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Elasticity determination by means of ultrasonic pulse transmission requires experimental realization of
non-dispersive, i.e. frequency-independent, wave propagation, be it in form of bulk waves propagating
in an (approximately) infinite medium, or of extensional waves propagating through a 1D bar system.
While it is conceptually known that wavelengths need to tend towards zero (as compared to the speci-
men dimensions perpendicular to the pulse propagation direction) in the 3D case, and towards infinity in
the 1D case, we here report on a new systematic experimental assessment of the influence of the sample
geometry on wave type: tests on solid isotropic aluminum samples reveal that the extensional (or bar)
wave propagation mode requires transmission of truly slender samples (required slenderness ratio of
20 or larger for wavelengths equal to the wave travel distance; this minimum slenderness ratio is increas-
ing with increasing travel distance-over-wavelength ratio). After a transition zone with dispersive wave
propagation, non-dispersive bulk waves are detected once the slenderness ratio is reduced to 5 or lower
(at wavelengths equal to the wave travel distance; this maximum slenderness ratio is increasing with
increasing travel distance-over-wavelength ratio). On the other hand, it is conceptually known from con-
tinuum mechanics that the wavelength needs to be larger than the investigated material volume or rep-
resentative volume element (RVE), as to reveal the material’s elastic properties, while corresponding
quantitative data are rare. As a remedy, we here report on new experiments on transversely isotropic,
porous aluminum samples, which reveal that minimum pore dimension-over-wavelength ratios of 1
and 10, respectively, relate to detection of normal and shear stiffnesses, respectively, of the solid material
between the pores, while these ratios need to be smaller than 0.01 and 0.1, as to detect the normal and
shear stiffnesses of the overall porous materials. The latter can be quantified through various homogeni-
zation techniques.

� 2012 The Authors. Elsevier Ltd.Open access under CC BY-NC-ND license.
1. Introduction of flaws in metals [25,50], and thereafter applied to a wide range
The design of engineering structures is more and more gov-
erned by the development of new construction materials, whose
characteristics are not known through long periods of experience,
but result from appropriate, comprehensive experimental investi-
gations. Hence, the portfolio of experimental techniques is ever
increasing, and the reliability and limitations of such techniques
needs to be carefully scrutinized. In the present contribution, we
concentrate on a method which is particularly appropriate for elas-
ticity determination, namely the ultrasonic (contact) pulse tech-
nique. This technique was originally developed for the detection
of materials, including single crystals [37,50], polycrystalline mate-
rials [32,58], polymers [39,28], metals and metal alloys [57,53],
composite materials [59,19,48], geomaterials [33,14,40], biological
materials such as bone [2] and wood [13,44], as well as biomateri-
als such as porous titanium and glass-ceramic scaffolds [45].

In the present contribution, we leave aside Rayleigh surface
waves, Lamb waves, and guided waves (see e.g. [47,82,76] for de-
tailed explanations), we are also not dealing with plastic waves,
shock waves, or viscoelastic waves [14], but our focus lies on elas-
tic waves used in the framework of the so-called transmission
through technique. There, an acoustic pulse is introduced at one
end of a material sample, and it is measured how long it takes to
detect this pulse, after having travelled through the sample, at
the opposite end of the sample. The traveling pulse is called wave,
and the velocity of the latter is related to the elastic properties of
the material. However, there are two limiting cases of such waves:
(i) bulk waves, related to propagation of pulses in infinite media
and (ii) extensional waves propagating along ‘one-dimensional
media’, i.e. through samples being of very elongated shape,
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commonly called bars. While numerous studies
[36,62,75,82,30,31] were devoted to the dispersion (i.e. the fre-
quency dependence) of waves in bars fulfilling Pochhammer’s
boundary conditions [73,15], the frequency-dependent transition
of pulse signals, from bulk wave propagation to extensional wave
propagation has been quite rarely studied [83,2]. For these limit
cases, compact and therefore highly practical mathematical formu-
lae exist. Hence, the question arises under which conditions these
limit cases can be experimentally observed in real (i.e. neither infi-
nite 3D, nor perfectly 1D) material samples. It is known from Kol-
sky [46,47], and considered in subsequent experimental activities
[2,45], that the transition from bar to bulk waves starts once the
(decreasing) wave length attains the lineal dimension of the cross
section of the bar. However, the effect of the bar’s slenderness on
the type of wave transmitting it, is comparatively unknown, and
this is the first main issue to be discussed in the present paper.

Both bulk and extensional waves relate to the long-wavelength-
limit, referring to wavelengths being considerably larger than the
characteristic length of the material volumes (also called representa-
tive volume elements [92]) building up the medium through which
the waves travel. If the wavelength attains the size of the material
volume, the wave starts to ‘feel’ the material microstructure, e.g.
they may be scattered at inhomogeneities (e.g. inclusions) inside
the material volume. The transition from the long-wavelength-limit
to waves scattered by microstructural elements has been the topic of
various theoretical investigations, be it in the framework of random
homogenization theory [60,38,8,78,80,91,90,86] or of periodic
homogenization technique [26,49,85,10,11,18,84,65,66,89,27,52,72].
We here do not concentrate so much on this transition, but rather
focus on the experimental revelation of two limit cases: the afore-
mentioned long-wavelength-limit (how large needs a wave to be in
order to feel the ‘homogenized medium’ rather than microstruc-
tural details?), and also the ‘short-wavelength-limit’ (how small
needs a wave to be to ‘feel’ the material components themselves,
rather than their microstructural interaction?). The short-wave-
length-limit was beyond the aforementioned theoretical investiga-
tions, relating to the question: how short needs a wave to be in
order to find an unscattered path between the microstructural
inhomogeneities? Obviously, the answers depend on the type of
chosen microstructures. We here choose an extreme case: zero-
stiffness, cylindrical pore inclusions.

Accordingly, the paper is organized as follows: after recalling
some foundations of plane wave propagation theory (Section 2),
we present the ultrasonic measurement system used for the pres-
ent study (Section 3) and the investigated specimens (Section 4),
together with a precision check of our measurement system (Sec-
tion 5). On this basis, we study the transition from bulk to exten-
sional waves (Section 6), and from the long-wavelength-limit to
the short-wavelength-limit (Section 7), both from a dimensional
analysis viewpoint. After discussing the experimental results from
a micromechanics viewpoint (Section 8), we conclude the paper in
Section 9 by giving operational rules for reliable ultrasonic pulse
transmission protocols.

2. Wave propagation in 3D and 1D linear elastic solids –
theoretical basics

We focus on wave propagation in continua – where the basic
property of a continuum solid is that its deformations can be de-
scribed through representative volume elements (RVEs) ‘labeled’
on the continuum and staying neighbors during deformation
[79]. The characteristic lengths ‘ of such RVEs need to be much
smaller than those of the body made up of the RVEs or than the
excitation lengths of that body [such as wavelengths k, see Eq.
(7)] – then use of differential calculus is admissible; and the
RVE-length ‘ needs to be much larger than the microheterogene-
ities with characterisitic length d within the RVE (e.g. the void
diameter in Fig. 1) – then material properties such as stiffness
can be introduced. Mathematically, this is expressed by means of
the separation-of-scales requirement [92],

d� ‘� k: ð1Þ

When considering an infinitely extended 3D medium, the afore-
mentioned stiffness is quantified in terms of the elasticity tensor C,
relating (small) strains to stresses. Based on earlier work of Chris-
toffel [16,17], Love [55] was the first to mathematically capture the
propagation of elastic waves in infinite three dimensional solids, be
they isotropic or anisotropic. In the case of transversely isotropic
materials, to which we restrict ourselves in this paper, the inde-
pendent components of the stiffness tensor are related to velocities
of waves traveling in the principal directions of the material,
namely in the axial direction (labeled 3), and all directions perpen-
dicular to this axial direction (making up the transverse plane),
including directions 1 and 2, being also orthogonal to each other.
To fully characterize the aforementioned waves, called bulk waves,
also their polarization direction (i.e. the direction of the movement
of the material particles or RVEs) needs to be known; and again, we
restrict the polarization directions to the principal material direc-
tions, and label wave velocities vi,j with two indices, the first one
(i) being related to the wave direction, and the second one (j) to
the polarization direction. In case of longitudinal waves, the polar-
ization directions coincide with the propagation directions, and
corresponding wave velocities are related to normal stiffness ten-
sor components, see e.g. [24,14,44] for details,

v1;1 ¼ v2;2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1111

q

s
; v3;3 ¼

ffiffiffiffiffiffiffiffiffiffiffi
C3333

q

s
; ð2Þ

with q as the mass density of the considered material. In case of
transverse waves, the polarization direction is perpendicular to the
propagation direction, and corresponding wave velocities are related
to shear stiffness tensor components, see e.g. [24,14,44] for details,

v1;2 ¼ v2;1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1212

q

s
; v1;3 ¼ v3;1 ¼ v2;3 ¼ v3;2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1313

q

s
: ð3Þ

In case of isotropy, wave propagation velocities are independent
of the propagation direction, and in all directions, the wave veloc-
ities follow from specification of (2) and (3) for C3333 = C1111 and
C1313 = C1212 so that we have

vL ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1111

q

s
and vT ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1212

q

s
; ð4Þ

with vL and vT as the velocities of longitudinal and transverse (or
shear) waves in isotropic media. Since isotropic solids are com-
pletely described by two elastic constant, e.g. C1111 and C1212 (the
shear modulus G is equal to the shear stiffness component, i.e.
G = C1212), the two velocities vL and vT can also be used to determine
two engineering elastic constants, e.g. Young’s modulus and Pois-
son’s ratio, in the form

E ¼ q
v2

T 3v2
L � 4v2

T

� �
v2

L � v2
T

and m ¼
v2

L

�
2� v2

T

v2
L � v2

T

: ð5Þ

When considering 1D media, i.e. bars characterized by a one-
dimensional state of normal stress, there is only one (extensional
or bar) wave propagating through the considered bar, with its
wave velocity being related to the Young’s modulus E of the mate-
rial, see [46] for details,

vE ¼
ffiffiffiffi
E
q

s
: ð6Þ
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Fig. 1. Specimens for investigation of microstructure (porosity) on wave propagation velocity: (a) Porous cylinders in hexagonal arrangement (and definition of principle
material directions), (b) arrangements of voids in specimens of set C, and (c) unit cell.
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The wavelengths k of the aforementioned longitudinal, shear,
and extensional waves depend on their (phase) velocity vp as well
as on the frequency f of the pulse traveling through the tested solid
[68,14]

k ¼ vp

f
: ð7Þ
3. Ultrasonic measurement system

3.1. Equipment and set-up

The employed equipment consists of an ultrasonic pulser and a
signal receiver built into a single unit (PR 5077, Panametrics Inc.,
Waltham, MA, USA; see Fig. 2a); a digital oscilloscope (WaveRun-
ner 62Xi, Lecroy Corporation, Chestnut Ridge, NY, USA; see
Fig. 2a); 17 pairs of ultrasonic, single-element, untuned contact
transducers for longitudinal and transverse pulses (Panametrics
Inc., Waltham, MA, USA; see Table 1), with pulse frequencies rang-
ing from 0.1 to 20 MHz and corresponding pulse widths ranging
from 10 to 0.05 ls; an ultrasonic signal preamplifier (5676, Pana-
metrics Inc., Waltham, MA, USA); a coupling medium (honey);
and an auxiliary testing device (see Fig. 2a); for more details of
the equipment, we refer to [43].

We here use the transmission-through technique, where two
transducers are used, one sending a signal into the specimen and
one receiving the sent signal on the opposite side of the specimen
(see Fig. 2a).

The time of flight of the signal through the specimen, tf, pro-
vides, together with the travel distance through the specimen, h,
the signal velocity,

v ¼ h
tf
: ð8Þ
If the wave is not scattered at material inhomogeneities being of
the same order of magnitude as the wavelength, i.e. if the
wavelength is either much larger than these inhomogeneities
(‘long-wave-limit’), or so small that it detects a continuous straight
material path between these inhomogeneities (‘short-wave-limit’),
then the aforementioned signal velocity is identical to the phase
velocity vi of the longitudinal (i = L) or transverse (i = T) wave,
being related to the stiffness of the sonified material through
Eqs. (2) and (3), respectively. Thereby, tf is determined by the dif-
ference of the total time of flight measured between the transduc-
ers, ttot, and the wave transit time without the specimen, called
system and transducer delay time td (see Table 1, columns five
and nine). td includes the time delay caused by the transducers,
by the coupling medium, by additional delay lines, and by the
measurement system itself. The benchmark for the time of flight
measurements is a reference signal sent by the ultrasonic pulser–
receiver, on which the trigger of the oscilloscope is set. Since we
are interested in the first arrival of the ultrasonic wave (even in
case the pulse is strongly attenuated and consequently, the wave
form is changed, i.e. broadened), we use the first apparent devia-
tion of the received signal from constancy with time (i.e. the time
instant when the signal rises beyond noise level) as the arrival time
of the ultrasonic wave; as it was done by Nicholson and Strelitzki
[69]. Transversal wave propagation is usually accompanied by a
precursor longitudinal wave (see e.g. [70,47,71,74]). In cases where
the precursor longitudinal wave interferes with the first arrival of
the transverse wave, the wave trough preceding the main trans-
verse wave crest is used to determine the wave arrival time.

The time readings on the oscilloscope are performed manually.
The deviation of the received pulse from the time constancy axis
develops smoothly. Therefore, the signal amplitude and frequency
(of both pulser–receiver and transducer), as well as the amplitude
and time range chosen for display of the pulse on the oscilloscope,



Fig. 2. Determination of stiffness constants of aluminum alloy 5083. (a) Ultrasonic velocity measurements. (b) Quasi-static mechanical tests.

Table 1
Ultrasonic longitudinal and transverse transducers (frequency f , aluminum-related wavelength ki, element diameter de, system and transducer delay time td).

f (MHz) Longitudinal Transversal

kL (mm) Label (–) de (mm) td (ls) kT (mm) Label (–) de (mm) td (ls)

0.05 127 X1021 32 3.988 – – – –
0.1 64 V1011 38 3.667 32 V1548 25 0.339
0.25 25 V1012 38 3.355 13 V150-RB 25 0.351
0.5 13 V101-RB 25 2.464 6.4 V151-RB 25 0.390
1.0 6.4 C602-RB 25 2.828 3.2 V152-RB 25 0.320
2.25 2.8 C604-RB 25 2.555 1.4 V154-RM 13 0.211
5.0 1.3 C109-RM 13 2.426 0.6 V155-RM 13 0.147
10 0.6 V112-RM 6 2.343 0.3 V221-BA-RM 6 6.939
20 0.3 V116-RM 3 2.346 0.16 V222-BA-RM 6 6.928
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influence the time readings of signal arrival. In order to obtain
comparable results, measurements were performed, as a rule, at
fixed pulse voltage (100 V) and gain settings (30 dB) on the
pulser–receiver, which was set to 100 Hz pulse repetition rate.
Only in case a higher pulse energy was necessary to penetrate
the specimen with a signal amplitude that allowed for precise time
readings, a gain of 40 dB was used, together with a higher pulse
voltage, namely 400 V for transducers with frequencies lower than
5 MHz, and 300 V for all other transducers (in order to protect
the smaller piezoelectric crystals of the latter from overheating
and depoling). In order to smoothen the wave signal at pulse
frequencies below 5 MHz, the low pass filter was used, which
inhibits frequencies higher than 10 MHz.

Also the display settings on the oscilloscope were fixed, namely
at a sample rate of 10 GS/s, at a time range of 5 ls, and at an
amplitude range of ±0.4 V. The bandwidth was limited to 20 MHz
for transducers below 5 MHz, and to 200 MHz for higher frequency
transducers, as to minimize signal noise. For the arrival time read-
ing the first arrival part of the pulse was displayed in an additional
zoom window, covering 1 ls and ±0.4 V in time and amplitude
dimensions, respectively. The accuracy of cursor positioning was
0.1 ns, but reliable measurements were only possible up to an
accuracy of 10 ns = 0.01 ls.

The exact identification of the signal arrival time is the major
source of measurement inaccuracies. Especially for small thick-
nesses of the specimens and corresponding short times of flight
and/or low transducer frequencies, this error may be essential. In
order to minimize this error (as well as other sources of inaccura-
cies), delay lines have been used since the beginning of ultrasonic
research [1]. Such delay lines may fulfill two purposes: (i) the near
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field of the transducer, located directly adjacent to the wear plate
and characterized by an oscillating amplitude, is relocated out of
the investigated specimen [88] and (ii) the received pulse (arrival
signal) is relocated out of the time range of receiver disturbances
stemming from the electrical ignition of the pulser. The latter pur-
pose is relevant here, since our present focus is on arrival times
rather than on amplitude measurements. We used as delay lines
cylinders made of aluminum alloy 5083 with diameters 1.5 mm
larger than the diameter of the transducers (�de in Table 1), as to
leave room for a notch that prevents the delay line from slipping
between the transducer and the specimen. The heights of the delay
lines were 15 mm and 20 mm, respectively, referring to a time de-
lay of 2.35 ls and 3.14 ls, respectively. They were coupled to the
sending transducers with honey. The longer time delay was used
for the longitudinal transducers with the three lowest frequencies
(f = 0.05, 0.1, 0.25 MHz), while the shorter time delay was used for
the rest of the longitudinal transducers. Implementation of the de-
lay lines led to higher accuracy over all frequencies when sending
longitudinal waves through thin specimens. Such a positive effect
was not observed with transverse waves. On the contrary, delay
lines even impaired the measurement results of low frequency
transverse waves, due to the more complicated experimental setup
(including a third coupling layer), which makes the discrimination
of the correct wave crest more difficult. Thus, with transverse
transducers no delay lines were used, except for the two transverse
transducers with the highest frequencies, which have a built-in sil-
ica delay line (delay time �6.8 ls; see Table 1).

In order to minimize errors in time of flight measurements, we
standardly employed two transducers of identical architecture and
center frequency for the pulse-transmission measurements. As
exception to that rule, the longitudinal and transverse transducers
with center frequencies of 20 MHz were used in combination with
the equivalent 10 MHz-transducers as receivers; the 0.05 MHz-
and 0.1 MHz-longitudinal transducers were used in combination
with a 0.1 MHz-longitudinal transducer (X1020, de = 16 mm) as re-
ceiver; and the 0.25 MHz-longitudinal transducer was used in
combination with the 0.5 MHz-longitudinal transducer as receiver
(see Table 1). These exceptions were allowed since using a receiv-
ing transducer with a center frequency differing from that of the
sending transducer did not remarkably change the test results on
one and the same specimen.

When combining ultrasonic longitudinal and transverse velocity
measurements, e.g. for the computation of engineering elastic con-
stants (see Eq. (5)), only values related to comparable wavelengths
should be used, referring to the same scale of mechanical investiga-
tion (see Eq. (1)). The transverse wave velocity is approximately
half of the longitudinal one, over most (isotropic) materials. From
Eq. (7) it follows that, in order to achieve equal wavelengths kL = kT,
a longitudinal frequency transducer should be combined with a
transverse transducer exhibiting half the frequency of the longitu-
dinal one, i.e. fT = fL/2 (see also Table 1, columns two and six).

Other sources of measurement errors include the flatness of the
specimen surfaces where the transducers are applied, if these sur-
faces are not strictly parallel; and the character of the coupling
layer. It is important to realize an evenly distributed coupling layer
of constant thickness, without (air) inclusions. Measurements were
performed near room temperature (i.e. �300 K, �25 �C). According
to Ledbetter [51] a 10-K temperature change alters (copper) ultra-
sonic velocities by only 0.05%, implying that the expected temper-
ature variations [4] in laboratories do not significantly affect
corresponding results.

3.2. Error propagation

All spatial dimensions of specimens were determined from
the average of five measurements with a micrometer gauge
characterized by a precision of ±10 lm. Masses were measured
on a digital balance, with a precision of ±1 mg. Then the apparent
density qapp was determined, as the ratio of mass m and volume V

qapp ¼
m
V
; ð9Þ

whereby our cuboidal specimens (see Section 4 for more details) are
characterized by height h and quadratic cross-section with edge
length a, so that

V ¼ ha2
: ð10Þ

In the sequel, we discuss how measurement errors in funda-
mental quantities, such as length (h, a), mass (m), and time of flight
(tf) affect errors in the following derived quantities [77]: volume V
(Eq. (10)), density qapp (Eq. (9)), velocity vi (Eq. (8)), and stiffnesses
Cijkl or E (Eqs. (2), (3), (4), (6)). Therefore, we recall the law of error
propagation [64]

s2
y �

X
i

@F

@xi
si

� �2

þ 2
X
i<j

@F

@xi

@F

@xj
sij i; j ¼ 1;2; . . . ;n; ð11Þ

where sy is the standard deviation of a random variable y, which is
generated by evaluating a deterministic function F of n random
variables xi characterized by variances s2

i and covariances sij.
Depending on the investigated quantity, F is chosen as V, qapp, vi,
Cijkl, or E (according to Eqs. (10), (9), (8), (2)–(4), (6)), and the vari-
ables xi are chosen as h, a, m, V, tf, qapp, and/or vi. If the variables xi

are uncorrelated, the last term in (11) vanishes. Approximation (11)
is valid for small random alterations of the variables xi, and implies
that all errors are random, i.e. systematic errors are assumed to be
zero. Thus, strictly speaking, we give precisions (reproducibility)
rather than accuracies of measurements. The standard deviations
si [also referred to as uncertainties or as errors [64]] give access to
the relative standard deviations (relative errors) di, via

di ¼
si

xi
: ð12Þ

Using this definition and the definition of the correlation coeffi-
cient dij = sij/(si sj), specifications of F according to (10), (9), (8), and
(2) (or (3), (4), (6)) yields

dV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

h þ 2d2
a

q
; ð13Þ

dq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

m þ d2
V � 2dmdVdmV

q
; ð14Þ

dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

h þ d2
t � 2dhdtdht

q
; ð15Þ

dC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2

v þ d2
q þ 4dqdvdqv

q
; ð16Þ

whereby dh is the relative error in h, and so forth. Based on (abso-
lute) errors of sh = sa = 0.01 mm (precision of the micrometer
gauge), Eqs. (12) and (13) give access to the relative errors in h, a,
and V, see columns four to six in Table 2. Considering additionally
sm = 0.001 g (precision of the digital balance) and dmV = 1.00 (as ob-
tained from a statistical analysis of the measurements on all dense
aluminum samples of Section 4, see Table 3, column three), Eqs.
(12) and (14) give access to the relative errors in m and q, see col-
umns seven and eight of Table 2. The latter value was checked by
computing dq directly from the measurements on all plate-type, cu-
bic, and bar-type dense specimens, yielding 0.187%, which under-
lines the relevance of error propagation law (11) for our purposes
(see Table 2, column eight, rows three to five).

The uncertainties in time of flight, st, are (conservatively) esti-
mated, for each frequency, from the range of time instants in which
the first deviation of the signal from the time constancy axis can be
discerned (see Table 3, column two). This value for st gives access
to the corresponding relative errors according to Eq. (12), dt = st/t,



Table 2
Geometrical dimensions of specimens, with corresponding relative errors dh, da, dV, dm, and dq, and times of flight tf related to longitudinal waves.

Geometry h (mm) a (mm) dh (%) da (%) dV (%) dm (%) dq (%) tf (ls)

Thin plate 0.5 30 2.00 0.03 2.001 0.084 1.917 0.078
Plate 5 30 0.20 0.03 0.205 0.008 0.197 0.785
Cube 30 30 0.03 0.03 0.058 0.001 0.056 4.708
Bar 30 1 0.03 1.00 1.415 1.255 0.160 4.708
Long bar 100 1 0.01 1.00 1.414 0.376 1.038 15.69

Table 3
Standard deviations in the time of flight, st, as well as correlation coefficients dmV, dht,
and dqv, given for different frequencies.

f (MHz) st (ls) dmV (–) dht (–) dqv (–)

0.05, 0.1 0.10 1.000 0.995 0.249
0.25, 0.5, 1.0 0.05 1.000 0.996 0.029
2.25, 5 0.02 1.000 0.997 0.127
10, 20 0.01 1.000 0.998 0.122
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based on the times of flight of longitudinal (bulk) waves, observed
at different geometries (see Table 4, column two). Because of
vT � vL/2, transverse waves exhibit double times of flight and half
relative errors dt, when compared to those of longitudinal waves.
Relative errors of velocity dv are determined via (15), with dh

according to column four in Table 2, with dt according to column
two in Table 4, and with the correlation coefficient of dht according
to column four in Table 3. Thereby, dht is obtained from length and
time of flight measurements on all (dense) specimens belonging to
one of the frequency groups given in Table 3. Significant relative
errors dv occur for low frequency measurements in thin specimens
(see Table 4). The relative velocity errors for high frequencies are in
accordance with Ledbetter [51], who gives dv < 0.1% for box-shaped
copper specimens (h = 19 mm, t � 4 ls, f = 3–10 MHz). The relative
error in stiffnesses, dC, (see column four in Table 4) is estimated
through Eq. (16), with dq according to column eight in Table 2, dv
according to column three in Table 4, and dqv according to column
Table 4
Relative errors di in time of flight, velocity and stiffnesses, given for different specimen
geometries and different frequencies.

f (MHz) dt (%) dv (%) dC (%)

Thin plate
0.05, 0.1 127 126 251
0.25, 0.5, 1.0 64 62 124
2.25, 5 25 24 47
10, 20 13 11 22

Plate
0.05, 0.1 12.7 12.5 25.1
0.25, 0.5, 1.0 6.4 6.2 12.4
2.25, 5 2.5 2.3 4.7
10, 20 1.3 1.1 2.2

Cube
0.05, 0.1 2.12 2.09 4.20
0.25, 0.5, 1.0 1.06 1.03 2.06
2.25, 5 0.42 0.39 0.79
10, 20 0.21 0.18 0.37

Bar
0.05, 0.1 2.12 2.09 4.22
0.25, 0.5, 1.0 1.06 1.03 2.07
2.25, 5 0.42 0.39 0.82
10, 20 0.21 0.18 0.41

Long bar
0.05, 0.1 0.64 0.63 1.82
0.25, 0.5, 1.0 0.32 0.31 1.22
2.25, 5 0.13 0.12 1.09
10, 20 0.06 0.05 1.06
five in Table 3. Thereby, dqv is obtained from density and velocity
measurements on all (dense) specimens belonging to one of the
frequency groups of Table 3. In case dq� dv (e.g. at lower frequen-
cies, i.e. higher dv), or if q is a precisely known quantity, Eq. (16)
reduces to

dC ¼ 2dv ; ð17Þ

i.e. the relative error doubles when deriving stiffness tensor compo-
nents from measured ultrasonic velocities. This was approximately
observed when computing relative errors dv and dC directly from
(bulk) velocity measurements on dense specimens A-5 to A-12
(see following section) and from the density measurements dis-
cussed below Eq. (16). We re-iterate that the errors given in Table 4
are due to measurement uncertainties and that they do not include
other error sources, such as uneven surfaces. From the results in
Table 4 it is evident that very high errors are only to be expected
if very thin samples, characterized by short times of flight, are
investigated at low frequencies. Conclusively, when considering
all sources for inaccuracies, the ultrasonic contact pulse-transmission
technique is in general satisfactorily exact.

4. Specimens for ultrasonic tests

All specimens were made of commercial aluminum alloy EN
AW-5083-H111, produced according to the European standards
EN-485-1 [21] and EN-485-2 [22], a material that is insensitive
to temperature changes in the room temperature regime [87].
The specimens are subdivided into five sets. Set A1, A2, B, and R
are used to investigate the effect of specimen geometry and size
on ultrasonic wave propagation (see Table 5), and set C is used to
investigate the effect of specimen microstructure (see Table 6).
All specimens are box-shaped with characteristic cross-sectional
dimension a (edge length of the two specimen surfaces having
the shape of a square) and height h; except for specimens R-2
and R-3, which are cylindrically shaped; there, a equals the
diameter.

In addition, an aluminum cube with an edge length of
a = h = 100 mm (cut from a 100 mm thick plate) was used to obtain
reference bulk wave velocities (even for lower frequencies, as will
be verified in Section 6).

The 12 specimens of set A1 have a constant height h = 30 mm,
but varying characteristic cross-sectional dimensions a ranging
from 1 to 100 mm, therefore covering shapes ranging from bars,
via cubes, to (thick) plates. Set A2 consists of six specimens with
a constant cross-sectional dimension of a = 3 mm, but with varying
heights h from 30 to 110 mm, i.e. these specimens are bars of dif-
ferent slenderness. Set B consists of 12 specimens with constant
a = 30 mm and h varying from 0.5 to 30 mm, i.e. covering shapes
ranging from (thin) plates to cubes. Set R consists of a bar with
the lowest ratio a/h, namely 0.01, and of two cylindrical specimens.

Set C consists of four box-type aluminum specimens with cylin-
drical voids of different diameters d, in a hexagonal arrangement
with different distances e between the cylinder axes, resulting in
different porosities (see Fig. 1a and b and columns four and five
in Table 6). Hexagonal symmetry is characterized by a 6-fold axis,
i.e. a rotation by p/3 about axis 3 (longitudinal cylinder direction,



Table 5
Aluminum specimen set A1, A2, B, and R – influence of geometry on wave propagation
(dimensions in (mm)).

Set A1 Set A2 Set B

# a h # a h # a h

1 1 30 1 3 30 1 30 0.5
2 2 30 2 3 40 2 30 1
3 3 30 3 3 60 3 30 2
4 5 30 4 3 70 4 30 3
5 10 30 5 3 90 5 30 4
6 15 30 6 3 110 6 30 5
7 20 30 7 30 7.3
8 30 30 8 30 10
9 40 30 Set R 9 30 15

10 50 30 1 1 100 10 30 20
11 75 30 2 9 14 11 30 25
12 100 30 3 18 4 12 30 30

A2-1 = A1-3 B-12 = A1-8

Table 6
Aluminum specimen set C – influence of microstructure on wave propagation (see
Fig. 1 for definition of d and e).

# q (g/cm3) u (%) d (mm) e (mm) a (mm) h (mm)

1 2.07 21.9 1.0 2.03 30 20
2 1.79 32.7 1.5 2.50 30 30
3 2.05 22.8 2.0 3.99 30 30
4 1.36 48.7 3.2 4.37 30 30
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see Fig. 1a) does not change the elastic stiffness, which – in turn –
implies invariance against rotation by any angle [33]. Materials
with one axis of complete rotational invariance are termed trans-
versely isotropic. Four different drill bit diameters, namely d = 1,
1.5, 2, 3.2 mm were used to produce four specimens (termed C-1,
C-2, C-3, and C-4), with 247, 161, 60, and 52 boreholes, respectively
(see Fig. 1b), and with three different porosities (specimens C-1
and C-3 have approximately the same porosities, see column three
in Table 6). Specimens C-2, C-3, and C-4 are cubes with an edge
length of a = h = 30 mm. The height of specimen C-1 was reduced
to h = 20 mm, in order to reduce problems in the deep drilling re-
gime (characterized by drilling depth larger than 10 times the drill
bit diameter, i.e. 10 mm in case of the 1 mm boreholes). The wall
thickness t = e � d (see Fig. 1a), i.e. the thinnest part of solid matrix
between the boreholes, is approximately 0.9 mm in specimens C-1,
C-2 and C-4, and 1.8 mm in specimen C-3 (see Fig. 1b).

The geometrical properties of set C in Table 6 are determined by
measuring the mass m and volume V for each specimen, and by
computing the apparent density qapp according to (9). Knowing
the apparent density qapp and the density of the solid, qs = 2.656
g/cm3 (see Table 7), the porosity u (–) is given by:

u ¼
qs � qapp

qs
: ð18Þ

For an exactly (infinite) hexagonal arrangement of cylindrical
voids, the porosity is proportional to the square of the ratio of
the diameter of the voids d to their distance e,

u ¼ p
2
ffiffiffi
3
p d2

e2 : ð19Þ

Knowing u from measurements of the actual specimen (18) and
d from the diameter of the drill bit, an average value for the actual
size of e follows from (19) assuming an exact (infinite) hexagonal
structure. The deviation of this actual (average) borehole distance
e from its theoretical analogon related to an exact (infinite) hexag-
onal structure according to Fig. 1, amounts to about 5% for all con-
sidered specimens. This is due to the inaccuracies in the borehole
pattern, to the deviation of the borehole from the longitudinal
direction, and to lack of boreholes in the borderarea (the realiza-
tion of which was beyond the scope of this work, and would also
have complicated the coupling of transducer and specimen). The
actual porosity (see column three in Table 6) deviates from the infi-
nite hexagonal structure porosity by around 10% for each speci-
men, so that our specimens can be regarded as decent
approximation of quasi-infinite porous hexagonal patterns.
5. Bulk wave propagation: precision check

In order to check the precision of our ultrasonic measurement
system, we compare bulk wave velocities measured on a cube of
aluminum alloy 5083 with a = h = 100 mm (Fig. 2a), with wave
velocities found in the literature, and with wave velocities back-
calculated from quasi-static tests performed in our laboratory
(Fig. 2b). Corresponding results are collected into Table 7.

In our ultrasonic tests (see column two of Table 7), the wave
velocity was measured with all nine longitudinal and eight trans-
verse contact transducers, both with and without delay line. Each
of these velocity values was determined from an average of at least
three (actually three or four) independent time of flight measure-
ments, i.e. a total of more than 100 measurements were available.
The longitudinal and transverse bulk wave velocities were deter-
mined from 18 and 16 average results, respectively. The exten-
sional velocity and the elastic constants were determined from
the 14 average results, each one corresponding to equal longitudi-
nal and transverse wavelengths (see Table 7, column two).

When taking the average of eight values from four different lit-
erature sources [87,67,6,61], we observe that the off-diagonal com-
ponent C1122 shows by far the highest standard deviation of all, but
that the average stiffness values agree very well with our own
measurements (Table 7, columns three and two).

The mass density qs = 2.656 g/cm3 was determined on an alu-
minum cube with an edge length of 100 mm, according to Eq. (9)
with qs = qapp; this measurement was repeated twice.

Quasi-static load-controlled tensile tests were performed on a
uniaxial electromechanical universal testing machine (LFM 150,
Wille Geotechnik, Germany, see Fig. 2b). Three dog bone-shaped
specimens with constant rectangular cross-section of
30 � 10 mm over the measurement range of 150 mm (gradually
broadened, over 10 mm, up to a cross-section of 50 � 10 mm in
the clamping area) were made from the same aluminum alloy plate
as was used for the production of the specimens for ultrasonic
tests. The load was applied up to a stress rj of 75 MPa, with a stress
rate of 0.17 MPa/s. The axial normal strains ej (those in direction of
tensile force) and the lateral normal strains ei (those in direction
perpendicular to tensile force) were measured by means of two
separate Wheatstone bridge circuits of strain gauges (3/350XY13,
Hottinger Baldwin Messtechnik GmbH, Germany) for compensa-
tion of any bending moment influences, yielding Young’s modulus
and Poisson’s ratio of an isotropic material, according to

Eqs ¼
rj

ej
and mqs ¼ �

ei

ej
; ð20Þ

respectively. The average of the results from the loading and the
unloading path, respectively, was taken for each test (the corre-
sponding differences amounted to less than 0.5%), and each of the
three specimens was tested twice (the differences resulting from
test repetition amounted to less than 0.5‰). For each set of Eqs

and mqs, the other elastic constants and ultrasonic wave velocities
were determined (average values and standard deviations in per-
cent of average given in Table 7, column four).

The results from both measurement methods, quasi-static and
ultrasonic, show good agreement with average literature values



Table 7
Elastic stiffness and ultrasonic bulk velocities of aluminum alloy 5083, from literature Weston et al. [87], Naimon et al. [67], Benck and Filbey [6], and Matweb [61] (lit), and from
our own quasi-static (qs) and ultrasonic (us) tests (average values ± standard deviation in percent of average; bold values measured or from literature, remaining derived from
these via Eqs. (4)–(6).

Quantity (unit) Ultrasonic (own experiment) Ultrasonic (literature) Quasi-static (own experiment) Deviation us

Lit Qs

n (–) 14 8 3 – –
q (g/cm3 ± %) 2.656 2.663 ± 0.1 2.656 0.3 –
vL (km/s ± %) 6.372 ± 0.2 6.349 ± 2.6 6.301 ± 1.5 �0.4 �1.1
vT (km/s ± %) 3.205 ± 0.7 3.170 ± 0.6 3.263 ± 1.4 �1.1 1.8
vE (km/s ± %) 5.229 ± 0.6 5.176 ± 0.3 5.295 ± 1.4 �1.0 1.3
C1111 (GPa ± %) 107.86 ± 0.3 107.47 ± 5.2 105.49 ± 3.0 �0.4 �2.2
C1212 (GPa ± %) 27.29 ± 1.4 26.78 ± 1.2 28.29 ± 2.9 �1.9 3.6
C1122 (GPa ± %) 53.36 ± 1.8 53.91 ± 11.2 48.92 ± 3.2 1.0 �8.3
E (GPa ± %) 72.63 ± 1.2 71.40 ± 0.7 74.49 ± 2.9 �1.7 2.6
m (– ± %) 0.331 ± 1.1 0.333 ± 3.8 0.317 ± 0.3 0.8 �4.2
C1111/E (– ± %) 1.486 ± 1.3 1.505 ± 5.1 1.416 ± 0.3 1.3 �4.7
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(compare Table 7, columns two to four). The ultrasonic stiffness
measurements differ by at most 2% from literature values (see
Table 7, column five). Ultrasonic wave velocities agree even better,
with a deviation of only 1%. Excellent agreement is also found be-
tween the two different experimental setups, i.e. quasi-static and
ultrasonic measurements (see Table 7, column six). Again the off-
diagonal component exhibits the highest discrepancy between test
methods (8%), for all other values, the difference is at most 4%.

6. Sample-specific wave propagation – bulk waves and
extensional waves

According to the theory of elastic waves in infinite isotropic sol-
ids (built up by RVEs which are far smaller than the wavelengths
k), the longitudinal wave velocity is given through
[55,46,41,3,14], see also (4)1,

vL ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1111

q

s
; ð21Þ

with C1111 as the normal stiffness component of the material, and q
as its mass density. For bounded solids, such as the box-type sam-
ples with square-shaped cross sections investigated in the present
study, vL additionally depends on sample height h, edge length a,
and (longitudinal) wavelength kL,

vL;exp ¼ FðC1111;q; a;h; kLÞ: ð22Þ

Thanks to the dimensional independence of C1111, q, and h,
dimensional analysis [12,5] allows for reducing the function F of
four dimensional arguments (see (22)) to a (dimensionless) func-
tion of only two dimensionless arguments, reading as:

vL;expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p ¼F
a
h
;

h
kL

� �
; ð23Þ

which, according to Eq. (21), is equivalent to

vL;exp

vL
¼F

a
h
;

h
kL

� �
: ð24Þ

In principal, Eqs. (23) and (24) describe classes of similar problems
defined through the same dimensionless quantities, being not re-
stricted to a specific material, but valid for all materials with RVEs
significantly smaller than the encountered wavelengths [compare
Eq. (1)]. We are left with determination of F from our test series
A1, A2, B, and R (performed on a specific material, aluminum alloy
5083):

Tests on sample set A1 (solid aluminum boxes characterized by
constant heights of 30 mm, and by square-shaped cross sections
with edge lengths varying from 1 mm to 100 mm, passing all the
shapes from plate-like, via cubic, to bar-like, see Table 5) reveal
that longitudinal wave velocities increase with increasing cross
section, unless they reach a constant value, which coincides with
the bulk velocity of aluminum, vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p
, see Fig. 3a. The

smallest cross sections are always related to the lowest wave
velocities, but only at low frequencies, the extensional or bar veloc-
ity of aluminum, given through Eq. (6) as vE ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
¼ 0:821� vL,

with E as the isotropic Young’s modulus of the transmitted mate-
rial (here aluminum), is reached, see Fig. 3a. The bulk velocity is
reached the earlier, the higher the used frequency, i.e. the lower
the wavelength of the pulses sent through the samples, see Fig. 3b.

Tests on sample set A2 (solid ‘bar-like’ aluminum boxes charac-
terized by constant square-shaped cross sections with edge length
of 3 mm, and by heights varying from 30 mm to 110 mm, see Ta-
ble 5) reveal that longitudinal wave velocities increase with
increasing frequency, unless they even reach, for f = 10 MHz and
f = 20 MHz, the constant value of the bulk velocity of aluminum,
vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p
, see Fig. 4. At frequencies below 10 MHz, the longi-

tudinal wave velocities increase with decreasing height, i.e. with
decreasing slenderness of the bar-like specimens. Only at the lower
frequencies, the most slender samples are transmitted by exten-
sional waves (also called bar waves), and only at the higher fre-
quencies, the least slender samples are transmitted by bulk
waves, see Fig. 4a.

Tests on sample set B (solid ‘plate-like’ aluminum boxes charac-
terized by constant square-shaped cross sections with edge length
of 30 mm, and by heights/thicknesses varying from 0.5 mm to
30 mm, passing from plate-type to cubic shape, Table 5) reveal that
propagation velocities are independent of height or thickness,
being equal to the bulk velocity, and that they undergo large errors
in case of small thicknesses in particular in combination with small
frequencies (i.e. large wavelengths), see Fig. 5. These errors are in
perfect agreement with our estimation of Section 3.2; i.e. for small
thicknesses, the precision of the ultrasonic measurement system is
lost.

The aforementioned test results referring to samples sets A1, A2,
B, and R, can be cast into a consistent whole, by considering the
normalized longitudinal wave velocities as ‘altitudes’ related to
locations in the plane spanned by the dimensionless variables
‘edge-length-over-height (a/h)’ and ‘height-over-wavelength
(h/kL)’, see Fig. 6. Fig. 6 refers to a 2D representation of the function
(24), covering a range of the dimensionless variables a/h and
h/kL, over four orders of magnitude. The lowest longitudinal wave
velocities, matching the extensional velocity, are reached for slen-
der samples (small a/h) when excited through relatively long
wavelengths (large h/kL). Shorter wavelengths (smaller h/kL) seem
to induce deformational constraints in the bar, being therefore
transmitted by waves faster than the extensional wave. For less
slender specimens (larger a/h) the bulk velocity is reached the



(a)

(b)

Fig. 3. Specimen set A1, R-2 (according to Table 5): dependency of dimensionless
longitudinal wave velocity ðvL;exp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p
¼ vL;exp=vLÞ, on (a) edge-length-over-

height parameter (a/h), and on (b) height-over-wavelength parameter (h/kL); data
points relating to the same h/kL-ratio are connected by solid lines.

(a)

(b)

Fig. 4. Specimen set A2, R-1 (according to Table 5): dependency of dimensionless
longitudinal wave velocity ðvL;exp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p
¼ vL;exp=vLÞ, on (a) edge-length-over-

height parameter (a/h), and on (b) height-over-wavelength parameter (h/kL); data
points relating to the same a/kL-ratio are connected by solid lines – remarkably,
these lines are nearly parallel, even if a changes.
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earlier, the smaller the relative wavelengths h/kL, i.e. the more of
the aforementioned deformational constraints are imposed onto
the sample. The corresponding boundary of the ‘high plateau’ in
Fig. 6, related to bulk wave propagation, can be quantified by a lin-
ear relation in log (a/h) and log (h/kL), so that

bulk wave propagation 8 a
h

� 	
;

h
kL

� �

with A log
a
h

� 	
þ B log

h
kL

� �
6 1; ð25Þ

where A = �1.426 and B = �0.530 (see solid bold line in Fig. 6). The
boundary for extensional wave propagation (with up to 5% error) is
approximately parallel to this line (see dashed bold line in Fig. 6).
Beyond that boundary when tending towards h/kL ? 0, a/h ? 0
(i.e. for bar-shaped specimens excited by low-frequency signals),
the bar-shaped specimens are transmitted by extensional waves,

extensional wave propagation 8 a
h

� 	
;

h
kL

� �

with C log
a
h

� 	
þ D log

h
kL

� �
P 1; ð26Þ

with C = �0.776 and D = �0.282. However, it is interesting to note
that bar-shaped specimens (see vertical line at a/h � 0.015 in
Fig. 6) may well be transmitted by bulk waves rather than by exten-
sional waves. This is the case for wavelengths being smaller than
the cross sectional length a (see h/kL � 300, kL = 0.22 a, in Fig. 6),



(a)

(b)

Fig. 5. Specimen set B, R-3 (according to Table 5): dependency of dimensionless
longitudinal wave velocity ðvL;exp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p
¼ vL;exp=vLÞ, on (a) edge-length-over-

height parameter (a/h), and on (b) height-over-wavelength parameter (h/kL); data
points relating to the same a/kL-ratio are connected by solid lines.

Fig. 6. Specimen sets A, B, R (according to Table 5): dependency of dimensionless
longitudinal wave velocity ðvL;exp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p
¼ vL;exp=vLÞ, on specimen geometry

(edge-length-over-height parameter a/h), and on wave frequency (in terms of
height-over-wavelength parameter h/kL) – top view.
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i.e. for high frequency signals propagating through our bar-type
specimens. Our finding is consistent with that of Kolsky [47] who
stated that the transition from extensional to bulk wave propaga-
tion through bar-type specimens starts at kL � a (h/kL � 100, a/
h � 0.01, in Fig. 6). For kL 6 a, the stress distribution across the spec-
imen cross section is not any more uniform. This uniformity, how-
ever, would be the prerequisite for the validity of beam theory, here
in the sense of Eq. (6). On the other side of the ‘bulk velocity plateau’
in Fig. 6, measurements of longitudinal waves through thin plates
(large values of a/h) may become increasingly awkward and af-
flicted with errors, reflected by steep peaks and valleys adjacent
to the ‘high plateau’ towards large edge-length-over-height ratios.
Fig. 6 also suggest cubes to be an appropriate specimen shape for
bulk wave velocity determination, especially for high frequencies
(a/h = 1, h/kL ?1, see dash-dotted line in Fig. 6) when the wave
is ‘detecting’ RVEs being much smaller than the specimen, while
at low frequencies (a/h = 1, h/kL ? 0, see dash-dotted line in
Fig. 6) specimens and RVEs are not well separated by scale and
the bulk wave plateau in Fig. 6 becomes a little ‘wavy’. The limit
case h/kL ?1 is also preferable when aiming at bulk wave determi-
nation on platy specimens, see Fig. 6 for a/h � 10 – 100, while, for
h/kL < 1, measurements on platy specimens may be afflicted with
large measurement errors (see Fig. 6). This is consistent with the
theoretical error propagation analysis in Section 3.2, Table 4.

The elastodynamic analogon to (21) for shear waves reads as:
vT ¼

ffiffiffiffiffiffiffiffiffiffiffi
C1212

q

s
; ð27Þ
with vT as the (‘bulk’) shear wave velocity, and with C1212 as the
shear stiffness component of the elasticity tensor (being equal to
the shear modulus G), compare (4)2. Considerations analogous to
(22)–(24) yield the dimensionless shear wave velocity as:
vT;expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1212=q

p ¼ vT;exp

vT
¼ G

a
h
;

h
kT

� �
: ð28Þ

Function G is a ‘high plateau’ at altitude ‘1’ (reflecting the fact
that there do not exist ‘bar-type’ shear waves), and is only bounded
by ‘peaks’ and ‘valleys’ related to the technical limitations of the
employed measurement system (described in Section 3.1), see
Fig. 7. In any case, sufficiently high frequencies and corresponding
short wavelengths (h/kT > 20) guarantee non-dispersive shear wave
propagation, for all types of investigated sample shapes, from bars
to plates.
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7. Microstructure-specific wave propagation

While the last section was devoted to the case of the long-
wavelength-limit, where the wavelengths are significantly larger
than the material volumes (see right-hand side of Eq. (1)), we
now discuss propagation velocities of waves spanning the entire
range from wavelengths being much larger than the material vol-
umes of porous media, via such being of the size of such porous
material volumes or of the size of the microstructural entities
(pores), to finally such being even smaller than the microstructural
entities (pores). As described in Section 4, we study the microstruc-
ture ‘cylindrical pores in solid (isotropic) aluminum matrix’ [with
hexagonal (and hence transversely isotropic) instead of isotropic
properties], which, according to Drugan and Willis [20], is an
extreme case where the microstructural entities start to have a dis-
cernable influence already at relatively large wavelengths. Accord-
ingly, Eq. (24) now refers to very small waves traveling directly
through the isotropic aluminum matrix, without interference with
the cylindrical pores. However, the experimentally determined
velocities are now functions of two additional arguments, pore
diameter d and porosity u, so that the dimensionless function
(24) needs to be extended to the format:

vL;exp

vL
¼H

a
kL
;

h
kL
;

d
kL
;u

� �
: ð29Þ

In principle, we could have also introduced pore center distance
e in Fig. 1 as the measure for the microheterogeneity size, see
Table 6 for relations between e and pore diameter d. While the
corresponding results on the effect of microheterogeneities on
wave propagation, as reported herein, would remain independent
of the choice of e versus d, the pore size d is the more common
choice in the open literature [56]. In order to keep the discussions
in a tractable size, we now consider only ranges where our previ-
ous study on sample sizes did not suggest influences of a/h and
h/kL on vexp/vL, i.e. we restrict ourselves to the ‘high plateau’-region
of Fig. 6. In other words, we study microstructure-specific wave
propagation, independent of sample geometry-specific wave prop-
agation. Accordingly, we consider the dimensionless functions:
Fig. 7. Specimen sets A, B, R (according to Table 5): dependency of dimensionless transver
over-height parameter a/h), and on wave frequency (in terms of height-over-wavelengt
vL;expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111=q

p ¼ vL;exp

vL
¼ I

d
kL
;u

� �

and
vT;expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1212=q

p ¼ vT;exp

vT
¼ J

d
kT
;u

� �
; ð30Þ

where (30)2 relates to transverse waves through specimens which
do not evoke measurement errors (see ‘high plateau’-region in
Fig. 7). In order to elucidate the features of I and J, we evaluate
the test results of sample set C (mainly cubic samples with cylindri-
cal pores in different configurations, defined in Fig. 1b and Table 6).
Because of the transversely isotropic nature of the specimen with
the principle material directions 1, 2, and 3 (see Fig. 1), functions
I and J additionally depend on the propagation direction. Accord-
ingly, we discuss in the following three functions I; I1; I2; I3,
related to longitudinal wave propagation velocities v1,1,exp, v2,2,exp,
and v3,3,exp, respectively (the repeated index indicates coincidence
of the propagation and polarization directions in longitudinal
waves), and six functions J; Ji;j; i–j; i; j ¼ 1; 2; 3, related to
transverse wave velocities vi,j,exp with propagation direction i and
polarization direction j, i – j. 3D representations of functions I1

(see Fig. 8a; velocity referring to longitudinal normal stiffness),
average of I2 and I3 (see Fig. 8b; velocities referring to (transverse)
normal stiffness in isotropic plane), average of functions
J1;3; J3;1; J2;3, and J3;2 (see Fig. 9a; velocities referring to longitu-
dinal shear stiffness), and average of functions J1;2; J2;1 (see
Fig. 9b; velocities referring to (transverse) shear stiffness in the iso-
tropic plane) show the dependency of the bulk wave velocity on
both the porosity u and the pore-diameter-over-wavelength
parameter d/ki.

Generally, longitudinal wave velocities increase with increasing
pore diameter-over-wavelength ratio d/kL, with two limit cases:

1. For large values of this ratio d/kL, the longitudinal waves travel-
ing in the cylindrical pore direction reach the bulk velocity
related to pure aluminum alloy (see Fig. 10a); in other words,
the waves [with wavelengths shorter than the pore diameters,
i.e. for d/kL � 2 at higher porosities; but even for d/kL � 0.04 at
low porosities] propagate through the solid aluminum matrix,
while not interacting with the cylindrical pores (see Fig. 10a).
se wave velocity ðvT;exp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1212=q

p
¼ vT;exp=vT Þ, on specimen geometry (edge-length-

h parameter h/kT).



(a)

(b)

Fig. 8. Dependency of normalized longitudinal ultrasonic velocities in transversal isotropic media in (a) longitudinal [v1,1,exp/vL] and (b) transverse [(v2,2,exp + v3,3,exp)/2/vL]
direction, on d/kL and u [model predictions according to Hashin and Rosen [29] and Hlavacek [35], respectively, shown for reference in (a) and (b), respectively (surfaces
without gridlines); for details see Section 8 and Appendix A].
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This is also true for the longitudinal waves traveling perpendic-
ular to the cylindrical pore direction, within the specimens
which exhibit the lower porosity (see lines labeled by circles
and squares in Fig. 10b and c). At higher porosities, the waves
start to interact with the pores, being scattered at the pore sur-
faces. None of the traveling waves can take the shortest path
through the specimen, the wave paths become, so to speak,
‘more tortuous’ – this leads to longer times of flight and to a
lower velocity measured along the shortest distance between
the opposite faces of the considered specimen (see lines labeled
by diamonds and triangles in Fig. 10b and c). This tortuosity
effect is more pronounced in the direction 2 (characterized by
a zig-zag-type positioning of pores) than in the direction 1
(where straight (but only very thin) wall paths exist between
the specimen faces, which, inspite of their straightness, cannot
provide a tortuosity-free propagation of longitudinal waves, see
Fig. 1a and compare Fig. 10c and b). The tortuosity effect may be
also enhanced by geometry-induced attenuation.

2. For small values of d/kL, the waves reach the bulk velocity
related to the porous media through which they travel. These
bulk velocities can be reasonably predicted by random homog-
enization theory (continuum micromechanics), corresponding
predictions are indicated in Fig. 10 (while we refer to the next
section for mathematical expressions related to different micro-
mechanical models). This good predictability shows that the
waves (with wavelengths being considerably larger than the
pore diameter, i.e. tending towards the long-wavelength-limit)
‘feel’ the entire porous medium, consisting of both the solid alu-
minum matrix and the cylindrical air pores. In accordance with
theoretical micromechanics, the bulk velocities through the



(a)

(b)

Fig. 9. Dependency of normalized transverse ultrasonic velocities in transversal isotropic media in (a) longitudinal [(v3,1,exp + v3,2,exp + v1,3,exp + v2,3,exp)/4/vT] and (b) transverse
[(v1,2,exp + v2,1,exp)/2/vT] direction, on d/kT and u [predictions of Mori–Tanaka-type model shown for reference (surfaces without gridlines); for details see Section 8 and
Appendix A].

C. Kohlhauser, C. Hellmich / Engineering Structures 47 (2013) 115–133 127
considered specimens are the smaller the higher the porosity,
and they are smaller in the transversely isotropic directions
than in the anisotropic direction (that of the cylindrical pores).
Still, it should be noted that for constant pore diameter d and
constant frequency f, kL is smaller in the transverse directions
(due to lower propagation velocities in these directions). At
higher porosities, this smaller kL may not feel any more the por-
ous medium in the sense of theoretical micromechanics, see
Fig. 10b and c, for u = 48.7%. Also, the implication of hexagonal
microstructures exhibiting transversely isotropic material
behavior [33], i.e. v2,2 = v3,3 in Fig. 10b and c, is experimentally
reflected only at sufficiently large wavelengths. Otherwise, the
continuous straight paths between the pores, oriented in direc-
tion 1 (see Fig. 1), lead to overestimation of the effective porous
medium-related longitudinal wave velocity.
Similar trends are observed for transverse waves traveling
through the porous specimens of set C (see Fig. 11). However,
two major differences with respect to the longitudinal waves are
noted: (i) the ‘tortuosity effect’ for short wavelengths is negligible,
so that all waves reach, for large d/kT, the shear wave velocity
related to the aluminum matrix (see Fig. 11), (ii) for diminishing
d/kT below 1, the effective (long-wavelength-limit-related) trans-
verse velocities related to the porous medium are reached signifi-
cantly faster than it is the case for longitudinal waves. This effect is
particularly characteristic for transverse velocities in the cylindri-
cal pore direction, v3,1 and v1,3 (see Fig. 11a and b). For small
d/kT, when the separation-of-scales requirement (1) is fulfilled,
the experimental measurements show the theoretically expected
symmetries v1,3 = v3,1 = v2,3 = v3,2 and v1,2 = v2,1 (Fig. 11). When
leaving this limit, wave propagation is less influenced by a change



(a)

(b)

(c)

Fig. 10. Specimen set C (transversely isotropic, porous specimens): Influence of
pore diameter-over-wavelength ratio (d/kL), on longitudinal dimensionless wave
velocities in (a) anisotropic direction 3 (orientation of cylindrical pores), v3,3,exp, and
in (b) and (c) directions within isotropic plane, v1,1,exp, v2,2,exp (for definition of
directions 1 and 2, see Fig. 1; micromechanical models are described in Section 8
and Appendix A).
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of polarization direction only (compare Fig. 11a and b), as com-
pared to a change in both polarization and propagation directions
(compare Fig. 11a and c as well as Fig. 11b and d).
8. Waves characterizing representative material volumes –
comparison to theoretical micromechanics

For small d/k, the separation-of-scales requirement (1) is
fulfilled and the ultrasonic waves characterize a representative vol-
ume element of the transversely isotropic porous aluminum mate-
rial of specimen set C. It is instructive to compare these
experimental results (Figs. 8–11) to mathematical models from
the micromechanics field, as to elucidate the relevance of both
the employed experimental technique and the theories developed
over half a century. For this purpose we have evaluated the theo-
retical predictions of four different mathematical models relating
pore morphology and volume fraction to elastic stiffness tensors
of the investigated porous materials (which are related, via (2)
and (3), to the long-wavelength-limit-related propagation
velocities vi,j, i, j = 1, 2, 3): (i) Hashin and Rosen’s [29] variational
method for effective elastic properties of a (isotropic) solid matrix
perforated by randomly distributed cylindrical pores [29],
(ii) Hlavacek’s [35] Hamilton’s principle-based method for effective
elastic properties of a (isotropic) solid matrix perforated by
hexagonally arranged pores [35], (iii) Eshelby [23] problem-based,
Mori–Tanaka-type estimation of effective elastic properties of a
solid matrix with randomly distributed pores, in the context or
random homogenization theory (mean field homogenization) or
continuum micromechanics [63,7,92], and (iv) the unit cell method
for effective elastic properties of periodic media [81,9,54], applied
to an array of periodically arranged cylindrical pores in a solid
matrix. Details on these micromechanical models can be found in
Appendix A. For discussion of these models with respect to our
experiments, we employ the following error measures

d ¼ 1
k

Xk

n¼1

Chom
ijij ðnÞ � Cexp

ijij ðnÞ
Cexp

ijij ðnÞ
¼ 1

k

Xk

n¼1

dn and s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k� 1

Xk

n¼1

ðdn � dÞ2
vuut ; ð31Þ

where k = 4 for C3333 and C1212, k = 8 for C1111 and C1313, dn is the rel-
ative error of each model stiffness prediction, and d and s are the
mean and standard deviations of these errors, respectively.

As regards normal stiffnesses (Fig. 12), the experimental values
for the longitudinal stiffness component C3333 agree almost
perfectly with Hashin and Rosen’s micromechanical estimates
(relative error of 0.1 ± 1.1%, see thin dash-dotted line and upright
triangular marker in Fig. 12), while these values lie slightly above
the micromechanical predictions of the Hlavacek model, the
Mori–Tanaka-type random homogenization result, and our unit
cell approach (relative errors of �4.5 ± 0.6%, �5.5 ± 0.6%, and
�5.3 ± 0.7%, respectively; see thin dotted and thick dashed lines,
as well as square and upright triangular markers in Fig. 12), and
they are larger for the tests in specimen C-3 (with u = 22.8% and
larger pores) than for C-1 (with u = 21.9% and smaller pores). The
latter observation reflects the effectively larger RVE of C-3, when
compared to that of C-1. The experimental values for the transverse
normal stiffness component C1111 lie slightly above the predictions
of the Hlavacek model (relative error of �9.6 ± 6.3%, see thin
dashed line and horizontal triangles in Fig. 12), and are even more
distant from the Mori–Tanaka-type and unit cell predictions (rela-
tive errors of �18.9 ± 6.1% and �20.0 ± 7.4%, respectively; see thick
solid line, as well as circular and horizontal triangular markers in
Fig. 12). The aforementioned deviations between experimental val-
ues and micromechanical model predictions are the more pro-
nounced the higher the porosity of the investigated specimens.
The experimental values for the plane strain bulk modulus in the
isotropic transverse plane, K12 = C1111 � C1212, almost perfectly
agree with Hashin and Rosen’s micromechanical estimates (rela-
tive error of �3.4 ± 8.2%, see thin solid line and diamond as well
as upside-down triangle markers in Fig. 12).

As regards shear stiffnesses (Fig. 13), the experimental values
for the longitudinal shear stiffness component C1313 agree almost
perfectly with the Mori–Tanaka-type micromechanical estimates
(relative error of �1.5 ± 3.0%, see thick dashed line and horizontal
triangular markers in Fig. 13), as well as with those of our unit cell
models (relative error �1.3 ± 3.1%, see circular and horizontal tri-
angular markers in Fig. 13), with those of Hlavacek’s 1975 model
(relative error of �0.2 ± 3.3%, see thin dotted line and horizontal
triangular markers in Fig. 13), and with those of Hashin and
Rosen’s 1964 model (relative error of �1.5 ± 3.0%, see thin dash-
dotted line and horizontal triangular markers in Fig. 13). The
experimental values for the transverse inplane shear stiffness
C1212 agree almost perfectly with the Mori–Tanaka-type stiffness
estimate (relative error of 2.5 ± 2.0%, see thick solid line and
upright triangular markers in Fig. 13), and almost as well with



(a) (b)
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(e) (f)

Fig. 11. Specimen set C (transversely isotropic, porous specimens): influence of pore diameter-over-wavelength ratio (d/kT), on transverse dimensionless wave velocities in
(a) and (b) anisotropic direction 3 (orientation of cylindrical pores), v3,1,exp and v3,2,exp, in propagation directions within the isotropic plane with (c) and (d) polarization
directions perpendicular to this plane, v1,3,exp and v2,3,exp, and with (e) and (f) polarization directions within this plane, v1,2,exp and v2,1,exp (for definition of directions 1 and 2,
see Fig. 1; micromechanical models are detailed in Section 8 and Appendix A).

Fig. 12. Normal stiffness tensor components (C3333, C1111 = C2222) as function of volume fraction of pores u – comparison of ultrasonic measurements (f = 50 kHz) with
hexagonal array models ([35] and unit cell according to Fig. 1c) and random array models [29,63].
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Fig. 13. Shear stiffness tensor components (C1313 = C2323, C1212) as function of volume fraction of pores u – comparison of ultrasonic measurements (average of results from
f = 100, 250, and 500 kHz were used) with hexagonal array models ([35] and unit cell according to Fig. 1c) and random array models [29,63].
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the predictions from our unit cell approach (relative error of
�3.2 ± 7.1%, see square and upright triangular markers in
Fig. 13), while Hlavacek’s 1975 model grossly overestimates the
experimentally determined shear stiffnesses (relative error of
29.7 ± 10.1%, see thin dashed line and upright triangular markers
in Fig. 13).

9. Conclusion – operational rules

In this paper, we have identified requirements on sample geom-
etry and porosity, for reliable measurement of elastic properties by
means of ultrasonic contact pulse transmission: firstly, we quanti-
fied ranges of dimensions of box-shaped samples and pulse fre-
quencies, where non-dispersive, i.e. frequency-independent, bulk
or bar waves allow for direct determination of the samples’ elastic-
ity; as well as the dispersive transition zones inbetween. Secondly,
we determined limits of the pore diameter-over-wavelength ratio
in transversely isotropic porous samples with cylindrical pores: be-
low the short-wavelength limit, the waves ‘detect’ the elasticity of
the material between the pores, and above the long-wavelength
limit, the waves ‘detect’ the overall porous medium. Inbetween,
we observe a dispersive transition zone, the size of which is com-
parable to transition regions in other (two-phase) materials
[60,42,80,27] and which is increasing with increasing porosity
and with decreasing direction-dependent wave propagation veloc-
ity. Conclusively, our experimental and theoretical results allow for
formulation of the following operational rules:

– As to minimize measurement errors, use of bar-type, cubic, and
thick plate-type specimens is recommended, while thin plates,
especially in combination with low frequencies, should be
avoided (based on results from Sections 5 and 6). Under these
conditions, ultrasonic measurements are a precise means to
determine diagonal (normal and shear) stiffness components,
while they give (by a factor of two) less precise values for off-diag-
onal (Poisson-effect-related) stiffness components (Section 5).

– As to guarantee extensional (or bar) wave propagation along
bar-type specimens, the latter need to exhibit slenderness ratios
of 20 or larger, if the wavelength is equal to the travel distance
of the pulse. For longer wavelengths, the required slenderness
decreases, while it increases when employing shorter wave-
lengths (this requirement is quantified through Eq. (26)).
– As to guarantee bulk wave propagation, specimens with a slen-
derness ratio of 5 or smaller need to be used, if the wavelength
is equal to the travel distance of the pulse. For longer wave-
lengths, the required slenderness decreases, while it increases
when employing shorter wavelengths (quantified through Eq.
(25)).

– As to guarantee normal stiffness determination of transversely
isotropic porous media with aligned cylindrical pores (long-
wavelength-limit), the pore dimension-over-wavelength ratio
needs to be smaller than 0.01. As to guarantee shear stiffness
determination of transversely isotropic porous media with
aligned cylindrical pores (long-wavelength-limit), the pore
dimension-over-wavelength ratio needs to be smaller than
0.1. As to guarantee normal stiffness determination of the solid
material between the aforementioned pores (short-wave-
length-limit), the pore dimension-over-wavelength ratio needs
to be larger than 1. As to guarantee shear stiffness determina-
tion of the solid material between the aforementioned pores
(short-wavelength-limit), the pore dimension-over-wavelength
ratio needs to be larger than 10 (these rules are based on the
results of Section 7).

– As to predict the elasticity of transversely isotropic porous
media (long-wavelength-limit), Mori–Tanaka, Hashin–Rosen,
and unit cell micromechanical models are suitable. This is par-
ticularly true for shear stiffnesses, for normal stiffnesses in
cylindrical pore direction, and for plain strain bulk moduli. In
contrast, experimentally determined normal stiffnesses perpen-
dicular to the cylindrical pore direction are better predicted by
Hlavacek’s micromechanical model (Section 8).
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Appendix A. Micromechanics models – background

A.1. Variational method for effective elastic properties of a solid matrix
perforated by randomly distributed parallel cylindrical pores – Hashin
and Rosen [29]

Hashin and Rosen [29] aim at estimating the elastic behavior of
a porous material consisting of a solid matrix perforated by paral-
lel, randomly distributed, coated cylindrical pores – which we here
specialize for non-coated pores. Therefore, a representative volume
element of such a porous material is considered, and subjected to
homogeneous boundary conditions, be it in terms of macroscopic
stresses or strains. In order to estimate the elastic response of such
an RVE to these boundary conditions, single cylinders (‘composite
cylinders’) consisting of a cylindrical pore and surrounding mate-
rial are subjected to homogeneous stress boundary conditions (this
leads to a lower bound for the effective (homogenized) stiffness),
and to homogeneous strain boundary conditions (this leads to an
upper bound for the effective (homogenized) stiffness). In case of
a random arrangement of pores, the entire material space is filled
up with the composite cylinders, so that the upper and the lower
bounds coincide. Then, the effective (homogenized) Young’s mod-
ulus Ehom

3 and the plain strain bulk modulus in the isotropic trans-
verse plane Khom

12 ¼ Chom
1111 � Chom

1212 are given as:

Ehom
3 ¼ Eð1�uÞ and Khom

12 ¼ ðC1111 � C1212Þ
2mð1�uÞ

2mþu
; ð32Þ

respectively, where E, m, C1111, and C1212 are the elastic constants of
the isotropic matrix (in our case aluminum alloy, see Table 7), and u
denotes the porosity (see Table 6). The corresponding longitudinal
(normal and shear) stiffness components, Chom

3333 and Chom
1313 ¼ Chom

2323

read as:

Chom
3333 ¼ Ehom

3 þ 4m2Khom
12 and Chom

1313 ¼ C1212
1�u
1þu

: ð33Þ
A.2. Hamilton’s principle-based method for effective elastic properties
of a solid matrix perforated by hexagonally arranged, parallel
cylindrical pores – Hlavacek [35]

Hlavacek [35] developed an effective stiffness theory for a hex-
agonal array of (isotropic) cylindrical inclusions embedded in a
(isotropic) matrix (which we here specialize for pore inclusions),
by assuming specific (continuous) displacement distributions
within the composite, and by relating them to some ‘gross–
displacements’, which, via Hamilton’s principle in combination
with the elastic and mass properties of the solid matrix and with
the porosity, gives access to phase velocities of waves propagating
in the lowest mode through the porous medium. Comparing these
expressions for the phase velocities with those obtained from
elastodynamics of the homogenized medium, yields the effective
(homogenized) elastic properties of the porous medium as

Chom
1111¼ qþpð3qþ1Þ�p2�
�2pqð3qþ1Þðqþ1Þ�uð3qþ1Þðq�1Þ�uqðqþ1Þ2

½pðqþ1Þ�u�½2pq�uðq�1Þ�

!
C1212; ð34Þ
Chom
3333 ¼ qð1�uÞ � u2r2

2pq�uðq� 1Þ

� �
C1212; ð35Þ

Chom
1212 ¼ 1þ pðqþ 1Þ � p2ðqþ 1Þ2

pðqþ 1Þ �u

 !
C1212; ð36Þ

Chom
1313 ¼

4p�uð4pþ 1Þ
4p�u

� �
C1212; ð37Þ

with the abbreviations p, q, and r being defined as:

p ¼ � u logðuÞ
8ð1� ffiffiffiffiup Þ2

; q ¼ 2
1� m

1� 2m
; and r ¼ 2

m
1� 2m

: ð38Þ
A.3. Mean-field homogenization method (Mori–Tanaka estimate) for
effective elastic properties of a solid matrix perforated by randomly
distributed, parallel cylindrical pores – [23,63,7]

A representative volume element (RVE) of the above mentioned
porous material is considered, and subjected to homogeneous
boundary conditions, be it in terms of macroscopic stresses or
strains. These boundary conditions imply that the spatial average
of the equilibrated microstresses within the RVE are equal to the
homogeneous (macroscopic) strains (strain average rule), and the
spatial average of the kinematically admissible microstrains within
the RVE are equal to the homogeneous (macroscopic) stresses
(stress average rule). Then, the strain average rule is combined
with Eshelby’s 1957 matrix inclusion problem relating the strains
in a cylindrical pore to those subjected to the remote boundary
of an infinite matrix surrounding this pore, yielding relations
between the remote auxiliary strains and the macroscopic, RVE-
related strains. The resulting concentration relations between
RVE-related homogeneous strains and pore and matrix strains,
together with the stress average rule, give finally access to the
homogenized elastic properties, in the form [92]

Chom ¼ ð1�uÞC : ½ð1�uÞIþu½I� Pcyl : C��1��1
; ð39Þ

where I; Iijkl ¼ ðdikdjl þ dildjkÞ, is the fourth-order unity tensor, and
where Pcyl is a fourth-order (symmetric) tensor depending on the
shape of cylindrical inclusions and on the stiffness tensor C of the
(herein isotropic) matrix (components see Table 7, column two).
The non-zero tensor components of Pcyl read as (see e.g. [34])

P1111 ¼ P2222 ¼ Pð5C1111 � 3C1122Þ; P1122 ¼ �PðC1111 þ C1122Þ;
P1313 ¼ P2323 ¼ 2PC1111; and P1212 ¼ Pð3C1111 � C1122Þ;

ð40Þ

with P = 1/(8C1111(C1111 � C1122)).

A.4. Unit cell method for effective elastic properties of a solid matrix
perforated by hexagonally arranged, parallel cylindrical pores

The unit cell is subjected to periodic (symmetric or antisym-
metric) boundary conditions for the displacements [9], such that
the spatial averages of the corresponding strains are equal to the
macroscopic strains related to the porous material. Linking these
macroscopic strains to the spatial average of the periodic micro-
stresses they provoke, i.e. to the macroscopic stresses, yields the
homogenized effective stiffness of the porous material. In detail,
four independent displacement configurations are imposed on
the boundary of the unit cell to provoke unit values of macroscopic
strain components. More specifically, the spatial averages of the
corresponding periodic (normal and shear) microstresses are equal
to the components of the homogenized stiffness tensor of the
porous material.

Four finite element models of unit cells (consisting of 6550,
8690, 13,104, and 19,750 eight-node linear brick elements,
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respectively) were built in ABAQUS according to Fig. 1c (see Table 6
and Eq. (19) for pore-diameter-over-pore-distance ratios d/e re-
lated to different porosities), in order to represent the microstruc-
ture of the specimens making up set C. No significant changes in
elastic stiffnesses were observed when (almost 200,000) elements
half the size of the aforementioned elements were used for repre-
sentation of specimen C-4, so that the numerical results indicated
by circles and squares in Figs. 12 and 13 can be considered as con-
verged in the sense of a sufficiently fine finite element discretiza-
tion [93].
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