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1. Introduction

Order structures (T ,o, S) for coding purposes were introduced in [9]. To define them over a finite
field of q elements Fq , one needs a Fq-algebra T and an order function o : T → S on a sub-semigroup
S of the set of nonnegative integers. Order structures define a filtration of vector spaces contained
in T , whose images, by an evaluation map φ, provide two families of error-correcting codes (eval-
uation codes and their dual codes). Well-known codes as the one-point geometric Goppa codes or
weighted Reed–Muller codes can be regarded as codes given by order structures. The concept of or-
der structure was introduced to simplify the treatment of some algebraic geometry codes related with
algebraic curves. However, the extension given in [7] of that concept to more general semigroups S
has facilitated the enlarging of the theory to codes on more general varieties [5,14,6].
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The main advantages of using order structures in coding theory appear when one uses weight
functions w instead of order functions o in the definition. A weight function ω is an order function
which also satisfies ω(xy) = ω(x) + ω(y), x, y ∈ T . In this case, lower bounds for the minimum dis-
tance can be obtained of their associated dual codes, as Goppa distance and Feng–Rao distances (also
called order bounds) and, furthermore, those codes can be decoded by using the so-called Berlekamp–
Massey–Sakata algorithm, correcting a number of errors that depends on the above bounds [9,17].
Notice that the advantage of the mentioned algorithm is that it allows us to get fast implementations
of the modified algorithm of [11,18] (see [12,10]) and of the majority voting scheme for unknown
syndromes of Feng and Rao [4].

A concept very close to that of weight function is that of valuation. Valuations have a geometrical
meaning and therefore they can be very useful to provide codes associated with algebraic varieties.
Unfortunately, there is not available any general classification of valuations, but there is a classifica-
tion of valuations of function fields of nonsingular surfaces (also called plane valuations) [19,16,8],
that allows us to decide which of them are suitable for providing in an explicit manner order struc-
tures and evaluation codes. The first examples that use that classification were given in [17] and a
more systematic development can be found in [5]. Furthermore, by considering certain class of plane
valuations named at infinity, it is possible to get weight functions with finitely and infinitely gener-
ated semigroups in N2 or R, whose attached domain is the polynomial ring in two indeterminates,
that provide a large class of codes with good parameters [6]. The examples in [17] concerning plane
valuations are particular cases of the theory developed in [6].

When a family of evaluation codes is constructed from a weight function, one must evaluate some
elements f i in R , φ( f i), picked according the order considered in the semigroup S . The set of vectors
obtained by evaluating the whole set of the above elements f i generates the Fq-vector space Fn

q ,
n being the length of the code. However, to get a basis of Fn

q , usually, we do not need some of
those f i , since some vectors φ( f i) can be linearly dependent of the previous picked vectors φ( f j).
Andersen and Geil in [1] study evaluation codes taking into account the selection of convenient f i

for finitely generated order structures, especially for the case when as φ it is considered the natural
evaluation map and we evaluate as much points as possible. The paper [5] provides order structures
given by plane valuations centered at a two-dimensional local regular Noetherian domain where the
semigroup of the order function is forced to be the same as the one of the corresponding valuation.
The semigroup of these order structures can be, or not, finitely generated. In this paper, we study
the finitely generated case particularizing to our situation the ideas given in [1]. Concretely, we shall
describe the semigroups and the ideals defining our order structures, we shall compute the maximum
length and the dimension of the corresponding codes where a lower bound for the minimum distance
has been prefixed.

We can compute the parameters of our codes because we use as φ, the natural evaluation map, ϕ ,
that evaluates at all the points in the zero set of the ideal defining the corresponding Fq-algebra T .
To complete the paper, we add a comparing example where relative dimensions of one of our families
of codes and of codes with similar relative minimum distance obtained without evaluating at all the
zero set attached to T are showed.

Finally, we briefly summarize the contents of the paper. In Section 2, some generalities about plane
valuations are exposed, recalling its classification; furthermore, we study in detail the order structures
that the mentioned types of valuations define, whose semigroups associated will be described later
on. Section 3 is the main one of the paper; it is devoted to study the improved evaluation codes in-
troduced in [1] but particularized to the order structures given in Section 2. The parameters (length,
dimension, and minimum distance) of the codes we study are discussed in Theorem 3.1, where the
length is explicitly given and it is showed how to compute the distance, while Corollary 3.1 provides
a direct formulae for computing that distance in the binary case. Section 4 develops the above men-
tioned comparing example and Section 5 is devoted to the description of the value semigroup of the
types of valuations used in the paper, including a clearing example.
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2. Order structures given by plane valuations

In this paper we shall use order structures given by plane valuations and, for this reason, in our
first subsection, we recall some facts, concerning valuations, that will be useful.

2.1. Plane valuations

We start with the definition of valuation.

Definition 2.1. A valuation of a field K is a mapping

ν : K ∗(:= K \ {0}) → G,

where G is a totally ordered commutative group, that satisfies

• ν(u + v) � min{ν(u), ν(v)};
• ν(uv) = ν(u) + ν(v)

for u, v ∈ K ∗ .

We shall only consider valuations ν of the quotient field K of a local regular Noetherian domain R .
The sub-ring of K , Rν := {u ∈ K ∗ | ν(u) � 0} ∪ {0}, is called the valuation ring of ν . Rν is a local ring
whose maximal ideal is mν := {u ∈ K ∗ | ν(u) > 0} ∪ {0}. The Krull dimension of the ring Rν will be
named the rank of the valuation ν (rk(ν)). Now, set m the maximal ideal of R , we say that ν is
centered at R if R ⊆ Rν and R ∩ mν = m. In this case, the ideals contraction to R of ideals in Rν are
called valuation ideals or ν-ideals. Finally, the subset of G , ν(R \ {0}), is called the semigroup of the
valuation ν (relative to R) and usually denoted by S . It is a commutative with zero semigroup of G .

In this paper, we are interested in codes given by order functions defined by valuations centered
at domains R as above whose order semigroup coincides with the semigroup of the corresponding
valuation.

There is no known classification of valuations as above in the general case, however there is a
classification for the case when the dimension of the ring R is two. This is due to Spivakovsky
[16], improves a previous one given by Zariski [19], and it is based in the one to one correspon-
dence existing between the set of plane valuations and the set of simple sequences of quadratic
transformations of the scheme SpecR . We shall use for our purposes this class of valuations. Above
mentioned classification divides valuations in five types that we denote by A, B (with two subtypes),
C, D and E. The rank of a valuation equals the number of nonzero isolated subgroups of its value
group G . We recall that a subgroup H of an ordered group G is isolated if it is a segment with
respect to the ordering, i.e. if h ∈ H , g ∈ G and −h � g � h, then g ∈ H . The rank and other two pa-
rameters, the rational rank and the transcendence degree, have been used classically to describe (and
classify in the two-dimensional case) valuations. For a valuation ν as above, the rational rank of ν
(rat. rk(ν)) is the dimension of the Q-vector space G ⊗Z Q, where Z (Q, respectively) is the set of in-
teger (rational, respectively) numbers. The transcendence degree of ν (tr. deg(ν)) is the transcendence
degree of the field Kν := Rν/mν over k := R/m. Two useful inequalities involving these parameters
are rk(ν) � rat. rk(ν) and rat. rk(ν) + tr. deg(ν) � dim R . Table 1 relates the above parameters with
the cited Spivakovsky’s classification of valuations.

Valuations of type B-II can also be subdivided according that they admit or not generating se-
quences (see Definition 2.4 further on). In the affirmative case, we are talking about type B-II-a
valuations. The reader can found a more complete development of the above ideas in [5].

There are some types of valuations to which our methods do not apply. Indeed, valuations of
types A, B (except B-II-a) and E will not be used. The reason is that type A valuations do not pro-
vide order functions in the manner we shall describe, the obstruction being that the dimension of
the k-vector spaces Pα/Pα+ of the graded algebra grν R defined in Section 2.3 needs not be 1. Val-
uations of type B, except type B-II-a, do not admit generating sequences and they cannot satisfy the
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Table 1
Classification of plane valuations.

Type Subtype rk rat. rk tr. deg

A – 1 1 1
B I 2 2 0

II 1 1 0
C – 2 2 0
D – 1 2 0
E – 1 1 0

forthcoming Theorem 2.1. Finally, type E valuations do not give finitely ordered structures to which is
devoted this paper.

The essential information about valuations we shall need is in their value semigroups. To sim-
plify the reading of this paper, we have relegated to Section 5 the detailed description of the value
semigroups of those valuations which we are interested in, while we state in our next proposi-
tion the ambient space where these semigroups are. First, recall that a numerical semigroup is a
sub-semigroup Γ of the nonnegative integers N such that N \ Γ is finite. Any numerical semi-
group admits a finite minimal generating set that we shall usually denote {β̄∗

i }g
i=0. This set satisfies

0 < β̄∗
0 < β̄∗

1 < · · · < β̄∗
g , β̄∗

i does not belong to the semigroup spanned by β̄∗
0 , β̄∗

1 , . . . , β̄∗
i−1, 1 � i � g ,

and gcd(β̄∗
0 , β̄∗

1 , . . . , β̄∗
i−1) 	= 1 whenever 1 � i � g − 1, and gcd(β̄∗

0 , β̄∗
1 , . . . , β̄∗

g ) = 1. Notice that our
notation for these generating sets respects the usual one for numerical semigroups within the context
of plane curves [2].

Proposition 2.1. (See [3].) Let ν be a type B-II-a (respectively, C, D) plane valuation of the field K centered
at R. Then the value semigroup S of ν is a finitely generated semigroup of N2 (respectively, N2 , R) minimally
generated by a set {β̄i}g

i=0 that can be computed from a certain numerical semigroup. The ordering in N2 is the
lexicographical one and in R the natural one.

2.2. Order structures

We start by giving the definition of order domain. Some references where this concept is treated
are [9,17,7] and [1]. Particularly in [7] the notion of order domain is generalized so that the support
semigroup of the corresponding order structure needs not be numerical; this paper also studies the
generalization of the theory of Gröbner bases to order domains that begins in [17].

Definition 2.2. Let < be an ordering on the set S . (S,<) is called a well-order (and < a well-ordering)
if any non-empty subset of S has a smallest element under <.

Let S be as in Definition 2.2, for many properties, S is also required to be a cancellative commuta-
tive monoid, which, in the sequel, we shall call semigroup (following [7]). It is usual to adjoin an extra
element −∞ to S to get the set S−∞ so that −∞ is the minimal element of S−∞ . Another useful
property of the ordering < is to be admissible, i.e. 0 � α, for all α ∈ S , and α + γ � β + γ whenever
α � β .

Definition 2.3. Let F be a field, T an F-algebra, and let (S,<) be a well-order. An order function on T
is a surjective map o : T → S−∞ which, for all f , g ∈ T , satisfies the following properties:

• o( f ) = −∞ if, and only if, f = 0;
• o(af ) = o( f ) for all nonzero element a ∈ F;
• o( f + g) � max{o( f ),o(g)};
• If o( f ) < o(g) and 0 	= h ∈ T , then o( f h) < o(gh);
• If f and g are nonzero elements and o( f ) = o(g), then there exists a nonzero element a ∈ F such

that o( f − ag) < o(g).
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The triple (T ,o, S) is called an order structure and T an order domain over F. An order function such
that it also satisfies o( f g) = o( f ) + o(g) is called a weight function. An order structure (T ,o, S) is
called finitely generated if S is a finitely generated semigroup.

All order domains we shall use in this paper will be with an associated weight function.

2.3. Finitely generated semigroups of order structures given by plane valuations

To start, we recall the following result that follows from [5, Propositions 2.1 and 2.2].

Proposition 2.2. The value semigroup S of a valuation ν of a field K , centered at R, is a free of torsion, well-
ordered semigroup, where the associated order is admissible.

Furthermore, assume that the canonical embedding of the field k := R/m into the field Kν := Rν/mν is an
isomorphism. Denote by o the mapping o : K ∗ → G given by o(u) = −ν(u) and let A ⊆ K ∗ be a k-algebra
satisfying that o(A) is a free of torsion, well-ordered semigroup, where the associated order is admissible. Then,
the mapping o : A → o(A) ∪ {−∞},o(0) = −∞, is a weight function.

As a consequence, from a valuation ν as above, one can obtain order domains with fixed semigroup
S if one gets k-algebras A with o(A) = S . Since we know the structure of the semigroups of plane
valuations, we can try to get suitable algebras A such that the semigroup of the order function given
by the valuation is the same as that of the valuation. Let us see how to do it. We start by defining
the graded algebra associated with a valuation as in Proposition 2.2. For any α ∈ S , let us consider
the ν-ideal of ν in R defined by Pα := { f ∈ R \ {0} | ν( f ) � α} ∪ {0} and also the ideal Pα+ := { f ∈
R \ {0} | ν( f ) > α} ∪ {0}. Then, the graded algebra associated with ν is defined as the k-algebra,

grν R =
⊕
α∈S

Pα

Pα+
.

Analogously, associated with an order function o : T → S ∪ {−∞}, it can also be defined its graded
algebra as gro T := ⊕

α∈S Oα/Oα− , where

Oα := {
f ∈ T | o( f ) � α

} ∪ {0} and Oα− := {
f ∈ T | o( f ) < α

} ∪ {0}.

In this paper, we shall consider only plane valuations of types B-II-a, C or D. We have already given
the reason for this.

Definition 2.4. Let ν be a plane valuation of type B-II-a, C or D of the quotient field K of a local reg-
ular Noetherian two-dimensional ring R and centered at R . A set {ri}i∈I , where ri ∈ m, is a generating
sequence of ν if, and only if, the k-algebra grν R is spanned by the cosets defined by the elements ri
in grν R .

If S denotes a semigroup and k a field, the semigroup k-algebra of S is the S-graded k-algebra
k[S] := ⊕

α∈S k[S]α , where k[S]α := k · α.
The following result is essential for our purposes and it can be deduced from [5, Theorems 4.1, 5.1

and 5.2].

Theorem 2.1. Let ν be a valuation of the fraction field K of a two-dimensional Noetherian local regular
domain R which is centered at R. Assume that ν is of type B-II-a, C, or D, and let {qi}0�i�g be a minimal
generating sequence of ν . Then

1. The function o (= −ν) defined over the k-algebra gro T , T := k[{q−1
i }0�i�g] ⊆ K , is a weight function

whose value semigroup is S, the value semigroup of ν .
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2. The graded algebra associated with ν (relative to R) and that associated with o are isomorphic and both
are isomorphic to the k-algebra of the semigroup S, k[S].

3. Let {β̄i}0�i�g be a minimal system of generators of the semigroup S. Then, there exist unique integer
positive numbers n1, . . . ,ng−1 so that any s ∈ S can be written in a unique way in the form s = ∑g

i=0 ai β̄i ,
where ai ∈ N and ai < ni , for 1 � i � g − 1.

4. Let k[{Xi}0�i�g] be the free commutative k-algebra of polynomials with indeterminates {Xi}0�i�g and
coefficients over k. Then the map ψ : k[{Xi}0�i�g] → grν R, defined by ψ(Xi) = qi + Pν(qi)

+ , is an epi-
morphism of k-algebras.

5. For each 1 � i � g − 1, consider the unique expression

ni β̄i =
i−1∑
j=0

γi jβ̄ j, (1)

where the γi j ’s are nonnegative integers such that γi j < n j, j � 1, and the n j ’s are those described in
item (3). Then the ideal kerψ is spanned by the set of polynomials G := {h1, . . . ,hg−1}, where hi :=
Xni

i − ∏i−1
j=0 X

γi j

j ,1 � i � g − 1.

Remark 2.1. On the basis of the isomorphisms of item (2) in Theorem 2.1, it is clear that o(ψ(Xi)) is
equal to β̄i , for i = 0, . . . , g .

3. Improved evaluation codes given by plane valuations

Since this paper concerns coding theory, from now on, we assume that the field k is any finite
field Fq .

We shall study in this section the improved evaluation codes, introduced in [1], for the case of
finitely generated order structures given by plane valuations. For simplicity’s sake, we shall suppose
that the values ni , defined by the valuations we shall use, satisfy the inequalities ni � q.

We assume a basic knowledge of Gröbner bases. As a reference, the reader can consult several
sources; we cite for instance [15]. Since it will be useful, we recall the definition of footprint of an
ideal of a polynomial ring in several variables, also called “Gröbner éscalier”.

Definition 3.1. Let I be an ideal of the polynomial ring Fq[{Xi}0�i�g] and consider a term ordering ≺
on it. The footprint of I is the set of monomials π ∈ Fq[{Xi}0�i�g] such that π is not a leading
monomial of any polynomial in I . We shall denote this set by �≺(I).

Our initial purpose will be to compute the footprint of ker ψ (ideal given in Theorem 2.1). In
order to do it, it is convenient to introduce the following notation: for a term π = ∏g

i=0 Xai
i , set

o(π) := ∑g
i=0 ai β̄i . Furthermore, we shall denote by ≺lex the lexicographical term ordering ≺lex so

that X0 ≺lex X1 ≺lex · · · ≺lex Xg .

Proposition 3.1. With the same hypothesis and notation of Theorem 2.1:

1. G is the reduced Gröbner basis of kerψ with respect to the term ordering ≺o defined as follows:

π1 ≺o π2 if and only if

{
o(π1) < o(π2) if o(π1) 	= o(π2),

π1 ≺lex π2 otherwise.

2. The footprint of ker(ψ) is given by

�≺o

(
ker(ψ)

) =
{ g∏

i=0

Xai
i

∣∣∣ 0 � a0,ag, 0 � ai < ni, for i = 1, . . . , g − 1

}
.
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Proof. First, ≺o is a term ordering because of the admissibility of the order on the semigroup of the
valuation ν (see Proposition 2.2). Now it is clear that {Xni

i }1�i�g−1 is the set of leading monomi-
als of G, with respect to ≺o , and these terms are relatively prime. These conditions guarantee that
G is a Gröbner basis of the ideal generated by itself, which is ker(ψ) due to Theorem 2.1, item (5).
G is reduced because, again, the maximal terms are prime pairwise and the conditions γi j < n j . This
concludes the proof of the first item (1), the second one (2) is a direct consequence of the shape
of G. �
3.1. The improved evaluation codes

To get an evaluation code from a weight function o : gro T → S as above, one needs an epimor-
phism of Fq-algebras, φ : gro T → Fn

q and then, the family of evaluation codes is formed by the vector
spaces {Eα}α∈S defined as

Eα = 〈
φ( f ) | o( f ) � α; f ∈ gro T

〉
Fq

,

where 〈L〉Fq means the vector space over the field Fq spanned by the set L.
In [1], a variant of this type of codes (and their duals) is proposed, that we call improved evaluation

codes. To get them, one must set α(1) := 0 and define, recursively, for 2 � i � n values α(i) ∈ S which
are defined by the fact that each α(i) is the smallest element in S , larger than α( j), 1 � j � i − 1,
satisfying Eα ⊆ Eα(i) and Eα 	= Eα(i) , for all α < α(i). That is, one selects elements α(i) in S such that
the relevant generators to evaluate of the successive evaluation codes Eα(i) have weight α(i).

Set �(gro T ,o, φ) := {α(1),α(2), . . . ,α(n)} and, for each α(i) ∈ �(gro T ,o, φ), fix an element
fα(i) ∈ gro T such that o( fα(i)) = α(i).

Definition 3.2. For each integer 0 � δ � n, the improved evaluation code Ẽ(δ) is defined as

Ẽ(δ) := 〈
φ( fα(i)) | α(i) ∈ �(gro T ,o, φ) and σ

(
α(i)

)
� δ

〉
Fq

,

where σ(α(i)) denotes the cardinality of the set{
γ ∈ �(gro T ,o, φ) | α(i) + β = γ ; β ∈ �(gro T ,o, φ)

}
.

Furthermore, the improved dual evaluation code C̃(δ) will be

C̃(δ) := {
v ∈ Fn

q | v · φ( fα(i)) = 0, for all α(i) ∈ �(gro T ,o, φ), with μ
(
α(i)

)
< δ

}
,

μ(α(i)) being the cardinality of the set{
s ∈ S | s + β = α(i), for some β ∈ S

}
.

Clearly, the set �(gro T ,o, φ) is an important object in the construction of the codes Eα and es-
sential for obtaining the improved ones Ẽ(δ) and C̃(δ). In the following result, we explicitly describe
this set whenever φ is the natural evaluation map at all possible points.

First recall that if f + ker(ψ) ∈ k[{Xi}0�i�g]/ker(ψ) and p ∈ VFq (ker(ψ)), one can evaluate
f + ker(ψ) at p as ( f + ker(ψ))(p) = f (p). Assume VFq (ker(ψ)) = {p1, p2, . . . , pn} and set ϕ :
k[{Xi}0�i�g]/ker(ψ) → Fn

q the map ϕ( f + ker(ψ)) = ( f (p1), f (p2), . . . , f (pn)).

Proposition 3.2. Let (gro T ,o, S) be an order structure as defined in Theorem 2.1 given by a plane valuation ν .
Then, �(gro T ,o,ϕ) is equal to the set

�(β̄0, β̄1, . . . , β̄g) :=
{ g∑

aiβ̄i

∣∣∣ 0 � a0,ag < q, and ai < ni, for 1 � i � g − 1

}
.

i=0
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Proof. Set J the ideal in k[{Xi}0�i�g] defined as the ideal sum of ker(ψ) and the ideal spanned by
the binomials Xq

i − Xi , 0 � i � g . Following the line of the proof of [1, Proposition 45], it can be shown
that

�( gro T ,o,ϕ) = {
o
(
ψ(π)

) | π ∈ �≺o ( J )
}
.

It is clear that �≺o ( J ) ⊆ �≺o (ker(ψ)); taking into account Proposition 3.1, we get

�≺o ( J ) ⊆
{ g∏

i=0

Xai
i

∣∣∣ 0 � a0,ag < q, 0 � ai < ni, for i = 1, . . . , g − 1

}

and then, �(gro T ,o,ϕ) = �(β̄0, β̄1, . . . , β̄g). �
Finally, we provide the parameters of the improved evaluation codes above defined.

Theorem 3.1. Let Ẽ(δ) and C̃(δ) be the improved evaluation codes given by the map ϕ attached to an or-
der structure (gro T ,o, S) given by a plane valuation ν as in Theorem 2.1. Then, the length of both codes is

q2 ∏g−1
i=1 ni , the minimum distance of both codes is larger than or equal to δ and the dimension of both codes

is the cardinality of the set

M(ν) :=
{

(x0, x1, . . . , xg) ∈ Zg+1
∣∣∣ 0 � x0, xq < q; 0 � xi < ni, 1 � i � g − 1,

and (q − x0)(q − xg)

g−1∏
i=1

(ni − xi) � δ

}
.

Proof. First note that J is a radical ideal [13, p. 250] and, since Fq is a perfect field, the cardinality of
the set VFq (ker(ψ)) coincides with that of �(gro T ,o,ϕ) (see also [1, Proposition 40]). Therefore, the
length of our family of codes is the cardinality of the set �(β̄0, β̄1, . . . , β̄g) (see Proposition 3.2), which

equals q2 ∏g−1
i=1 ni as a consequence of the fact that all the elements defining the set �(β̄0, β̄1, . . . , β̄g)

are different elements in the semigroup S (see (3) of Theorem 2.1).
The minimum distances of the codes are larger than or equal to δ by [1, Theorem 33].
To show that the cardinality of M(ν) is the dimension of Ẽ(δ), we only need to observe that

Ẽ(δ) is spanned by the vectors ϕ( fα(i)) such that σ(α(i)) � δ and that α(i) = ∑g
i=0 xi β̄i satisfies that

condition if, and only if, (x0, x1, . . . , xg) ∈ M(ν). Finally, α(i) ∈ �(β̄0, β̄1, . . . , β̄g) = �(gro T ,o,ϕ) (see
proof of Proposition 3.2) and this concludes the proof for Ẽ(δ). With respect to C̃(δ), the result holds
because in [1, Proposition 48] it is proved that the dimensions of Ẽ(δ) and C̃(δ) coincide. �
Corollary 3.1. Let Ẽ2(δ) and C̃2(δ) be the improved binary evaluation codes given by the map ϕ attached to
an order structure (gro T ,o, S) defined by a plane valuation ν as in Theorem 2.1 such that its corresponding
values ni are equal to 2. Then, the length of both codes is 2g+1 , the minimum distance of both codes is larger
than or equal to δ and the dimension of both codes is

(
g

0

)
a(δ) +

(
g

1

)
a(δ/2) + · · · +

(
g

g

)
a
(
δ/2g), (2)

where a(γ ), γ ∈ Q, γ > 0, equals 2 if �γ � = 1, 1 whenever �γ � = 2 and 0 otherwise.
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Proof. From Theorem 3.1, it is clear that the length of the code is 2g+1, because q = ni = 2 for all
index i.

Now, if γ ∈ Q, γ > 0, denote by a(γ ) the number of solutions of the inequality y � γ , y ∈ {1,2};
the values of the function a(γ ) are those described in the statement. Fixed a distance δ, to get the
dimension of our improved codes, by Theorem 3.1, we must compute the number of solutions ag+1(δ)

of the inequality (2 − x0)(2 − xg)
∏g−1

i=1 (2 − xi) � δ, where the values xi can be either 0 or 1. Setting
2 − xi := yi , the former inequality will be

y0 y1 · · · yg � δ, (3)

and yi ∈ {1,2}. If one has a unique variable y, then a1(δ) = a(δ), a2(δ) = a(δ) + a(δ/2) because one
can consider either y1 = 1 and the number of solutions of y0 y1 � δ will be a(δ) or y1 = 2 and now
we have a(δ/2) solutions for y0 y1 � δ. Finally the number ag+1(δ) of solutions of the inequality (3)
is the dimension of our improved codes and by induction it follows that it coincides with the value
given in (2). �
Remark 3.1. For improved evaluation codes, attached to finitely generated order domains adapted to
the scheme of [1, Theorem 42], it holds that the values σ(α), for indices α in the semigroup cor-
responding to the relevant generators to evaluate of the order domain, can be computed from the
cardinality of the intersection of certain footprints [1, Appendix A]. We have not used this result to
prove the above corollary, however from its proof we do compute that cardinality. Next, we intro-
duce the mentioned intersection set in our situation. With the previous notations consider a term
π(a0,a1, . . . ,ag) := ∏g

i=0 Xai
i ∈ k[{Xi}0�i�g], where 0 � a0,aq < q; 0 � ai < ni , 1 � i � g − 1, and

define D(π) as the cardinality of the set �≺o (G ∪ π) ∩ �≺o ( J ), where G is the set defined in Theo-
rem 2.1 and J the ideal defined in the proof of Proposition 3.2. Therefore, by [1, Appendix A] and the
proof and notation of Theorem 3.1, it can be deduced that, if α(i) = ∑g

i=0 xi β̄i ∈ �(gro T ,o,ϕ), then

D
(
π(x0, x1, . . . , xg)

) = q2
g−1∏
i=1

ni −
[
(q − x0)(q − xg)

g−1∏
i=1

(ni − xi)

]
.

4. Example

One of the advantages of the improved codes here studied is that one can directly obtain pa-
rameters associated to the codes without actually evaluating at all points in VFq (ker(ψ)). Notwith-
standing, if one considers a proper subset of VFq (ker(ψ)), the relative parameters can be improved.
For instance, we can consider the example corresponding to �1 in [6, Example 5.7]. Although, in
general, the examples considered in that paper cannot be adapted to the situation described in
[1, Theorem 42], the mentioned example can be. The family of dual evaluation codes in [6, Exam-
ple 5.7], which are defined over the field F7, has length n = 10, and the relative family of parameters
(k/n,d/n), k being the dimension and d the minimum distance is

{(
10

12
,

2

12

)
,

(
9

12
,

3

12

)
,

(
8

12
,

4

12

)
,

(
5

12
,

5

12

)
,

(
3

12
,

6

12

)}
. (4)

In our case, g = 1 and ker(ψ) is the zero ideal. Since the field is F7, the length of the codes is 49
and, by Theorem 3.1, the corresponding family of codes C̃(δ) with (estimated) relative distances δ/n
near to that of (4) is

{(
31

49
,

9

49

)
,

(
24

49
,

13

49

)
,

(
19

49
,

17

49

)
,

(
15

49
,

21

49

)
,

(
11

49
,

25

49

)}
.
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5. Generators of value semigroups of some types of plane valuations

As we said at the end of Section 2.1, we close this paper describing, in a detailed manner, the
minimal generating sets of the value semigroups of those valuations we have used. For any numerical
semigroup Γ , there exists a germ of plane curve (given by an element in R) whose value semigroup
is Γ and conversely, the value semigroup of a germ of curve as above is ever numerical [2, Propo-
sition 5.1.5]. Plane valuations have a deep relation with germs of plane curves. Indeed, valuations of
type A are defined by a suitable chosen pencil of germs of plane curves [16]. This makes the semi-
group of a type A valuation to be the same as the one of any generator of the mentioned pencil. So,
the semigroup S of a plane valuation ν of type A is a numerical semigroup. Assuming that {β̄∗

i }g
i=0

is its minimal set of generators, one can get rational numbers β ′
i = m∗

i−1/e∗
i−1, 1 � i � g (see (5)

later), that determine together with a positive integer β̄∗
g+1, the structure of the (finite) sequence of

quadratic transformations attached to the valuation ν . In fact, the essential information is codified in
the Euclidian algorithm of the pairs (m∗

i−1, e∗
i−1) [16].

Assume that S is the value semigroup of a plane valuation ν of type B-II-a, C or D. Any valuation
of these types (in fact, any plane valuation) can be regarded as a limit of a set {ν j} j�1 of plane
valuations of type A. The difference among distinct types depends on the different ways to take at
infinity either the number β̄∗

g+1 or the Euclidean algorithm for the last pair (m∗
g−1, e∗

g−1) attached to
the number β ′

g . Next we explain this in more detail, showing how to obtain generators for the value
semigroup of the above types of valuations.

It is possible to describe the semigroup S from the numerical semigroup S∗ of any valuation
ν j , j � 0. Let us see how to do it. Consider a minimal set of generators of S∗ , {β̄∗

i }r
i=0, and set

e∗
i := gcd(β̄∗

0 , β̄∗
1 , . . . , β̄∗

i ), 0 � i � r, n0 := 1 and ni := e∗
i−1/e∗

i , for 1 � i � r. e∗
i > 1 except e∗

r = 1. It
also holds that ni β̄

∗
i < β̄∗

i+1. Now, taking into account also the value β̄∗
r+1, we define the following set

of rational numbers β ′
0 = 1, and

β ′
i = β̄∗

i − ni−1β̄
∗
i−1

e∗
i−1

+ 1, (5)

1 � i � r + 1. Due to that ν is a limit of a sequence of type A valuations and since the structure of the
resolution process (sequence of quadratic transformations) attached to the valuations ν j is provided
by the continued fraction determined by the previous elements β ′

i , the semigroup of values of ν will
be given by taking at infinity the above continued fractions. We are only interested in certain types
of valuations (with finitely generated semigroup), so we have to take at infinity either β ′

r (here, the
element β ′

r+1 is always equal to 1) or β ′
r+1. For the sake of homogeneity, we shall put r = g − 1 if ν

is of type B-II-a and r = g otherwise.

— If ν is of type D, we must take at infinity the value r of the continued fraction 〈a0;a1, . . . ,

ar−1,ar〉 of β ′
g − 1 obtaining the continued fraction 〈a0;a1, . . . ,ar−1,α〉 attached with some nonra-

tional real number β ′
g+ given by another nonrational number α. Then S is spanned by a family of

real numbers {β̄i}g
i=0 such that β̄i = β̄∗

i /β̄∗
0 , 0 � i � g − 1, and

β̄g = ng−1β̄g−1 + β ′
g+

e∗
g−1

e∗
0

,

formula that comes from (5), after normalizing the values dividing by β̄∗
0 = e∗

0.
— If ν is of type C, we must take at infinity the value ar of the continued fraction 〈a0;a1, . . . ,

ar−1,ar〉 of β ′
g − 1. This will be done by expressing ar as the ‘quotient’ of (1,0) by (0,1). Indeed,

to get the elements in N2, {β̄i}g
i=0, that generate S , first we must set β ′

g = m∗
g−1/e∗

g−1, consider the
Euclidian algorithm



M. Borges-Quintana et al. / Finite Fields and Their Applications 16 (2010) 265–276 275
m∗
g−1 = a1q∗

1 + r1,

q∗
1 = a2q∗

2 + r2,

...

q∗
r−1 = arq∗

r ,

where q∗
1 = e∗

g−1. Changing in the above array q∗
r−1 by qr−1 = (1,0) and q∗

r by qr = (0,1) and doing

reverse substitution, we get elements in N2, qi and mg−1. Now defining eg−1 := q1, and ei−1 = niei ,
we obtain values ei , 0 � i � g − 1. The generators for S will be given by β̄0 = e0, the equalities

β̄i − ni−1β̄i−1 = ei−1
(
β ′

i − 1
)
,

whenever 1 � i < g and β̄g = mg−1 + ng−1β̄g−1 − eg−1. Notice that all the values in the above equal-
ities are in N2, except for ni−1, 1 � i � g , which are in N and β ′

i − 1, 1 � i < g , that are in Q.
— Finally, if ν is of type B-II-a, then S is in N2 and it is spanned by the values β̄i = (0, β̄∗

i ),
0 � i � g − 1, and β̄g = (1,0). This is so since we must take at infinity the expansion of β ′

r+1 − 1
attached to the value β̄∗

r+1 given in the first paragraph of this section. β ′
r+1 ∈ N because e∗

r = 1 and
since we are interested in the values β̄∗

g+1, by simplicity, we express β ′
r+1 = (1,0) − nr(0, β̄∗

r ) and so
(5) happens.

We also give some simple examples to make easier the reading of above paragraphs: from a nu-
merical semigroup spanned by β̄∗

0 = 6, β̄∗
1 = 9 and β̄∗

2 = 19, one can obtain a type D plane valuation
whose value semigroup S is generated by β̄0 = 1, β̄1 = 3/2 and β̄2 = (1 + 6e)/(2e). Here, we have
considered the value α = e ∈ R \ Q.

From the same numerical semigroup, a type C plane valuation with value semigroup generated by
β̄0 = (2,0), β̄1 = (3,0) and β̄2 = (6,1) can be obtained. Indeed, β ′

1 = 3/2, β ′
2 = 4/3, e∗

0 = 6, e∗
1 = 3,

e∗
2 = 1, n0 = 1, n1 = 2, n2 = 3 and the Euclidian algorithm

4 = 1 · 3 + 1

3 = 3 · 1,

provides

(1,1) = 1 · (1,0) + (0,1)

(1,0) = ∞ · (0,1).

Then, m1 = (1,1) and e1 = (1,0) which give the mentioned values β̄i , 1 � i � 2.
An example of value semigroup of a type B-II-a plane valuation is that spanned by β̄0 = (0,3),

β̄1 = (0,5) and β̄2 = (1,0). To see it, it suffices to take at infinity the valuation of type A whose
corresponding values β̄∗

i , 1 � i � 2, are β̄∗
0 = 3, β̄∗

1 = 5 and β̄∗
2 = 16 (recall that the semigroup of

values of this last valuation is generated by 3 and 5).

Remark 5.1. We could also describe generators for the remaining types of valuations but we do not
include this because we have not used it.
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