −0.032
Rb+ −0.030 NO3

− −0.046
Cs+ −0.045 ClO4

− −0.061
I− −0.068
SCN− −0.103

Sources: Phosphate, formate and perchlorate from Ref. [93]; all others from Ref. [94].
crystallize) and functionally allows their charges to be used as binding
determinants.

6.1.3. Solution neutron diffraction “sees” the orientation of water (D2O)
strongly attached to the reference ion in defined shells

Solution neutron diffraction, as developed by John Enderby and
George Neilson, has proven to be an enormously informative procedure
for characterizing ion–water interactions [36,81]. “Simple ions in water
generate long range electric fieldswhich can be detected by various res-
onance techniques, such as fluorescence resonance energy transfer,
over distances of 30 Å (about 11 water diameters) or more [95]. It has
often been assumed that the long range electric fields generated by sim-
ple ions in water are strong enough to orient water dipoles over long
distances. But solution neutron and X-ray diffraction techniques devel-
oped in the 1970s and applied to various ions inwater in the years since
have produced a very different picture.

When more than one stable isotope of an ion is available, two iden-
tical aqueous salt solutions that vary only in that isotope can be used to
study the spherically averaged structure around that ion by neutron dif-
fraction [81,96]. In particular, radial distribution functions thatmeasure
the density of the solution as a function of the distance from the isotopic
ion can be calculated.Whenneutrondiffraction experiments are carried
out on aqueous solutions of a salt in heavy water, correlations between
the isotopically substituted ion and both the oxygen and the deuteronof
the solvent can be detected; this allows one to determine, quantitative-
ly, nearest neighbor distances, dynamic hydration numbers, and from
the viewpoint of this review the most probable orientation of nearby
water molecules and a qualitative understanding of the strength of
the ion–water correlations.

Fig. 5 shows the neutron and X-ray diffraction of the IA cations
Li+, Na+, K+, and of water. As the charge density of the ion decreases
from Li+ to Na+ to K+, the density peak of the nearest water oxygen
is lower and further away, indicating weaker binding. The Na+-oxy-
gen distance is smaller than the oxygen-oxygen distance of pure
water, indicative of strong hydration of for Na+, while the K+-oxygen
distance is larger than the oxygen-oxygen distance of pure water, in-
dicative of weak hydration for K+. A charge density between that of
Na+ and K+ is exactly where the Jones–Dole viscosity B coefficient
(a measure of water affinity) changes sign, marking the strength of
water–water interactions. Additionally, Figs. 6, 7 and 8 use neutron
diffraction of deuterium oxide solutions to determine the orientation
of the deuterium oxide molecules adjacent to Li+, Ag+ (an analog of
Na+), and K+; strong hydration (Li+) is associated with strong orien-
tation of solvent, intermediate hydration (Ag+) is associated with
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Fig. 8. Radial distribution function for K+ in D2O.The first-order difference function
GK(r) for K+ in D2O. This curve measures the distance from the isotopically labeled
K+ to the nearest solvent oxygen or deuteron. These are neutron diffraction data
from Ref. [99].

Fig. 6. Radial distribution function for Li+ in D2O.The first-order difference function
GLi(r) for Li+ in D2O. This curve measures the distance from the isotopically labeled
Li+ to the nearest solvent oxygen or deuteron. These are neutron diffraction data
from Ref. [97].
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intermediate orientation of solvent, and weak hydration (K+) is asso-
ciated with no orientation of solvent. Thus a chaotrope (such as K+) is
weakly hydrated: the immediately adjacent water is far away and not
oriented…”. Neutron diffraction has [also] been used to characterize
the strong denaturants guanidinium and thiocyanate in solution, ver-
ifying the weakly hydrated character of chaotropes [100,101]. The
ion–water distance obtained by solution neutron diffraction and com-
puter simulation is linearly correlated with the Jones–Dole viscosity B
coefficient [102].
Fig. 7. Radial distribution function for Ag+ (an analog of Na+) in D2O.The first-order
difference function GAg(r) for Ag+ (an analog of Na+) in D2O. This curve measures
the distance from the isotopically labeled Ag+ to the nearest solvent oxygen or deuter-
on. These are neutron diffraction data from Ref. [98].
6.2. The Law of Matching Water Affinity

6.2.1. Ions of opposite charge form contact ion pairs in solution when
they have matching water affinities

The Law of Matching Water Affinity states that ions of opposite
charge tend to form contact ion pairs in solution when they have
matching water affinities [6]. Since water affinity is a strong function
of ion size (small ions of high charge density bind water strongly
whereas large monovalent ions of low charge density bind water
weakly), small ions tend to form contact ion pairs with each other
and large ions tend to form contact ion pairs with each other, but
large-small contact ion pairs tend not to form (Fig. 9). This same pat-
tern is manifested in the solubility of the alkali halides (see below).
The small ions of opposite charge form contact ion pairs because of
electrostatic attraction; the large ions of opposite charge form contact
ion pairs because this releases weakly hydrated water which becomes
strongly interacting water in bulk solution (see below).
Fig. 9. The law of matching water affinity.Because the charge density of an ion controls
its water affinity, ion size controls the tendency of oppositely charged ions to form
inner sphere ion pairs. Small ions of opposite sign spontaneously form inner sphere
ion pairs in aqueous solution; large ions of opposite sign spontaneously form inner
sphere ion pairs in aqueous solution; and mismatched ions of opposite sign do not
spontaneously form inner sphere ion pairs in aqueous solution. A large monovalent
cation has a radius larger than 1.06 Å; a large monovalent anion has a radius larger
than 1.78 Å.
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Fig. 10. Volcano plots.(A) Relationship between the standard heat of solution of a crystalline alkali halide (at infinite dilution) in kcal mol−1 on the y-axis and the difference be-
tween the absolute heats of hydration of the corresponding gaseous anion and cation, also in kcal mol−1 on the x-axis. Source: [103] © 1969 reprinted with kind permission
from Springer Science & Business Media). (B) Identification of ions as chaotropes (weakly hydrated) or kosmotropes (strongly hydrated). The enthalpy of solution of chao-
trope–chaotrope and kosmotrope–kosmotrope salts tends to be positive (takes up heat), whereas for the enthalpy of solution to be negative (gives off heat), the salt must have
a kosmotropic and a chaotropic ion.
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6.2.2. The heat of solution of the alkali halides plotted as a function of the
difference in the water affinity of the constituent ions [a volcano plot]
supports the Law of Matching Affinities

“We shall interpret Fig. 10 to indicate that oppositely charged ions
with equal water affinity tend to come together in solution to form
contact ion pairs whereas oppositely charged ions with differing
water affinities tend to stay apart. We shall attribute the release of
heat to the formation of strong bonds and the uptake of heat to the
breaking of strong bonds, and shall assume that the strongest inter-
actions in the system will tend to dominate the behavior of the sys-
tem. In aqueous salt solutions of kosmotropes (small ions of high
charge density which are strongly hydrated) and chaotropes (large
ions of low charge density which are weakly hydrated), the interac-
tions in order of decreasing strength are as follows: kosmotrope–
kosmotrope>kosmotrope–water>water–water>chaotrope–water>
chaotrope–chaotrope [6,62,101]. Fig. 10 shows the relationship be-
tween the standard heat of solution of a crystalline alkali halide at infi-
nite dilution (on the vertical axis; this is a measured quantity) and the
difference between the absolute heats of hydration of the constituent
gaseous anion and cation (on the horizontal axis; this is a calculated
quantity). [In this context, “absolute” refers to the conceptual experi-
ment of transferring an isolated ion from the gas phase to the solution.]
Fig. 10 illustrates that a necessary but not sufficient condition for the
standard heat of solution of a crystalline alkali halide to be negative
(exothermic) is that one of the ions be a chaotrope and the other ion
to be a kosmotrope, suggesting that kosmotrope plus chaotrope neutral
salts dissociate extensively upon dissolution, and that the kosmotropic
ion of this salt acquires stronger interactions with water in solution
than it has with chaotropes in the crystal, thus tending to release
heat. In contrast, when crystalline kosmotrope–kosmotrope alkali ha-
lides dissolve in water, the kosmotrope–kosmotrope ion pairs will
tend to stay together, and insofar as the constituent ions do separate,
strong kosmotrope–kosmotrope interactions are broken, thus tending
to take up heat. When crystalline chaotrope–chaotrope alkali halides
dissolve in water, relatively strong water–water interactions will keep
the chaotrope ion pairs together, and insofar as the constituent ions
do separate, relatively strong water–water interactions will be broken,
thus tending to take up heat. These patterns suggest that oppositely
charged ions with equal water affinities will tend to form contact ion
pairs in solution, whereas those with differing water affinities will
tend to separate [6,62,101]. In simplest possible terms, kosmotropes
pair with kosmotropes and chaotropes pair with chaotropes; that is,
like likes like. Since all of the salts in the volcano plot are monovalent,
the long range electric fields generated by each salt must be very simi-
lar, and the dramatic differences in their behavior must be due to the
differences in the strength of their short range [electro-chemical] inter-
actions with water. Forming a contact ion pair requires a partial dehy-
dration of both the positive and negative ion, which occurs most
readily when both ions have the same water affinity. A simple model
can be used to show that the relative affinity of a monovalent ion for
water closely correlates with its relative affinity for monovalent ions
of opposite charge [6]. Therefore,when one ion ismore strongly hydrat-
ed than its oppositely charged partner, dehydrating the more strongly
hydrated ion costs more in energy than is gained by forming a contact
ion pair with the more weakly hydrated ion, and thus these ions tend
to stay apart. The issue of charge density-dependent microscopic
hydration-dehydration is not included in the electrostatic calculation
using the macroscopic dielectric constant, but energetically it actually
dominates and controls the process of contact ion pair formation.”
[101] Evidence for contact ion pairing in water comes from protein X-
ray crystallography [40,58,59] and dielectric spectroscopy [17] in addi-
tion to those techniques discussed in the context of the Law ofMatching
Water Affinity above and below. The Law of MatchingWater Affinity is
supported bymolecular dynamics simulations of the alkali halides [104]
and by activity coefficients [105], as well as by other techniques dis-
cussed below. Ion pairing of Na+ with the carboxylate group is dis-
cussed in Section 8.1.1 below.

6.3. Water affinity plays a major role in ion specific effects, which can be
large and important

6.3.1. Hofmeister effects on proteins correlate with the charge density
and thus the water affinity of the ions

Hofmeister effects on proteins are perhaps the most dramatic ex-
ample of large and important specific ion effects [14,34]. The sign of
the Hofmeister effect on proteins (stabilizing or destabilizing) corre-
sponds with the water affinity of the anions (strongly or weakly hy-
drated, respectively) [5].

image of Fig.�10
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6.3.2. The solubility of the alkali halide salts correlates with the charge
density and thus the water affinity of their constituent ions

Although lattice enthalpies play a role [107,108], the solubility of
simple salts appears to be controlled largely by the tendency of the
constituent ions to form contact ion pairs in solution as shown by
the pattern of their solubility: salts composed of ions with similar
water affinities have lower solubility (Table 3). “For example, both
Li+ and F− are strongly hydrated, and thus tend to form contact ion
pairs (the first step in the process of coming out of solution), whereas
Cs+ is weakly hydrated [109], and will tend to stay away from F−. The
solubility of LiF in water is only 0.1 M at 18° C. In contrast, the solubil-
ity of CsF at 18° C is 24.2 M, or 48.4 M in ions, and since pure water is
about 55.5 M, a saturated solution of CsF contains only about one
water molecule per ion.” [101] It is worth noting that The Law of
Matching Water Affinity provides a reasonable explanation for the
solubility of the alkali halides [6] whereas continuum electrostatics
(lattice enthalpy) models do not [108].

6.3.3. The solubility of the biologically important Na+, K+, Mg2+, and
Ca2+ salts is determined mostly by the water affinity of their constituent
ions

“The strongly hydrated Ca2+ and Na+ ions are pumped out of liv-
ing cells, whereas the weakly hydrated K+ is pumped in. This is be-
cause Ca2+ and Na+ are well matched to the strongly hydrated
major intracellular anions (phosphate, the carboxylate, and carbon-
ate), and tend to form contact ion pairs with them (and then come
out of solution). [Ca2+, H2PO4

−, and HCO2
− each bind about 2 water

molecules tightly [15].] In fact, insoluble Ca2+ complexes play impor-
tant biological roles. Calcium carbonate (e.g., egg shells, oyster shells)
has a solubility product of 10−8.5; calcium oxalate (e.g., kidney
stones) has a solubility product of 10−10.5; and calcium hydroxypho-
sphate (hydroxyapatite) (e.g., bones and teeth) has a solubility prod-
uct of 10−58 [110]. K+, in contrast, stays away from the major
intracellular anions [as shown by molecular dynamics simulations of
Na+ and K+ interactions with the carboxylate [111–113] increasing
the net charge and thus the solubility of molecules containing these
anionic groups, and also leaving these anionic groups available for
acting as binding determinants.” [101] The solubility of K2HPO4

which contains “mismatched” ions is about 8.6 M [114], whereas
that of Na2HPO4·7H2O which contains more closely “matched” ions
is about 0.93 M [114]. Mammalian body fluid concentrations for K+

are about 159 mM intracellular and about 4 mM extracellular; for
Na+ they are about 10 mM intracellular and 150 mM extracellular
[16]. Dog erythrocytes, which do not have nuclei, do not maintain
Na+ or K+ gradients across their membrane [115], supporting the ar-
gument that the original purpose of the Na+, K+ ATPase was to re-
place inner sphere Na+-nucleic acid phosphate oxyanion ion pairs
with solvent separated K+-nucleic acid phosphate oxyanion ion
pairs. Mg2+, whose transport into the cell is facilitated, is very strong-
ly hydrated (i.e., more strongly hydrated than phosphates and car-
boxylates), and forms salts with carboxylates and phosphates that
are much more soluble than those of calcium. For example, the solu-
bility of magnesium oxalate (containing “mismatched” ions) is 155
times that of calcium oxalate (containing “matched” ions). The
Table 3
Solubilities of Group I halides

Solubility (molar value first, g/100 g H2O given in brackets).

MF MCl MBr MI

Li 0.1 (0.27) 19.6 (830) 20.4 [177] 8.8 [165]
Na 1.0 (4.22) 6.2 ( 36) 8.8 [91] 11.9 [179]
K 15.9 (92.3) 4.8 (34.7) 7.6 [67] 8.7 [144]
Rb 12.5 (130.6) 7.5 [91] 6.7 [110] 7.2 [152]
Cs 24.2 (367) 11.0 [186] 5.1 [108] 3.0 [79]

Source: Ref. [106].
intracellular Ca2+ concentration is about 10−7 M [116], and extracel-
lular Ca2+ is about 2.5 mM, whereas intracellular Mg2+ is 40 mM
(0.5 mM of which free) and extracellular Mg2+ is 1 mM [16]. As sum-
marized above, ions interact strongly with water over only short dis-
tances through electro-chemical mechanisms which determine water
affinity, and thus ion-pairing preferences are determined largely by
hydration–dehydration.

6.4. The water affinity of protein charges determines their biological role

6.4.1. The positive charges on proteins are weakly hydrated; the negative
charges on proteins are strongly hydrated

The ammonium-based positively charged amino acid side chains
are weakly hydrated whereas the negatively charged carboxylate
amino acid side chain is strongly hydrated as measured by Jones–
Dole viscosity B-coefficients and dynamic hydration numbers [6,15].
Cell penetrating peptides contain almost exclusively (weakly hydrat-
ed) positive charges [117] which can penetrate model membranes
when driven by pH gradients (inside acidic) [118]; a negative charge
can act as a “stop” sign for peptide insertion into membranes [119].
Similarly, intermediary metabolites are phosphorylated, creating a
strongly hydrated “handle”, to keep them inside the cell. The ability
of positively charged peptides to cross cell membranes is affected by
the counterion chosen [120]. Cell penetrating peptides can enter
cells by a variety of mechanisms, including transient focal membrane
deformation [121] and endocytosis after complexation with heparin
sulfate [122], and can be harnessed to deliver cargo across cell mem-
branes [117]. The closely related antimicrobial peptides exploit the
facts that “bacterial membranes possess a comparatively large frac-
tion (up to 20 mol%) of negatively charged lipids and maintain high
electrical potential gradients (a transmembrane potential (ΔΨ) of ap-
proximately −120 mV) that attract positively charged substances
like antimicrobial peptides, whereas the membranes of plant cells
and animal cells are enriched in cholesterol and lipids, have no net
charge and maintain weak ΔΨ “[123]. Almost the total surface of a
protein may be covered with (strongly hydrated) negative charges
[24], but clusters of (weakly hydrated) positive charges are rare
[124]. The introduction of a patch of positive charges on a mammalian
protein results in energy- and heparin sulfate-dependent endocytosis
of the protein across the plasma membrane [125–127]. Sulfate esters
are the only weakly hydrated negative charges found on biological
macromolecules [128] (such as on heparin sulfate), which thus bind
positively charged peptides and proteins strongly because of the
Law of Matching Water Affinity. The high salt concentration in halo-
philic bacteria increases the surface tension near the protein surface,
encouraging the proteins to minimize their solvent exposed surface
area by aggregating. This aggregation can be resisted by covering
the surface of the protein with strongly hydrated carboxylate groups,
which is found to be the case for proteins from halophilic bacteria
[129].

7. The role of polarizability

7.1. The water affinity of ions appears to be much more important than
polarizability for ions of biological significance

The polarizability of ions (and of the solvent) can be turned on and
off in molecular dynamics simulations, providing a means of evaluating
its importance; however, in molecular dynamics calculations, polariz-
ability is sometimes used to compensate for the neglect of quantum ef-
fects such as charge transfer to solvent. The importance of the
polarizability of the halide anions vs. the importance of their water af-
finity in their nucleophilic reactivity has been evaluated by measure-
ments of their nucleophilicity in the gas phase, F−≫Cl−>Br− [130],
which is the same as that in the non-protic solvent acetone
Cl−>Br−>I− [131], but the reverse of that in water I−>Br−>Cl−
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[131]. Since the intrinsic polarizability of the ions does not change with
solvent, the observed reversal in the order of nucleophilicitymust result
from the stronger solvation of the smaller anions in protic solvents such
as water, as revealed by Jones–Dole viscosity B coefficients [6] and by
Apparent Dynamic Hydration Numbers (ADHN) from gel sieving chro-
matography [15]; thus water affinity is the controlling factor for their
behavior in water in this case. Molecular dynamics simulations suggest
that iodide and water polarizability combined play a large role in driv-
ing iodide to the air/water interface [132,133], but the effect is substan-
tially reduced after correcting for electrostatic dampening [38]. An
electrospray mass spectroscopy study of the accumulation of anions of
low charge density at the air/water interface found a dependence on
ion radius (size) but not polarizability, establishing the water affinity
of the ion as the driving force for migration to the interface [134]. The
polarizability of H3O+ appears to provide about half of the driving
force for its slight preference for the air/water interface [135]. Therefore
the polarizability of the more polarizable ions may play a role in their
preference for the air/water interface, but the matter is not completely
resolved. Ion pairing, in contrast, appears to be largely controlled by
water affinity [6,136], and also by the affinity of the ions for acidic pro-
tons or unshared electron pairs on the counterion.

8. Current summary of ion–protein interactions

8.1. Forces controlling ion–protein interactions

The interaction of ions with proteins is a subject of intermediate
complexity. Three simple generalizations (1–3, below) can explain a
bewildering array of observations.

8.1.1. The Law of Matching Water Affinity is a useful generalization
In general, the binding of ions to proteins is controlled by the Law

of Matching Water Affinities: that is, ions of opposite charge tend to
form contact ion pairs when they have the same water affinity. This
phenomenon is particularly clear in the aqueous behavior of the
Group I halides, but there are some additional complexities when
this law is applied to proteins. Since the positive charges of proteins
are composed of various forms of weakly hydrated ammonium em-
bedded in a neutral hydrocarbon skeleton, the more weakly hydrated
an anion, the more strongly it binds (because these weakly hydrated
anions also bind to neutral hydrocarbon surfaces) [5]. A comparative
study of seven anions [69] shows that thiocyanate binds most strong-
ly to and crystallizes hen egg white lysozyme (which has a net charge
of about +10 at pH 4.5), Cl− binds with intermediate strength to and
crystallizes lysozyme (a typical Cl− dissociation constant for proteins
is 150 mM [61,62]), while the strongly hydrated di-anion sulfate
binds weakly to lysozyme (see below) but is a poor crystallizing
agent for lysozyme [137–140] probably because it overcharges the
protein (puts a net negative charge on it, increasing its solubility) as
has been shown to occur by adding excess positive charge with the
trivalent cation Yttrium [141], as well as with Ni2+, Mn2+, Co2+

and Yb3+ [45,46]. Some chloride anions bound to hen egg white lyso-
zyme do not contact any positive protein charges at all, but instead
bind to the asparagine sidechain amide hydrogen atom [40], reflec-
tive of the fact that the amide (pKa~15) is slightly more acidic than
water (pKa~15.74). Similarly, the retroviral class-1 membrane fusion
proteins form a “trimer of hairpins” structure in which three aspara-
gine sidechain amide hydrogen atoms bind a common chloride
anion [41]. Presumably these Cl− amide interactions result in signifi-
cant transfer of negative charge from Cl− to amide oxygen.

At 1 mM concentration weakly hydrated anions (such as nitrate)
allow a 1 mM (weakly hydrated) cationic peptide [Ac-A9K-NH2] to
form compact structures, whereas 1 mM strongly hydrated anions
(such as citrate) cause the same peptide to form elongated structures,
suggesting that contact ion pair formation effectively neutralizes the
peptide positive charge whereas solvent separated ion pairs do not,
allowing continued electrostatic repulsion between ‘un-neutralized”
cationic peptide molecules [142]. Similarly, weakly hydrated anions
(I−>Br−>Cl−>F−) cause reversible oligomerization of a fusion pro-
tein, apparently by contact ion pair formation with protein positive
charges [64]. In the case of monovalent cations, the excess negative
charge in the C-terminal region of tubulin is neutralized most effectively,
allowing polymerization, by Na+>K+>Li+~Cs+ [55,143]; the effective
neutralization of the carboxylate charge implies contact ion pair forma-
tion with the monovalent cations. Supportive of this interpretation is
the observation that the relative rates of α-synuclein aggregation reveal
a strong monotonic relationship between the C-terminal charge of α-
synuclein and the lag time prior to the observation of fibril formation,
with truncated (charge obliterated) species exhibiting the fastest aggre-
gation rates. [Furthermore, the number of duplex turns in closed circular
DNA increases as a function of counterion type in the same order as for
the carboxylate group, Na+bK+bLi+bRb+bCs+bNH4

+, suggesting
some contact ion pairing between Na+ and DNA phosphates [144,145].]
The carboxylate preference for Na+ over K+ is also supported by solution
oxygen 1s X-ray absorption spectroscopy [146,147], cyclodextrin com-
plex formation [113], and both ab initio and molecular dynamics calcula-
tions [111–113,148–150] as well as by activity coefficients [105]. There is
some variation of results except for the relative preference of the carbox-
ylate for Na+ over K+, upon which everyone appears to agree. Pre-
formed Na+ and K+ binding sites in proteins have been well character-
ized [20,151,152].

However, it is known that proteins show selective and preferential
binding of anions to protein cationic groups, but not cations to pro-
tein carboxylates, at their surface in dilute salt solutions [139], and
that the association constant of Na+ for the carboxylate is small
(KA(NaOAc)≈0.07 M−1) [153]. This is consistent with recent molec-
ular dynamics calculations which detected no interaction of Na+ with
the carboxylate group [154,155] and with UV resonance Raman
measurements of Na+ and K+ in the presence of acetate and poly-L-
glutamate [156] which detected no interaction of these cations with
the carboxylate. [It should be noted that the behavior of poly-L-gluta-
mate is surprisingly complex: “it is not stable in the α-helical form in
aqueous solution under any conditions when it is fully charged.” [34].]
There are at least two obvious reasons why monovalent cations should
interactweaklywith the strongly hydrated carboxylatewhereasweakly
hydrated monovalent anions should interact strongly with weakly hy-
drated positively charged groups on proteins. First, if thewater released
by contact ion pair formationmakes a large contribution to the energet-
ics of the process, the smaller size of the IA cations (Li+, Na+, K+, Rb+,
Cs+) as compared to the positively charged amino acid side chains
means that less water is released when the IA cations are involved.
And second, each carboxylate has two tightly bound water molecules
[15] onto which leaks 0.22 of the carboxylate negative charge [8], pro-
viding an obvious mechanism for water-mediated interactions with a
counterion; additionally, if quantum effects are really this large, molec-
ular dynamics simulations may not be capable of accurately describing
the behavior of this system. Because the cell expends large amounts of
energy pumping Na+ out of the cell via the (Na++ K+)-ATPase, we
may conclude that high intracellular Na+ is toxic to the cell, but the
toxic interaction may be with nucleic acids.

8.1.2. Ions of high charge density interact with acidic protons or unshared
electron pairs on proteins

Modulating the law of matching water affinities is the tendency of
anions of high charge density to interact strongly with the acidic pro-
tons of water (pKa=15.74) [15], the acidic proton of the amide moiety
(pKa~15), and the acidic protons of the guanidinium side chain of argi-
nine (pKa=12.5) [60,157,158]. This interaction has some covalent
character and involves some transfer of charge. It leads to the strongly
hydrated phosphate oxyanion binding to the neutral amide proton
[42], the strongly hydrated carboxylate binding to the weakly hydrated
guanidiniumgroup [159,160], and the strongly hydrated sulfate binding
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to the weakly hydrated guanidinium group [137–140]. Similarly, cations
of high charge density interact with the unshared electron pairs of
water [15,49] (pKa=−1.74) and of proteins; for example, the strong-
ly hydrated divalent cation Ca2+ destabilizes proteins [34] by forming
a strong chemical interaction with the peptide backbone amide oxy-
gen (pKa~−1), showing a large charge transfer from Ca 4s states
into the peptide backbone as detected by photoemission spectroscopy
[161]. Ba2+ also destabilizes proteins [34], presumably by the same
mechanism (pulling the backbone amide out of the interior of the
protein).

8.1.3. Circumstantial evidence suggests that very strong low barrier hy-
drogen bonds may be used to stabilize transition states at enzyme active
sites

The strength of a hydrogen bond in pure water is about 3.7 kcal/mol
[162,163]. Low barrier hydrogen bonds in protein structure and func-
tion are short, potentially very strong hydrogen bonds inwhich the pro-
ton is suspended midway between two heteroatoms of identical pKa

[164–167]. The strength of the intramolecular hydrogen bond between
the carboxylates of hydrogenmaleate in the gas phase as determined by
photoelectron spectroscopy and electron propagator theory has been
determined to be about 30 kcal/mol, which is enormously strong for a
hydrogen bond [168]. Proton coupled bi-carboxylates involving amino
acid side chains have been observed in 16% of a homology-reduced set
of high-quality X-ray crystal structures extracted from the Protein
Data Bank [169], and therefore such interactions, probably of modest
strength, appear to be common in proteins. They are probably also
involved in the binding of phosphate to protein carboxylates in the peri-
plasmic phosphate transport proteins from E. coli [22] andM. tuberculo-
sis [24], as well as in the in the stabilization of enzymatic transition
states [166]. Be2+ toxicity may arise from its ability to displace the pro-
ton in low barrier hydrogen bonds [170,171]. The Glu-104 side chain
carboxylate at the active site of the enzyme cytidine deaminase stabi-
lizes the actual transition state of the reaction by−8.8 kcal/mol, corre-
sponding to a catalytic rate increase of eight orders ofmagnitude; it also
forms a short (2.5 Å) hydrogen bond with the Zn+2-bound hydroxyl
group of the tetrahedral transition state analog 3,4-dihydrouridine,
which binds to the enzyme active site with a Ki of 1.2×10−12 M
[172]. The Glu-270 side chain carboxylic acid at the active site of the en-
zyme carboxypeptidase A forms a very short hydrogen bond (2.2 Å)
with the Zn+2-bound phosphonate oxygen of a tetrahedral transition
state analog which binds to the enzyme with a Ki of 3×10−12 M
[173]. Two groups have crystallized the HIV-1 (aspartyl) protease
with (different) bound peptide substrates at the active site, in each
case distorted into a tetrahedral reaction intermediate stabilized by a
short strong hydrogen bond of 2.2 Å [174] or 2.3 Å [175] with one of
the catalytic aspartates.

Enzyme active sites typically have protein loopswhich fold downover
the bound substrate to exclude water [176]. Transition state stabilization
by enzymes is known to be largely enthalpic, usually involving polar in-
teractions such as hydrogen bonds [177], and these strong enzyme-
transition state interactions produce a more compact and rigid form of
the enzyme which “wraps” around the transition state [178]. Therefore,
although the existence of strong low barrier hydrogen bonds in aqueous
environments remains a contentious issue [179], there should be strong
selective pressure to recruit them for stabilizing transition states in the
protected, near anhydrous environment of enzyme active sites, and
much circumstantial evidence supports their involvement in this context.

8.2. Protein solubility and crystallization

8.2.1. Only net neutral proteins crystallize; below about 0.2 M, ions interact
directly with proteins; above about 0.2 M, ions tend to interact indirectly
with proteins (mediated by water molecules)

Up to a concentration of about 0.2 M, ion effects on proteins are due
mostly to the direct binding of ions to polar and to oppositely charged
groups on the protein, as can be seen by X-ray crystallography [40].
Weakly hydrated ions are “sticky”, and can adsorb at many sites on
the surface of the protein, such as nonpolar patches [136]. Increasing
the net charge on proteins increases their solubility; decreasing the
net charge on proteins decreases their solubility. Proteins have their
lowest solubility when they are net neutral [180,181], because only
neutral species can change phases. For example, at pH 7.1, amonoclonal
antibody of isoelectric point (pI) 7.2 has approximately equal numbers
of positive and negative charges. Up to 100 mMor higher, addedmono-
valent anions (SCN−>Cl−>F−, as the K+ salts) increase the solubility
of the antibody as they bind to the positive charges and increase the net
charge on the protein. In contrast, at pH5.3,where the sameprotein has
a net positive charge, the same ions in the same order initially (up to
50 mM) bind to the positive charges on the protein but decrease its sol-
ubility as they decrease its net charge to zero; as the salt concentration
is further increased, additional binding of the anions increases the net
charge on the protein and increase its solubility [11]. The dominance
of local effects in protein electrostatic interactions is illustrated by the
existence of single “gatekeeper” charges which control the rate of pro-
tein aggregation [182]. Certain ions such as Ni2+, Mn2+, Co2+, Yb3+

[46] yttrium [141] and probably sulfate [137] appear capable of causing
an “overcharging” or “charge reversal” of proteins by direct binding.
Above about 0.2 M, water-mediated (indirect) effects begin to domi-
nate, where ions affect the solvation of the protein by competing for in-
terfacialwater [14] (probably that associatedwith the amide backbone)
[183]. Weakly hydrated ions (such as guanidinium and thiocyanate)
make interfacial water more available to solvate the protein; strongly
hydrated ions (such as sulfate and fluoride) make interfacial water
less available to solvate the protein [183–185]. These indirect Hofmeis-
ter effects can be substantial; for example, 1 M sulfate increases the
melting temperature of staphylococcal nuclease by 15 °C (from 54 °C
to 69 °C) [186]. At high concentration, neutral or strongly hydrated
salts increase the surface tension over nonpolar patches, which can
lead to aggregation [187]. Polymers such as polyethylene glycol proba-
bly encourage protein crystallization by excluded volume effects and by
acting as a weak detergent, preventing nonspecific aggregation.

Strongly hydrated anions such as sulfate and fluoride can also
salt in or out via direct binding to acidic protons on proteins
[11,39,60,67,136,137,188–190] and increasing or decreasing the
net charge on the protein, respectively.

The large weakly hydrated thiocyanate ion binds strongly to pro-
teins [69] not only because the positive charges on proteins are weak-
ly hydrated, but also because thiocyanate binds strongly to nonpolar
surfaces [5]. Thiocyanate binding is characterized by multipoint at-
tachment [40] and can crosslink protein molecules [40,191,192].
Thiocyanate is an aggressive denaturant and can partially denature
proteins, even at 0.2 M [193]. Binding of trace iron [194] and copper
[195] to the surface of proteins is associated with oxidation of the
protein.

9. Conclusion

9.1. Solvent molecularity and the chemistry of ion–water interactions
must be included to accurately model ions in water in complex environ-
ments and concentrated solutions

Continuum electrostatics models describing the long range forces
on ions in water do not acknowledge the importance of the local
water affinity of the ions or of chemical processes involving the
ions. However the experimental and computational evidence for the
dominant role of both is clear and convincing. It is the ability of
water to keep the influence of charges mostly local that provides so
much flexibility in designing biological structures. It will require ex-
plicit modeling of aqueous solutions with quantum chemistry to ac-
curately represent the local forces that control the behavior of ions
in water and make life possible. Additionally, we are now able to
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list the principle forces and processes that give rise to the complex
behaviors associated with ion-protein interactions, simplifying the
planning and interpretation of experiments whose goal is to increase
the stability and to increase the solubility of proteins.
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