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Abstract The dissociation constant for the binding of a spectro- 
scopically invisible or non-radioactive ligand to its protein recep- 
tor can be determined in a competition experiment by using a 
structural analog that contains a reporter group. Many plotting 
and numerical analysis methods have been developed to calculate 
the binding constant of unlabeled ligand from the displacement 
experiments. However, a common problem with these plotting 
methods is that the equation transformations inevitably result in 
non-standard error distribution, and thus simple linear regression 
can not be used to extract correct values for the parameters. In 
the case of the numerical analysis methods, one would be faced 
with the possible existence of multiple solutions. In this paper, the 
exact mathematical expression for describing competitive binding 
of two different ligands to a protein molecule is presented in terms 
of the total concentrations of species in the system. Thus, using 
a commercially available non-linear regression program, all un- 
known parameters for describing this system can be determined 
by fitting the experimental data to the algebraically explicit equa- 
tion without any data transformations. The distribution curves 
of all the species in the system can also be constructed with this 
equation. It is particularly useful for the cases in which the con- 
centrations of all the species in the system are comparable to each 
other. 
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[9], and polynomial equations up to the fourth degree can even 
be solved analytically [10,11]. In the case of both the numerical 
and the analytical methods, however, one would be faced with 
the possible existence of multiple real roots. 

In the present paper, the properties of the roots of the general 
cubic equation have been analyzed in detail. For  a system 
consisting of a protein and two competing ligands, a unique 
proper root has been identified unambiguously. Thus, this alge- 
braically explicit equation can be put into a commercially avail- 
able non-linear regression computer program, and all unknown 
parameters for describing this system can be determined by 
fitting the experimental data to this equation without any data 
transformations. The distribution curves of  all the species in the 
systems can also be constructed with this equation. 

2. Theory 

Let us consider a protein binding experiment that includes 
a mixture of two ligands, a chromophoric ligand A and an 
invisible ligand B according to the following equations 

K A K B 

P + A ~...~-- PA, P + B ~ P B  

[P][A] Ks = [P][B] 
K A  = [PA]' [PB] (1) 

Conservation of mass requires that 

1. Introduction 

Of a number of physical techniques known for determining 
the binding constants of ligand-protein complexes, spectro- 
scopic titration and equilibrium dialysis with radioactively la- 
beled ligand are the most commonly used [1-3]. However, many 
ligands of  interest are neither chromophores nor available in 
labeled form. In this case, the binding constants of these ligands 
can be determined from measurement of the competitive dis- 
placement of a bound chromophoric or radiolabeled ligand. To 
obtain the binding constant for the chromophoric ligand alone, 
experimental data can be fitted to an algebraically explicit equa- 
tion [4-6]. However, it is not easy to extend the analytical, 
algebraically explicit description of binding equilibria to mix- 
tures of competing ligands. For  a system consisting of a protein 
and two competing ligands, when the total concentrations of 
all the components are of the same order of magnitude, com- 
bining all partial equilibria and mass conservation, one obtains 
a cubic algebraic equation [7,8]. Roots of polynomials degree 
n > 2 are usually extracted by methods of numerical analysis 

[A]o = [A] + [PA l (2) 

[B]o = [B] + [PB] (3) 

[P]o = [P] + [PA] + [PB] (4) 

where K A and Ka are dissociation constants for the binding of 
A and B, and [P], [A] and [B] are the concentrations of free 
protein and free ligands, respectively. In the titration experi- 
ment, A is added to a mixture of protein and ligand B. The total 
concentrations of protein and ligand B are [P]0 and [B]o, respec- 
tively. The total concentration of ligand A is varied, and the 
spectroscopic signal is measured for each ternary mixture. 

From eqs. 1-3, we have 

[P]IB]o 
[PB] - (5) 

KB+ [P] 

[P][A]o 
[PAl - (6) 

KA + [PI 

Substitution of eqs. 5 and 6 into eq. 4 and rearrangement 
yields 
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where 

a = KA + Ks + [A]o + [B]o - [P]o 

b = KB([A]o - [P]o) + KA([B]o - [P]o) + KAKB 

c = -KAKB[P]o 

By the subst i tu t ion [P] = u - (a/3), the eq. 7 becomes 

u 3 - q u -  r = 0 (8) 

where 

.2 
q = ~ - b ,  r = -  a3+l-ab-c3 

The discr iminant  of  eq. 8 is given by 

r 2 q3 
A - (9) 

4 27 

Since A < 0, the three real roots of  eq. 8 are given by [11] 

2 0 (10) . ,  

~ 2a" - 0 (11) u 2 = cos 3 

2 2~r + 0 (12) u 3 = ~ 3b) cos 3 

where 

- 2 a  3 + 9ab - 27c 
O = arccos 

2~/(a 2 - 3b) 3 

According to the definition of  u and  the physical condi t ions  
of  the problem proposed,  it can be verified tha t  u~ expresses the 
unique physically meaningful  root  of  eq. 8, and  u2 and  u3 have 
no reference to the problem proposed (see Appendix) .  Thus,  the 
proper  root  of  eq. 7 can then be wri t ten as 

a 2 2 0 (13) [ P ] = - ~ + ~  ( ~ a  2 - 3 b )  cos 

and  the expressions for [PA] and  [PB] are given by 

[A]0{2~/(a: - 3b) cos (8/3) - a} 
[PA] = (14) 

3KA + {24(a 2 - 3b) cos(0/3) - a} 

[B]0{2 ( a ~  Z- 3b) cos(0/3) - a} 

[PB] = 3Ks + {2 (.~a 2 _ 3b) cos(0/3) - a} (15) 

In a competi t ive displacement  t i t ra t ion experiment,  let 

F0 = eg[A]o 

Fo = es[B]' + ep[P]' + epa[PB]' 

F = ea[B] + ep[P] + eps[PB] + eA[A] + epA[PA] 

where Fo, F~ and  F are the spectroscopic signal of  l igand A 
alone, p ro te in - l igand  B mixture and  the triple mixture contain-  
ing the protein,  l igand A and  ligand B at the same total  concen- 
trat ions,  respectively. I f  the binding of  l igand B to the prote in  
gives no  change in spectroscopic signal at  the given wavelength,  
we have 6p• = 8a + 8B, and  the change in spectroscopic signal 
due to the interact ion between l igand A and  prote in  P can 
consequent ly  be described by 
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Fig. 1. Fluorescence intensities observed in the competitive binding of 
cyclosporin A (CsA) and [o-Lys(Dns)]S-CsA to cyclophilin. The con- 
centrations of [o-Lys(Dns)]S-CsA and CsA are 0.2/~M and 0.5 tiM, 
respectively. The dissociation constant for [o-Lys(Dns)]S-CsA was kept 
constant (5.3 nM). The curve represents the best fit to eq. 17. 

C[A]0{2~(a 2 - 3b) cos(0/3) - a} 
F -  F. - Fo = A F  = C[PA] = (16) 

3K a + {2~/(a 2 - 3b) cos(0/3) - a} 

In absorp t ion  spectroscopy, the constant ,  C = epA -- ee - eA, is 
the difference in the molar  ext inct ion coefficient between the 
PA complex and  o ther  species. Thus,  when the volume change 
dur ing the t i t ra t ion experiments  is negligible, the total  concen-  
t ra t ions  of  bo th  enzyme and  l igand B are constant ,  and  Ks can 
then be de termined by fitting experimental  da ta  to eq. 16. 

I f  protein P has no  absorbance  or fluorescence at the given 
wavelength,  the competi t ive t i t ra t ion exper iment  can be per- 
formed by adding a different a m o u n t  of  protein into a solution 
with fixed concent ra t ions  of  l igand A and  B. Similarly, let 

Fo = eA[A]o + ea[B]o 

F = ca[B] + ep[P] + eps[PB] + gA[A] + epA[PA] 

= ea[B]o + eA[A]0 + (epA -- eA)[PA] 

and  

F -  F 0 = (epg -- eA)[PA] 

When  [P] approaches  infinity, [PA] = [A]o, we then have 

Fmax - F 0 -~ (SpA --  eg)[A]0 and  

F = F 0 + (epA -- eA)[PA] = 

{2"~(a 2 - 3b) cos(0/3) - a} 
Fo + (Fmax - Fo) 3KA + {2(a~--  3b) cos(0/3) - a} (17) 

As an example of  the use of  the new method,  da ta  were taken 
f rom Fig. 2 of  Kuzmic  et al. 's paper  [12] and  re-analyzed using 
the present  method.  The experimental  da ta  (Fig. 1, filled circles) 
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were fitted to eq. 17 using a modified computer program [13] 
or a commercially available non-l inear  regression program, Sig- 
maPlot 5.0. The optimized values of KB, F0 and Fmax were 
43.4 + 10.3 nM, 0.514 + 0.047, and 2.694 + 0.084, respectively. 
It can be seen from the result that the value of the dissociation 
constant  for cyclosporin A, KB, obtained by the present method 
is quite close to that obtained by Kuzmic et al. 

3. Discussion 

In a competitive displacement titration experiment, if the 
spectroscopic signal for the interaction is strong enough to 
detect the low concentrat ion of the protein-l igand complex in 
solution, and the binding of both ligands to protein is relatively 
weak, it would be possible to carry out the titration experiments 
under  conditions where [A]0, [B]0 >> [P]0. In these situations, the 
concentration of each protein ligand complex is negligibly 
small with respect to one of its molecular components,  and the 
concentration of free ligands can be treated as equal to their 
total concentrations. Thus the dissociation constant  of the 'in- 
visible' ligand B can then be easily determined by either a 
graphic method used in enzyme kinetics [14], or a non-l inear 
least square regression method. However, such situations rarely 
prevail. Most often, the spectroscopic signals for protein-li-  
gand complexes are detectable only at relatively high protein 
concentrations ([P]0 > KA, KB). Under  this condition, a signifi- 
cant fraction of the total ligand is bound to protein, and thus 
[A]0 and [B]0 can not  be treated as equal to the free ligand 
concentration. In the case of a direct t i tration experiment, this 
causes little problem because the corresponding equation is 
only quadratic [4,5], and the physically meaningful root can be 
easily identified. In the case of a competitive displacement ex- 
periment, however, the corresponding equation becomes cubic 
and thus one would be faced with the possible existence of 
multiple roots [8,12]. A similar problem was also encountered 
in the determination of a dissociation constant  for the recepto~  
non-radioactive ligand complex from displacement curves [7]. 
Although many plotting methods have been developed to cal- 
culate the binding constant  of unlabeled ligand from the dis- 
placement experiments [7,15,16], a common problem with these 
plotting methods is that the equation transformations inevita- 
bly result in a non-s tandard error distribution, and thus simple 
linear regression can not  be used to extract correct values for 
the parameters [17,18]. Recently, Kuzmic et al. have presented 
an alternative method to circumvent this problem [12]. How- 
ever, the use of their method requires a special computer pro- 
gram which may not be available in most laboratories. The best 
solution for this problem seems to be to perform regression 
analysis on the original non-l inear form of the equation [18]. 
Thus, an analytical, algebraically explicit equation is necessary 
for most commercially available non-l inear regression pro- 
grams. 

In this paper, we discussed a typical multiple thermodynamic 
system encountered in biochemical studies. The results ob- 
tained show that for a special system, although there are multi- 
ple roots, the physically meaningful root may be unique, and 
can be identified unambiguously from analysis of properties of 
the system. Thus, with this exact analytical expression and a 
usual least square regression computer program, all unknown 

parameters for describing the equilibrium system can be accu- 
rately determined from the experimental data. 
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Appendix 

In order to identify the physically meaningful root of eq. 7, 
let us discuss some properties of the three roots of eq. 8 first. 
If the angle 0 is between 0 and ~/2 or if its cosine is positive, 
then (2n - 0)/3 and (2~ + 0)/3 are both greater than ~/2, and 
their cosines are negative: in other words, one root of the 
corresponding equation is positive, and two are negative; but  
if 0 is between Jr/2 and ~r or if its cosine is negative, then 0/3 
and (2~ - 0)/3 are less than ~/2, and (2n + 0)/3 is greater than 
:r/2, or, in other words, two of the three real roots are positive, 
and one of them is negative. Thus, it can be seen from the 
discussion given above that ut is always a positive root and u3 
a negative root of eq. 8, whatever the value of 0 may be. 

According to the definition of u and the physical conditions 
of the problem proposed, we have 

u = (a/3) + [P] = {3[P] + K a + K B + [A]0 + [B]0 - [P]0}/3 

= {2[P] + KA + KB + ([A]o - [PAl) + ([B]0 - [PB])}/3 > 0 

On the other hand, since [P] is the concentration of free protein, 
one can obtain 

[P] = u - (a/3) > 0 or u > (a/3) 
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Therefore,  a physically meaningful  root  of  eq. 8, u, mus t  satisfy 
the following condit ion:  

u > max {a/3, 0} (AI) 

Tha t  is, u > (a/3) if a > 0, and  u > 0 if a < 0. As ment ion-  
ed earlier, u3 is always a negative root  and  hence can be 
excluded first. Fo r  u2, since ~r/3 < (21r - 0)/3 < 2zr/3 and  
- 0 . 5 < c o s { ( 2 z r - 0 ) / 3 } < 0 . 5 ,  when  a > 0  we have u : -  

(a/3) < { ~  - 3b) - a}/3 < 0. On  the o ther  hand,  when  a < 0, 
- 2 a  3 + 9ab - 27c > 0 and  hence cos(0)  > 0. It can be seen f rom 
the discussion given above  tha t  in this case we have u2 < 0 
because (2x - 0)/3 is greater  than  tel2. Thus,  according to ine- 
quali ty AI ,  u2 should  also be excluded and  ul expresses the 
unique p roper  root  of  eq. 8. u2 and  u3 have no  reference to the 
problem proposed.  


