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A general theoretical approach based on theory of elasticity is presented in order to define the structural
behaviour of riveted and spot welded joints. The new closed form solutions lead to the definition of a
joint element useful to FE models of riveted or spot welded multi-spot structures. The objective is an
accurate evaluation of the local elastic stiffness of spot joints in FE analysis, which is fundamental to per-
form a reliable simulation of multi-joint structures and, consequently, a good estimate of loads acting on
spots; this makes it possible to introduce structural stress or new general criteria allowing, for example,
to predict fatigue behaviour. On the other hand, a low entry of degrees of freedom is needed when several
spot joints are present in a complex structure. The goal is to reach a reliable spot region model which can
be used as the basis to develop a spot element in FE analysis. In the present paper, based on new closed
form solutions, a spot element is introduced, so as to precisely evaluate both local and overall stiffness
both of spot welded joints and riveted joints. Based on the stress function approach and the Kirchhoff
plate theory in linear elastic hypotheses, closed-form in-plane stress, displacement, moment and trans-
verse shear force solutions are derived for a new bidimensional model, subjected to various types of
loads. The capability to simulate spot welds or rivets depends on the definition of two elastic parameters
intrinsic in closed form solutions, that tunes the theoretical model according to actual joint behaviour.

The proposed joint element combines the precision in the simulation with a very limited number
degrees of freedom in the overall finite element model of an actual multi-spot structure.

The results obtained using the introduced theoretical framework and spot element approach perfectly
match those obtained using very refined FE models and experimental data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The interest on structures jointed by spot welds and rivets has
been recently spreading especially in automotive, railways applica-
tions and aeronautical structures, where structures may contain
several thousands of spot joints.

These spot joints are generally subjected to complex multiaxial
loads. Structural behaviour and local stiffness evaluation of spot
joints show some complexity, due to the difficulties in accurate
modelling the region close to each spot joint, featuring local high
stress/strain, associated with very high stress/strain gradients.
The stress field close to the spot region is quite complex, mostly
due to geometrical irregularities and several local effects at the
edge of the spot joint.

Furthermore, it is necessary to use models that involve only a
few degrees of freedom, since real structures usually contain sev-
eral spot welds: modelling each of them with accurate and com-
plex FE models would require a major computational effort.
ll rights reserved.
However, when modelling actual structures with several spot
joints, it is essential to make use of drastic simplifications, which
have a considerable impact on results. In fact, several approaches
were proposed in the past, which introduced various degrees of
simplification replacing the spot weld with a single beam element
or a rigid bar.

The studies about spot weld junction behaviour are mainly fo-
cused on problems of fatigue life evaluation. Fatigue life estimation
has been investigated using different approaches. Generally, a ma-
jor effort has been made so as to obtain stresses at the spot welds,
using finite element models, theoretical approach, experimental
evidence or any combination of the above. Often, fracture mechan-
ics has been used to evaluate stress intensity factors in natural
crack or notch along the nugget circumference. In this case, various
types of simple specimens have been investigated using finite ele-
ment models in linear elastic conditions (Sheppard, 1993; Wang
et al., 2005), in elastic–plastic conditions (Satoh et al., 1991; Deng
et al., 2000; Pan and Sheppard, 2002), approximate analytical solu-
tions for stress intensity factor (Zhang, 1997, 2001; Lin et al., 2007)
or complete analytical solutions (Lin and Pan, 2008a,b), again
for stress intensity factor. Structural stress approach has been
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introduced to predict fatigue life (Radaj, 1990; Radaj and
Soegiharto, 1990) using stress intensity factor. It should also be
noted that in these cases fatigue behaviour models are often only
applicable and valid for reference joints of simple shape. Otherwise
the use of a conventional stress parameter has been proposed
(Rupp et al., 1990, 1995; Salvini et al., 1997, 2000) demonstrating
its effectiveness to predict spot weld fatigue life. In this case,
simple models can lead to a good estimate of the loads inter-
changed between the spot weld and the rest of the structure, and
these loads can be related to a conventional stress parameter at
the spot weld by simple theoretical models (Rupp et al., 1990,
1995) or theoretical models (Salvini et al., 1997, 2000). Neverthe-
less, whatever the used approach the priority is the correct evalu-
ation of local joint stiffness that drives to a fined evaluation of
stress field in this region.

Riveting is a well established technology in the manufacturing
of aeronautical structures as well as in the automotive industries.
This technology is a simple and versatile solution when low thick-
ness sheets are connected, especially when lightweight alloys are
used.

Even for riveted joints, refined models of the region around riv-
ets, requiring 3D models and the use of contact elements (Urban,
2003; Al-Emrani and Kliger, 2003), which causes considerable time
consuming in multi-joint structure analyses, are employed. Even
when dealing with non linear analyses carried out with explicit
FE codes, for crashworthiness analysis purposes, 3D complex mod-
els are proposed (Langrand et al., 2001). This requirement consid-
erably discourages the extension of the analysis to multi-riveted
structures. On the other side, the use of simplified models – use
of mono-dimensional links, action of kinematic constraints (Karao-
ğlu and Kuralay, 2002), non linear elastic links, mixed methods
(Langrand et al., 2001) – only achieves a poor approximation of
the actual behaviour in terms of local stiffness. Some 2D models
that make use of spring and gap elements have also been proposed
(Xiong and Bedair, 1999), which are often referenced with analyt-
ical solutions allowing to evaluate the local stress field in the sur-
rounding region of each joint.

On the basis of the above, when modelling actual structures
with several spot joints, it is essential to make use of drastic sim-
plifications, which have a considerable impact on results. The main
need for such an accurate definition of the stiffness of the spot area
leads to accurately evaluating loads on spot joints.

To overcome such limitations, a method based on a theoretical
solution of the region close to the spot weld has been proposed by
Salvini et al. (2000) and Vivio et al. (2002). The spot weld element
approach proposed in these papers constitutes an efficient way of
Fig. 1. Theoretical model of spot joint with elastic
modelling the spot weld in FE solutions, using a complete stiffness
characterization of spot weld region – condensed on the nodes that
surround the spot – using a closed-form solution of a reference
theoretical model (a circular plate with a central rigid inclusion).

The model features a set of equivalent radial beam, with six de-
grees of freedom per node, lying on metal sheet, and a central
beam element (main link) representing the spot weld nugget and
connecting the two metal sheets. The spot element introduces a
very small number of degrees of freedom and the improvements
in accuracy of results – under the elastic hypothesis – are apparent
when a comparison with other modelling techniques is performed,
as demonstrated by Vivio et al. (2002) and confirmed by Palmonel-
la et al. (2005). Vivio and Fanelli (2009) also introduced an analyt-
ical procedure for the evaluation of the elastic–plastic behaviour of
spot welded joints, subjected to orthogonal load, that can be used
to develop the spot weld element approach in FE analysis when
plasticity and large deflections are in effect.

In this paper, a new theoretical framework is proposed in order
to describe the elastic behaviour of spot joints (spot welds or riv-
ets) under various types of loading conditions.

A more general and refined reference model, based on the one
used for spot weld element definition in linear elastic hypothesis,
is here introduced. Here the rigid nugget and the circular plate
are connected with appropriate boundary connections providing
a tuned rotational stiffness (in radial direction). The new version
of the theoretical reference model proposed here is composed by
a circular thin plate containing a rigid central region (shank of rivet
or spot weld core), elastically connected in correspondence of the
interface, and clamped at the external radius. A scheme of it is
shown in Fig. 1.

Varying boundary connections between central rigid nugget
and the inner radius of the plate by using a tuned rotational stiff-
ness in radial direction, it is possible to define the spot weld model
(considering a rigid connection between rigid nugget and plate)
and rivet model (considering a variable flexible connection be-
tween rigid nugget and plate).

The analytical solution of the theoretical reference model is
found through two kind of solutions: (i) by integration of the ellip-
tic equations that resolve bending plate problems, when the plate
is subjected to bending moments and/or out-of-plane loads; (ii) by
integration of the elliptic equations that characterize the in-plane
membrane problem subjected to tangential loads. The theoretical
model is studied taking into account of the main load that can
act on a joint as applied to the central rigid core (Fig. 1). The pur-
pose is to fully characterize the structural behaviour, so that a new
equivalent element assembly (the Spot Element) can be defined.
connection between central nugget and plate.
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The spot element assembly, based on the analytical solution,
can be then defined using the strategy approached by Vivio et al.
(2002). The spot element is carried out by means of an assembly
of beam elements provided of rigid offsets, radially disposed and
properly connected each other. Each node of main link is connected
to the chosen shell nodes of the two plates by radial beams show-
ing a rigid part and a flexible part.

Elastic characteristics of beam elements are computed through
the solution of a set of equations, afterwards described, represent-
ing the structural equivalence (in terms of stiffness between rigid
core and circular boundary nodes) of the beams assembly versus
the reference theoretical model.

Actually there are multiple riveting techniques (many types of
pop rivets, self-piercing rivets, etc.) in the different fields of appli-
cation. A relevant advantage of the present approach is that only
two parameters (j and f, introduced later) are able to differentiate
the joining local stiffness according to the spot weld present or to
the effective riveting techniques. In this version of the element,
both effects due to contact in riveted joints (existence of gap and
friction between the rivets and the metal sheets) and local stress
concentration effects, as experienced by Ho and Chau (1997), are
not accounted. However, the correct evaluation of the local and
global stiffness of multi-spot structures is to be considered as a
crucial preliminary step, before evaluating the effective stress
and strain field.

The use of the proposed joint element, allowing for great preci-
sion in the simulation with limited number degrees of freedom in
the overall finite element model, allows to correctly evaluate all
load acting on spots. The correct evaluation of loads allows to eval-
uate local stress or structural stress around rivets or spot welds,
using closed form solutions presented here as well as other solu-
tions available in literature.

The results obtained using the introduced theoretical frame-
work and spot element approach have been validated by compar-
ing with those obtained by reference specimen models performed
using very complex and refined FE models, and experimental data.
2. Definition of the assembled spot element

The assembled spot element is formed by two sub-elements,
each consisting of the theoretical model of Fig. 1.
Fig. 2. Scheme of Spot Element: general conditions a
To adapt the bi-dimensional analytical solution to a discretized
one-dimensional model, it is necessary to apply adequate stiffness
values between the central node (node 1) and all the peripheral
nodes of the spot element (named nodes 2); stiffness values are
therefore associated to a determined bi-dimensional circular sector
(Fig. 2). The structural behaviour of the assembly leads to the de-
sired equivalence with the analytical model.

The closed-form solution of the circular plate with central rigid
inclusion in all loading conditions can be condensed onto the
nodes contouring the spot region using the general definition of
stiffness: the ratio of applied force to measured displacement
when all remaining dofs are restrained.

Given that analytical solutions – explained later – either do not
depend on h in P-load or depend sinusoidally on h, it is sufficient to
consider only the circular sector (Fig. 2) where the quantities as-
sume their maximum value on h (Vivio et al., 2002).

In order to introduce a procedure using simple one-dimensional
elements which already exist in all commercial codes, the con-
densed element representing spot surrounding region is translated
into a series of two coupled radial beams, appropriately linked to-
gether, as shown in Fig. 2. This single couple of beams globally
shows the same stiffness of the circular sector of the theoretical
model, having a1 þ a2 angular extension (Fig. 2), with considerable
accuracy. Type 1 beams T1 are connected through rigid offsets at
both ends, whereas type 2 beams T2 do not show any offsets.
The use of an appropriate linking between T1 beam and T2 beam
is necessary in order to avoid the expected coupling between P-
load and M-load stiffness terms, as synthesized in Fig. 2; the cho-
sen assembly and constraints cause the T2 beams react only to
orthogonal load on node 2 when a generic displacement is applied
on node 1.

Nevertheless, although the whole spot element assembly is
not trivial, the procedure is repetitive and a macro may be easily
created for use as an add-on in any commercial finite element
code.

For any couple of beams 1 and 2, referenced to the circular
sector having a1 þ a2 angular extension, six equivalence condi-
tions between stiffness terms – having th apex – given by the
theoretical model (in terms of ratio of resulting generic force
at the peripheral node 2 to generic displacement at node 1)
and stiffness terms – having beam apex – of the beam groups
may be written as follows:
nd assembling definition for each pair of beams.
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Kth
PwðjÞ ¼ Kbeam1

Pw ðJz1; xi; xjÞ þ Kbeam2
Pw ðJz2Þ

Kth
MwðjÞ ¼ Kbeam1

Mw ðJz1; xi; xjÞ
Kth

PuðjÞ ¼ Kbeam1
Pu ðJz1; xi; xjÞ

Kth
MuðjÞ ¼ Kbeam1

Mu ðJz1; xi; xjÞ

Kth
Fnu
ðfÞ ¼ Kbeam1

Fnu
ðJy1Þ

Kth
Ftv
ðfÞ ¼ Kbeam1

Ftv ðA1Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

The generic forces at the peripheral node 2 are radial bending mo-
ment (apex MÞ, orthogonal load (apex PÞ, in plane radial (apex FnÞ
and tangential forces (apex FtÞ, while the generic displacements at
the central node 1 are deflection along z-axis (apex wÞ, rotation
(apex u), in plane radial (apex uÞ and tangential displacements
(apex vÞ. Theoretical terms, derived from the analytical solution,
are also function of j and f, parameter in order to consider spot
weld simulation or rivet simulation, as hereinafter described. The
terms of beam with rigid offset (T1 beam) depend on five unknown
parameters: inertia moments Jy1and Jz1, area A1 and rigid offset
lengths xi and xj; the unique term of beam without offset (T2 beam)
depends on its inertia moment Jz2 (the sixth unknown parameter).

The structural equivalence synthesized by Eq. (1) is valid for any
combination of bending moments, in-plane loads and off plane
loads applied to the spot nugget, and provides the values of the
six unknown equivalent parameter.

Note that only a further stiffness contribution is given by T2

beam (only in first condition of Eq. (1)) since this beam reacts only
with orthogonal load on node 2 when a generic displacement is ap-
plied on node 1.

The contribution of T2 beam in the local stiffness can be ana-
lysed, using the first condition of Eq. (1) and analytical relations
of stiffness terms of theoretical model (mentioned in following
Sections 3.1 and 3.2) and considering that
a � Kbeam1

Pw ¼ Kbeam1
Mw þ Kbeam1

Pu ¼ Kth
Mw þ Kth

Pu. It is possible to demon-
strate that the influence of T2 beam stiffness Kbeam2

Pw , if compared
to T1 beam stiffness Kbeam1

Pw , becomes negligible – for every value
of j – when b assumes the most used values ð0:2 < b < 1Þ in mod-
elling spot jointed structures. In this case T2 beam can be omitted
on spot element assembly.

The actual connection between the two metal sheets is guaran-
teed by the link (Fig. 2) element, which is set with the material and
the geometrical characteristics of the spot weld core or of the rivet
shank. An appropriate definition of equivalent mechanical proper-
ties of this element make it possible to consider decreasing the
spot properties due to progressive damage or breaking, as dis-
cussed in Salvini et al. (2000) and Vivio et al. (2002) for spot weld
elements. The final rupture of the rivet or of the spot weld may cor-
respond to a total link elimination.
Fig. 3. Managing of a generic shape of S
The assembled spot element can be inserted into the global
joint FE model so as to replace the hole left by the removed region
surrounding the spot or rivet.

The analytical solution, extended to circumferential portions of
the circular region surrounding the nuggets, also allows to deal
with non-regular-shaped mesh (Vivio et al., 2002). Note that the
shape of the region surrounding the spot was assumed as circular;
however, the generic definition of the model (in order to compute
the stiffness of each sector) also allows for managing non-circular
spot regions. In this case it is possible to discretize the spot region
considering the subdivision of sectors for a generic non-circular
bordered spot element (Fig. 3).

The stiffness estimate of a i-th span sector, having an angular
extension ai=2þ aiþ1=2, is performed using the theoretical model
of Fig. 1 having outer radius ai, equal to the distance between mas-
ter node and the i-th peripheral node. The stiffnesses of each sector
which do not depend on h; as hereinafter described, and the ana-
lytical solution of the i-th circumferential portions of the circular
region surrounding the nuggets make it possible to define the cor-
responding couple of beams T1 and T2 (Fig. 2).

Global stiffness behaviour of non-circular spot element s is
therefore as simple to compute as circular shapes; obviously, accu-
racy increases with number of nodes on the spot contour (and, con-
sequently, sector span angles decrease), according to global mesh
requirements.

Note that the link can be located anywhere between the parts
that are to be connected, in the actual centre of the spot weld, inde-
pendent of the mesh and the node locations.

The spot element assembly formulation, even if it makes use of
elaborate procedures, is although rather repetitive to apply; there-
fore a macro may be easily created as add-on on any commercial
finite element code.
3. Theoretical solution

The stiffness terms of the spot joint are analytically computed
by means of the closed-form solutions of the bi-dimensional model
mentioned above (Fig. 1). The outer radius of the plate ðr ¼ aÞ is
clamped and the central inclusion is constrained at the inner radius
ðr ¼ bÞ of the plate, with a variable radial stiffness. The same figure
shows the polar coordinate system ðr; h; zÞ. The rigid core is loaded
with bending moment M, orthogonal load P and in-plane load T.

In the following sections, closed-form solutions are all pre-
sented, focussing the attention on the displacement field, con-
straint loads, and displacement at the central nugget. All these
quantities are essential to define the theoretical stiffness of the
spot element, either for spot weld or for rivet version.
pot Element into a shell FE model.
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3.1. Bending moment M

This load condition represents a spot joint under central bend-
ing conditions. The bending moment M is applied to the nugget
centre and it is represented by a vector laying in the sheet plane
(Fig. 1). According to Kirchhoff plate theory (Timoshenko and Woi-
nowsky-Krieger, 1959) the differential equation governing the
elastic solution for a bending plate non subjected to distributed
loads in polar coordinates ðr; hÞ is:

DDw ¼ @2

@r2 þ
1
r
@

@r
þ 1

r2

@

@h2

 !
@2w
@r2 þ

1
r
@w
@r
þ 1

r2

@2w

@h2

 !
¼ 0; ð2Þ

where wðr; hÞ is the deflection along z-axis direction, and D is the
harmonic operator.

Defining the dimensionless radius as q ¼ r=a and considering
the ratio b ¼ b=a, the four boundary conditions to impose to the
model are:

ðaÞ : ðwÞq¼1 ¼ 0; ðbÞ :
@w
@q

� �
q¼1
¼ 0; ðcÞ : Mr jq¼b ¼ j

M�
MðhÞ; with 0 6 j 6 1 ð3Þ

ðdÞ : a
Z p

�p
ðMrÞq¼1 cos hdh� a

Z p

�p
ðMrtÞq¼1 sin hdhþ a2

Z p

�p
ðQ rÞq¼1

cos hdhþM ¼ 0:

where j is the parameter that differentiates the joining local stiff-
ness, u ¼ �1=a@w=@q is the rotation angle of the normal to the
deflection middle surface of the plate in the diametral section, Mr

is the radial moment, Mrt is the twisting moment, Qr is the radial
shearing force while M�

MðhÞis the clamping radial moment between
the rigid nugget and the plate when a clamping is accounted

M�
MðhÞ ¼

M
2pa

ðb2 � 1Þ
bðb2 þ 1Þ

cos h: ð4Þ

This reaction moment M�
MðhÞcan be computed by solving the differ-

ential Eq. (2) with the boundary conditions (a), (b) and (d) of Eq. (3)
and the clamping condition at the inner radius

½@w=@q�q¼b ¼ ½w=q�q¼b ð5Þ

instead of condition (c) of Eq. (3).
The general characterisation of the spot model, which allows to

manage the actual constraint conditions between the nugget and
the metal sheets, is useful to define a spot weld model or a general
rivet model. To this end, the boundary condition (c) of Eq. (3) rep-
resent an elastic radial stiffness between rigid nugget and plate,
where a rigid rotation occurs. This position is intermediate be-
tween pure clamping (characterized by the condition (5)) – which
corresponds to the spot weld condition – and pure hinging (char-
acterized by the Mr jq¼b ¼ 0). Spot weld condition can be achieved
by putting j ¼ 1 while the generic rivet condition can be achieved
by putting 0 6 j < 1.

Using boundary conditions (3) it is possible to compute the dis-
placement field all over the plate, which is needed to define analyt-
ical stiffness in the region surrounding the generic spot joint as a
function of the j parameter, which is a term that tunes the elastic
connection between the nugget and the inner radius of the sheet.

The general solution of w in Eq. (4) is:

wðr; hÞ ¼ w0ðr; hÞ ¼ R0 þ
X1
m¼1

Rm � cos mhþ
X1
m¼1

R0m � sin mh ð6Þ

where R0;R1;R2; . . . ;Rm;R
0
1;R

0
2; . . . ;R0m are functions of r, independent

of h. The number of terms appearing in the series depends on the
periodical shape of the boundary conditions. Here, R0;R1;Rm and
R0m terms are
R0ðrÞ ¼ A0 þ B0r2 þ C0 log r þ D0r2 log r;

R1ðrÞ ¼ A1r þ B1r3 þ C1r�1 þ D1r log r;

. . .

RmðrÞ ¼ Amrm þ Bmr�m þ Cmrmþ2 þ Dmr�mþ2; m > 1

R01ðrÞ ¼ A01r þ B01r3 þ C01r�1 þ D01r log r;

. . .

R0mðrÞ ¼ A0mrm þ B0mr�m þ C 0mrmþ2 þ D0mr�mþ2; m > 1:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7Þ

Substituting Eq. (7) into Eq. (6) the general solution of deflection
wðr; hÞ is obtained. In the case here examined, involving a circular
plate with central rigid nugget, subjected to an external bending
moment M, the solution expressed by Eq. (6) simplifies. In fact,
the R0 term vanishes since the external load does not include an ax-
ial symmetric component; furthermore, the h values are measured
from the reference plane where the external moment acts (Fig. 1).
Therefore, the Mr solution series is limited to the simple cosinusoi-
dal component. The deflection w has only a cosinusoidal term and
the only term of Ri and R0i different from zero is R1. Therefore, the
solution of deflection w is the following:

wðq; hÞ ¼ R1ðqÞ cos h

¼ A1qþ B1q3 þ C1q�1 þ D1q log q
� �

� cos h: ð8Þ

The unknown coefficients A1;B1;C1 and D1 can be determined by
imposing the boundary conditions (3).

In the polar coordinate system, the general relationships be-
tween the deflection wðr; hÞ and moments and transverse shear
forces, in terms of r and h, are:

Mrðr; hÞ ¼ � D
@2w
@r2 ðcos2 hþ m sin2 hÞ þ 1

r
@w
@r
þ 1

r2

@2w
@#2

 !"

� ðsin2 hþ m cos2 hÞ þ 2ð1� mÞ 1
r2

@w
@h
� 1

r
@2w
@r � @h

 !

� sin h cos h�; ð6aÞ

Mtðr;hÞ¼ �D
@2w
@r2 ðsin2 hþmcos2 hÞþ 1

r
@w
@r
þ 1

r2

@2w

@h2

 !"

�ðcos2 hþmsin2 hÞþ�2ð1�mÞ 1
r2

@w
@h
�1

r
@2w
@r@h

 !
sinhcosh

#
;

ð6bÞ

Mrtðr; hÞ ¼ Dð1� mÞ @2w
@r2 �

1
r
@w
@r
� 1

r2

@2w

@h2

 !
sin 2h

2

"

þ 1
r
@2w
@r@h

� 1
r2

@w
@h

 !
cos 2h

#
; ð6cÞ

Qrðr; hÞ ¼ �D
@

@r
ðDwÞ ¼ �D

@

@r
@2w
@r2 þ

1
r
@w
@r
þ 1

r2

@2w

@h2

 !
; ð6dÞ

Qtðr; hÞ ¼ �D
1
r
@ðDwÞ
@h

¼ �D
1
r
@

@h
@2w
@r2 þ

1
r
@w
@r
þ 1

r2

@2w

@h2

 !
; ð6eÞ

where Mt is the tangential bending moment, Qt is the tangential
shearing force and D ¼ Et3=12ð1� m2Þ is the flexural rigidity of the
plate, whose thickness is t; E is Young’s modulus and m is Poisson’s
ratio.

It is straightforward to derive the closed-form solutions of this
model in terms of j parameter; the deflection wðq; hÞ and the rota-
tion of a segment initially orthogonal to the plate in a point uðq; hÞ,
are:
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wðq;hÞ ¼ aM coshfð3þ mÞ½q2ð1�2lnqÞ�1�b4 þð1þ mÞðq2 �1Þ2b2 þð1þ2lnqÞðm�1Þq2 þð1�mÞq4g
8pDq½ðm�1Þ� ð3þmÞb4 �

þj
aM coshb2ðb2 �1Þðq2 �1Þ2

4pDqðb2 þ1Þ½ðm�1Þ� ð3þmÞb4 �
:

ð7aÞ

uðq;hÞ ¼�1
a
@w
@q

¼M coshfð3þmÞ½�1þq2ð1þ2lnqÞ�b4 þð1þmÞð�3q4 þ2q2 þ1Þb2 þð1� mÞ½�3q4 þð2lnqþ3Þq2 �g
8pDq2 ½ð�1þmÞ� ð3þmÞb4 �

�j
aM coshb2ðb2 �1Þð3q2 þ1Þðq2 �1Þ
4pDq2ðb2 þ1Þ½ðm�1Þ� ð3þmÞb4 �

:

ð7bÞ

The moments and shear forces of this model are given as:

Mrðq;hÞ ¼
M coshðq2�b2Þðm�1Þ½ð3þmÞq2b2�ð3þmÞðb2þq2Þþmþ1�

4paq3½ð3þmÞb4þð1�mÞ�

þj
M coshb2ðb2�1Þ½ð3þmÞq4þð1�mÞ�

2paq3ðb2þ1Þ½ð3þmÞb4þð1�mÞ�
:

ð8aÞ

Mtðq;hÞ ¼
M coshfð3þmÞb4 ½ð1þmÞq2 �ð1�mÞ�� ð1þ3mÞq4 ½ðmþ1Þb2 þð1�mÞ�� ðm2 �1Þðb2 þq2Þg

4paq3 ½ð3þmÞb4 þð1�mÞ�

þj
M coshb2ðb2 �1Þ½ð1þ3mÞq4 �ð1�mÞ�

2paq3ðb2 þ1Þ½ð3þmÞb4 þð1�mÞ�
:

ð8bÞ

Mrtðq;hÞ ¼
M sinhð1�mÞðq2�1Þ½ð1�mÞq2þð1þmÞb2ðq2þ1Þþ ð3þmÞb4�

4paq3½ð3þmÞb4þð1�mÞ�

þj
M sinhð1�mÞb2ðb2�1Þðq4�1Þ

2paq3ðb2þ1Þ½ð3þmÞb4þð1�mÞ�
:

ð8cÞ

Q rðq; hÞ ¼
M cos h½2ð1� mÞq2 þ 2ð1þ mÞb2 þ ð3þ mÞb4 þ ð1� mÞ�

2pa2q2½ð3þ mÞb4 þ ð1� mÞ�

� j
2M cos hb2ðb2 � 1Þ

pa2ðb2 þ 1Þ½ð3þ mÞb4 þ ð1� mÞ�
;

ð8dÞ

Q tðq; hÞ ¼
M sin h½2ðm� 1Þq2 � 2ð1þ mÞb2 þ ð3þ mÞb4 þ ð1� mÞ�

2pa2q2½ð3þ mÞb4 þ ð1� mÞ�

� j
2M sin hb2ðb2 � 1Þ

pa2ðb2 þ 1Þ½ð3þ mÞb4 þ ð1� mÞ�
:

ð8eÞ

In Fig. 4 the theoretical results, in dimensionless form, are shown in
a reference geometry given within the picture itself
ðE ¼ 200 GPa; m ¼ 0:3Þ, using dimensionless �q ¼ ðq� bÞ=ð1� bÞ
variable. The j connecting condition constant and b ratio are used,
separately, as parameter. Varying the j connecting condition, a
family of characteristics – smoothly changing – is found. Moreover,
by referring to functions in Fig. 4, we have that Mrðb; 0Þ and uðb;0Þ
tend to infinity for b! 0.

Note that the stresses for the spot under a resultant bending
moment acting along x axis can be obtained by substituting
hþ p=2 for h in Eqs. (7) and (8).

In order to introduce the spot element representing the spot
joint and its surrounding region it is possible to define the stiffness
Kth

MuðjÞ and Kth
PuðjÞ of Eq. (1) by the ratio of resulting generic force

at the peripheral node and the slope of the rigid nugget:

Kth
PuðjÞ ¼

R a2
�a1

aQ rð1;0Þcoshdh

uðb;0Þ ¼ F2

u1

¼ 1
a

2D½j4b2ðb2 �1Þþ ð3þmÞb6þð3mþ5Þb4 þð5�mÞb2 þ3ð1�mÞ�ðsina1 þ sina2Þ
jðb�1Þ3ðbþ1Þ3 � lnbðb2 þ1Þ½b4ð3þmÞþ ð1�mÞ�þ ½b2ð2þmÞ�m�ðb4�1Þ

:

ð9Þ
Kth
MuðjÞ ¼

R a2
�a1

aMrð1;0Þcoshdh

u1ðb;0Þ
¼M2

u1

¼ 2Dðb2 �1Þ½ð1�jÞ4b2 þð3þmÞb4þð1�mÞ�ðsina1 þ sina2Þ
jðb�1Þ3ðbþ1Þ3� lnbðb2 þ1Þ½b4ð3þmÞþ ð1�mÞ�þ ½b2ð2þmÞ�m�ðb4 �1Þ

:

ð10Þ

where uðb;0Þ, is the maximum values on h of the rotations in
correspondence of the rigid nugget, Mr(1,0) e Qr(1,0) are the
maximum values on h of the reaction loads at the outer radius;
Kth

PuðjÞ is the ratio between the resultant radial shearing force
on the outer border of the circular sector having extension
a1 þ a2 (see Fig. 2) and the rotation at the nugget edge; Kth

MuðjÞ
is the ratio between the resultant radial moment on the above-
mentioned outer border of the circular sector and the rotation
at the nugget edge.

Note that the stiffness functions Kth
PuðjÞ and Kth

MuðjÞ do not de-
pend on h and they are valid for every direction of application of
the resultant bending moment.

Fig. 5 shows the curves of dimensionless stiffnesses
KPu ¼ Kth

Pu � a=Dðsin a1 þ sin a2Þ and KMu ¼ Kth
Mu=Dðsin a1 þ sin a2Þ

as function of b, for various values of j parameter and m ¼ 0:3.
By referring to functions in Fig. 5, it is confirmed that KPu and
KMu increase with b ratio and tend to infinity when the inner ra-
dius of the reference model tends to its outer radius ðb! 1Þ.

3.2. Orthogonal load P

This model represents a spot joint under opening loading condi-
tions. The orthogonal load P acts along the axis of the rigid nugget
(Fig. 1). In this case, the problem is axisymmetric so that solutions
are one-dimensional ðrÞ. The differential Eq. (2), when all deriva-
tives of h disappear, assumes the form:

d
dr

1
r

d
dr

r
dw
dr

� �� �
¼ Q r

D
: ð11Þ

where Qr ¼ P=2pr is the shearing force on r.
Using the dimensionless variable q , the boundary conditions

are now:

ðaÞ : wjq¼1 ¼ 0;

ðbÞ :
dw
dq
jq¼1 ¼ 0; ð12Þ

ðcÞ : Mrjq¼b ¼ jM�
P ; 0 < j < 1;

where M�
P is the clamping radial moment between the rigid nugget

and the plate when a clamping is accounted

M�
P ¼

P
4p

2 lnðbÞ
ðb2 � 1Þ

� 1

" #
: ð13Þ

This reaction moment M�
P can be computed by solving the differen-

tial Eq. (11) with the boundary conditions (a), (b) of Eq. (12) and the
clamping condition at the inner radius

½@w=@q�q¼b ¼ ½w=q�q¼b ð14Þ

instead of condition (c) of Eq. (12).
Even here, using boundary conditions (12) it is possible to com-

pute the displacement field all over the plate, necessary to define
the analytical stiffness in the region surrounding the generic spot
joint as a function of the j parameter.

It is straightforward to derive the closed-form solutions of this
model in terms of the j parameter; the deflection wðqÞ and the
rotation uðqÞ are:

wðqÞ ¼ a2P
16pD

NWP þ 2j2
b½ðq2 � 2lnq� 1Þðb2 � 2lnb� 1Þ�
½ð1þ mÞb2 þ 1� m�

;



Fig. 4. Theoretical results of bending moment load case ðh ¼ 0Þ.

Fig. 5. Curves of KPu and KMu as functions of bðm ¼ 0:3Þ.
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NWP ¼ 2ð1þ mÞb2½lnqðq2 þ 2lnbÞ þ lnbð1� q2Þ� þ ð3þ mÞb2ð1� q2Þ

þ 4b2lnqþ ð1� mÞ½ð2lnq� 1Þq2 þ 1�: ð15aÞ

uðqÞ ¼ a2P
4pD

ðb2 � 1ÞNuP � 2jb2ðq2 � 1Þðb2 � 1� 2ln bÞ
qðb2 � 1Þ½ð1þ mÞb2 þ 1� m�

;

NuP ¼ b2ðq2 � 1Þ½ð1þ mÞln bþ 1� � ½b2ð1þ mÞ þ ð1� mÞ�q2ln q:
ð15bÞ

The moments of this model are given as:

MrðqÞ¼
P

4p

� ½ðmþ1Þ2ðlnb� lnqÞb2�ð1�m2Þ lnqþm�1�q2þ½ð1�m2Þ lnbþ1�m� �b2

q2½b2ð1þmÞþ1�m�

þj
P

4p
b2ð2lnb�b2þ1Þ½q2ð1þmÞþ1�m�

q2ðb2�1Þ½b2ð1þmÞþ1�m�
:

ð16aÞ

MtðqÞ ¼
P

4p
½ð1þmÞ2ðlnb� lnqÞb2þð1�m2Þb2þð1�m2Þ lnqþmð1�mÞ

�
�q2þ ½ð1�m2Þ lnbþ1�m�b2q2½b2ð1þmÞþ1�m�

þj
P

4p
b2ð2lnb�b2þ1Þ½q2ð1þmÞ�1þm�

q2ðb2�1Þ½b2ð1þmÞþ1�m�
: ð16bÞ

In Fig. 6 the results are shown in the same reference geometry con-
sidered in M-load case, using dimensionless �q ¼ ðq� bÞ=ð1� bÞ var-
iable. The j connecting condition constant and b ratio are used,
separately, as parameter. By referring to functions in Fig. 6, we have
that MrðbÞ tends to infinity for b! 0.

In order to introduce the spot element representing the spot
joint and its surrounding region, it is possible to define the stiffness
Kth

PwðjÞand Kth
MwðjÞ of Eq. (1) by the ratio of resulting generic force

at the peripheral node and the deflection of the nugget:

Kth
PwðjÞ ¼

ða1 þ a2Þ
2p

P
w1

¼ 1
a2

8Dðb2 � 1Þ½b2ð1þ mÞ þ ð1� mÞ�ða1 þ a2Þ
den1

;

den1 ¼ b6ð2j�3� mÞ þ b4½�4jð2lnbþ 1Þ þ 4ð1þ mÞlnbðlnbþ 1Þ
þ 4ð1� mÞlnbþ ð5þ 3mÞ� þ b2½2jð2lnbþ 1Þ2

� 2ð1þ mÞlnbð2lnbþ 1Þ � 2ð3� mÞlnb� ð1þ 3mÞ� � ð1� mÞ:
ð17Þ

Kth
MwðjÞ� ¼

Mrð1Þ
w1

aða1 þa2Þ

¼ 8Dða1 þa2Þ
a

2jb2ð1þ2lnb�b2Þþ2b2ðb2 �1Þð1þmÞlnbþð1�mÞ½b2ðb2�2Þþ1�
den2

;

den2 ¼ b6ð2j� 3� mÞ þ b4½�4jð2lnbþ 1Þ þ 4ð1þ mÞðlnbÞ2

þ 8lnbþ ð5þ 3mÞ� þ b2½2jð2lnbþ 1Þ2 � 4ð1þ mÞ

� ðlnbÞ2 � 8lnb� ð1þ 3mÞ� � ð1� mÞ: ð18Þ

where Mr(1) is the bending moment at the outer radius; Kth
PwðjÞ is

the ratio between the resultant radial shearing force on the outer
border of the circular sector having extension a1 þ a2 (see Fig. 2)
and the deflection at the nugget edge; Kth

MwðjÞ is the ratio between
the resultant radial moment on the above-mentioned outer border
of the circular sector and the deflection at the nugget edge.

Fig. 7 shows the curves of dimensionless stiffnesses
KPw ¼ Kth

Pw � a2=Dða1 þ a2Þ and KMw ¼ Kth
Mw � a=Dða1 þ a2Þ as function

of b, for various values of j parameter and m ¼ 0:3. By referring to
functions in Fig. 7, it is confirmed that also KPw and KMw stiffness
functions increase with b ratio and tend to infinity when b! 1.
3.3. In-plane load T

The external in-plane load T is applied (Fig. 1) to the nugget in a
direction which lies on the plane containing the sheet. The problem
is bi-dimensional, and both equilibrium and compatibility equa-
tions are required. In the polar coordinate system ðr; hÞ, the two
equilibrium equations and the compatibility equation, in terms of
stress, are:

@rr

@r
þ 1

r
@srt

@h
þ rr � rt

r
¼ 0

1
r
@rt

@h
þ @srt

@r
þ 2

srt

r
¼ 0:

8>><
>>: ð19Þ

@2

@r2 þ
1
r
@

@r
þ 1

r2

@2

@h2

 !
ðrr þ rhÞ ¼ 0: ð20Þ

where rr and rt are, respectively, the radial and tangential normal
stress, and srt is the in-plane shear stress. The solution is pursuable
introducing the Airy potential function in polar coordinates.

In the polar coordinate system, the radial and tangential normal
stresses and shear stress, in terms of r and h, are

rr ¼
1
r
� @/
@r
þ 1

r2 �
@2/

@h2 ;

rt ¼
@2/
@r2 ;

srt ¼
1
r2

@/
@h
� 1

r
� @

2/
@r@h

:

ð21Þ

According to the Airy stress function approach, the governing equa-
tion for the circular plate can be written as a bi-harmonic equation
of the Airy stress function / . The governing equation in terms of the
polar coordinates r and h is

@2

@r2 þ
1
r
@

@r
þ 1

r2

@2

@h2

 !
@2/
@r2 þ

1
r
@/
@r
þ 1

r2

@2/

@h2

 !
¼ 0: ð22Þ

The general solution of the differential Eq. (21) assumes the form:

/ðr; hÞ ¼ f0ðrÞ þ A0hþ f1ðrÞ þ
A1

2
rh

� �
sin hþ f 01ðrÞ þ

A01
2

rh
� �

cos h

þ
X1
m¼2

fmðrÞ sin mhþ
X1
m¼2

f 0mðrÞ cos mh: ð22Þ

The solution is not influenced here by the elastic radial stiffness in
the interface between rigid nugget and inner radius of the plate.
Therefore, the solution coincides with the one discussed by Salvini
et al. (2000).

Closed form solution of radial displacement uðq; hÞ and tangen-
tial displacement vðq; hÞ are here written:

uðq;hÞ¼uðq;0Þcosh

¼u1

2
½ð3�mÞ2ðb2þ1Þq2lnq�ð3�mÞð1þmÞðq2�1Þb2þð1�3mÞð1þmÞq4�

ð1þmÞ2ðb2�1Þ�ð3�mÞ2ðb2þ1Þ lnb
cosh

ð23Þ
vðq;hÞ¼vðq;p=2Þ

sinh¼¼u1

2
½ð3�mÞ2ðb2þ1Þq2 lnq�ð3�mÞð1þmÞðq2�1Þb2þð5þmÞð1þmÞq2ð1�q2Þ�

ð1þmÞ2ðb2�1Þ�ð3�mÞ2ðb2þ1Þlnb
sinh:

The stress components rrðq; hÞ; rtðq; hÞ and srtðq; hÞ are:



Fig. 6. Theoretical results of orthogonal load case.

Fig. 7. Curves of KPw and KMw as functions of bðm ¼ 0:3Þ.
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rrðq; hÞ ¼ rrðq;0Þ cos h

¼ u1E½ðm2 � 9Þðb2 þ 1Þq�1 � ð1þ mÞ2qþ ð3� mÞð1þ mÞb2q�3�
að1þ mÞ½ð1þ mÞ2ðb2 � 1Þ � ð3� mÞ2ðb2 þ 1Þ log b�

� cos h;

ð25aÞ

rtðq;hÞ¼rtðq;0Þcosh

¼u1E½ð3�mÞðm�1Þðb2þ1Þq�1�3ð1þmÞ2qþð3�mÞð1þmÞb2q�3�
að1þmÞ½ð1þmÞ2ðb2�1Þ�ð3�mÞ2ðb2þ1Þlogb�

� cosh;

ð25bÞ

srtðq;hÞ¼ srtðq;p=2Þsinh

¼u1E½ð3�mÞðm�1Þðb2þ1Þq�1:þð1þmÞ2q�ð3�mÞð1þmÞb2q�3�:
að1þmÞ½ð1þmÞ2ðb2�1Þ�ð3�mÞ2ðb2þ1Þ logb�

� sinh:

ð26Þ
In Fig. 8 the results are shown in the same reference geometry con-
sidered in T-load case, using dimensionless �q ¼ ðq� bÞ=ð1� bÞ var-
iable and b ratio as parameter.

Note that stresses for the spot under a resultant in-plane force
acting along y-axis can be obtained by substituting hþ p=2 for h
in Eqs. (25b) and (26).

In order to introduce the spot element representing the spot
joint and its surrounding region, it is possible to define the stiffness
Kth

Fn uðfÞ and Kth
Ft vðfÞ of Eq. (1) by the ratio of resulting generic force

at the peripheral node and the displacement of the rigid nugget. In
this function, a new parameter f is introduced. f parameter
ð0 < f 6 1Þ is introduced in order to simulate, as a global effect,
the actual local stiffness between the shank of the rivet and the in-
ner radius of the plate. The effect of this parameter is a decrease of
in-plane stiffness terms. This term, that in spot weld version is as-
sumed as 1, can be tuned for every rivet typology by means of
experimental evidence or results obtained by very accurate FE
models.
Fig. 8. Theoretical results
Kth
Fn uðfÞ ¼

Fn2

u1
f

¼ f
t
R a2
�a1
½srtð1;p=2Þ sin2 h� rrð1; 0Þ cos2 h�adh

u1

¼ f2tE

� ½ð3� mÞðb2 þ 1Þða1 þ a2Þ þ ð1þ mÞðsin 2a1 þ sin 2a2Þ�
ð1þ mÞ½ð1þ mÞ2ðb2 � 1Þ � ð3� mÞ2ðb2 þ 1Þ ln b�

ð27Þ
Kth
Ft vðfÞ ¼

Ft2

v1
f

¼ f
t
R p

2þa2
p
2�a1
½srtð1;p=2Þ sin2 h� rrð1; 0Þ cos2 h�adh

u1

¼ f2tE

� ½ð3� mÞðb2 þ 1Þða1 þ a2Þ � ð1þ mÞðsin 2a1 þ sin 2a2Þ�
ð1þ mÞ½ð1þ mÞ2ðb2 � 1Þ � ð3� mÞ2ðb2 þ 1Þ ln b�

ð28Þ

where Kth
Fn uðfÞ is the ratio between the resultant radial in-plane

loads Fn2 on the outer border of the circular sector having extension
a1 þ a2 and centred on h ¼ 0 – which is the maximum radial nodal
loads – and the radial displacement at the nugget edge u1; Kth

Ft vðfÞ is
the ratio between the resulting tangential in-plane loads Ft2 on the
outer border of the circular sector having extension a1 þ a2 and
centred on h ¼ p=2 – which is the maximum tangential nodal loads
– and the tangential displacement at the rigid nugget edge v1 for
h ¼ p=2ðv1 ¼ u1Þ.

Note that the stiffness functions Kth
Fn u and Kth

Ft v do not depend on
h and they are valid for every direction of application of the resul-
tant in-plane load T.

Fig. 9 shows the curves of dimensionless stiffnesses
KFn u ¼ Kth

Fn u=tE and KFt v ¼ Kth
Ft v=tE as function of b, for

f ¼ 1; m ¼ 0:3 and a1 ¼ a2 ¼ p=8. By referring to functions in
Fig. 7, it is confirmed that KFn u and KFt v stiffness functions increase
with b ratio and tend to infinity when b! 1.
of in-plane load case.



Fig. 9. Curves of KFn u and KFt v as functions of b ðm ¼ 0:3Þ.
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Finally, with regard to the in-plane stiffness of spot element
concerning the torque load condition (a torsion – along z-axis - ap-
plied to the nugget), for usual values of bð0:4 < b < 0:7Þ and
a1 þ a2 (usually between p=20 and p=4), it should be pointed out
that the torque stiffness of the generic circular sector is quite sim-
ilar to in-plane stiffness Kth

Ft v of Eq. (28) (for b ¼ 0:7 and
a1 þ a2: ¼ p=6 the difference in stiffness is less than 10%). In the
spot element definition only Kth

Ft v is considered within the struc-
tural equivalence defined by Eq. (1) with a poor approximation,
provided the minor influence of torque loads, especially in a mul-
ti-spot structure, with respect to in-plane loads acting on spot
joints.

An other facet regards the stiffness of spot element when the
self-balanced part of the in-plane loads, i.e. the part of load that
does not transit through the spot joint, is applied to the sheet. In
this condition, this required stiffness of spot element model is pro-
vided by in-plane stiffnesses Kth

Fn u and Kth
Ft v , together with stiffness

of connected shell elements. Similar considerations are also valid
when the self-balanced part of out-of plane loads are applied to
the sheet. Nevertheless, in this context, it is important to point
out that, in many practical cases, the contribution of the self-bal-
anced part of the loads to the local stresses in spot joints is
negligible.

4. First results and discussion: spot weld model

Some results are here discussed, aiming at evaluating the accu-
racy of results for the spot element in the spot weld version ðj ¼ 1
and f ¼ 1).

Although the spot weld element was validated in other contexts
(Salvini et al., 2000; Vivio et al., 2002; Palmonella et al., 2005), fur-
ther strict analysis is performed here in order to evaluate the cor-
rectness of results that can be obtained advantageously using the
proposed model and results of the theoretical framework.

A first comparison is performed between closed form solutions
of theoretical model and a FE element model whit spot element,
varying the mesh refinement and spot element shape. The refer-
ence model is an external clamped circular plate having outer
diameter dplate and a central rigid nugget having diameter dspot , sub-
jected to P;M and T load cases. A corresponding FE model having
shell elements with 6 dofs per node is performed where the central
region has been modelled, with the spot element (Fig. 10) in three
different shapes and using different mesh size (i.e. a variable num-
ber of couple of radial beams N). The spot element has been mod-
elled in circular shape, where the central region has a
dimensionless diameter bmod ¼ dspot=dmod ¼ 0:67, in a rectangular
shape (bmod of span sectors varies between 0.47 and 0.67) and in
an eccentric shape (bmod of span sectors varies between 0.41 and
0.87), as indicated in Fig. 10. In the three load cases considered
here, FE models are subjected, respectively, to the P-load value cor-
responding to the theoretical maximum deflection wðbÞ, to the M-
load value corresponding to theoretical maximum slope uðb;0Þ
and to the T-load value theoretical maximum radial displacement
uðb;0Þ.

Fig. 11 shows the comparison in term of deflection-distribution
curve w and rotation-distribution curve u as functions of q in a
steel plate ðm ¼ 0:3Þ, having ratio b ¼ 0:2. A very good match be-
tween theoretical results and FEA results obtained using the spot
weld element ðN ¼ 32Þ is evident.

In Fig. 12a a comparison is reported of results obtained by mod-
els having different mesh refinement and spot element shape, in
the three load cases considered. Results also confirms the good
match with reference theoretical results and a very low influence
of model mesh size. Also results obtained using rectangular and
eccentric shape of spot element in FE models show a good match-
ing with reference theoretical results. Moreover, in Fig. 12b the
map of orthogonal deflection, when a P-load is applied, shows a
perfect axisymmetric displacement field, despite of the use of an
eccentric or a rectangular spot element.

With the aim of validating the practical use of the spot element,
two different simple lap specimens, whose geometry is shown in
Fig. 13, have been analysed. The structures are loaded with a ten-
sile load F; the end sections are made rigid. Three different model-
ling techniques are used (Fig. 14): a refined shell-solid modelling,
where the spot region is modelled with 8 node solid elements hav-
ing 3 dofs per node (model A in Fig. 14) and shell elements are used
for metal sheet modelling (the shell-solid assembly has been per-
formed using a suitable set of multipoint constraints, available in
the commercial finite element code Ansys�); the well-known
modelling which makes use of shells, for the metal sheet, and a
simple rigid beam for the spot weld (model B in Fig. 14); the pro-
posed modelling which involves the use of shells, for the metal



Fig. 10. Reference geometry and its FE model with Spot Element having various shapes.
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sheet, and the spot element (model C in Fig. 14) with four levels of
mesh size. In this latter case the region surrounding the spot was
not assumed as circular; the spot model ratio bmod of the span sec-
tors considered varies between 0.44 and 0.63. As previously de-
Fig. 11. Deflection-distribution curve and rotation-distribution curve as functions of q
Element having circular shape.
scribed, the independent evaluation of the stiffnesses of each
sector (Eqs. 9, 10, 17, 18, 27 and 28), which do not depend on h, al-
lows for managing non-circular spot weld regions; the analytical
solution, extended to circumferential portions of the circular
: comparison between theoretical results and FE results performed using the Spot



Fig. 12. (a) comparison between theoretical results and FE results performed using the Spot Element having different Spot Element shape and different mesh size. (b) w
deflection-distribution map in eccentric and squared Spot Element models (orthogonal P-load).
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region surrounding the nuggets and the definition of the corre-
sponding couple of beam T1 and T2 (Fig. 2), allows to deal with
non-regular-shaped mesh.

The comparison is presented in terms of global stiffness of the
specimens, i.e. the ratio between the applied load F and the maxi-
mum displacement along the x direction (Fig. 13). Assuming results
obtained by model A as reference, Table 1 shows that the error in
estimating the global stiffness of the two structure, using the
shell-Spot Element model, is very low. It is also confirmed that
the influence of the mesh size is very low, and that results obtained
with a limited number of nodes in the spot region (i.e. the number
of beams used in spot element) remain excellent. Moreover, note
that good results of spot element model can be obtained using a
high value of spot model ratio bmod, i.e. when the rigid nugget is
Fig. 13. Characteristics of spot welded simp
a great part of the Element. The advantage in local stiffness assess-
ment derives from the intrinsic features of the spot element, which
is based on a theoretical framework and allows to overcome the
known loss in stiffness simulation of the traditional shell-beam
modelling. Nevertheless, it is confirmed that this last traditional
modelling (model BÞ is inadequate to properly simulate both local
and global stiffness of the structures, even if it uses a number of de-
grees of freedom similar or higher than that of spot element model.

With regard to geometry type II of Fig. 13, in Fig. 15 the x -dis-
placement ux, adimensionalized with the maximum x -displace-
ment picked up by shell-solid model (model A), along x-axis, is
reported. The comparison between FE results performed using
the different modelling techniques confirms previous
considerations.
le lap specimens (E = 193 GPa, m ¼ 0:3).



Fig. 14. Different modelling techniques of spot welded simple lap specimen.

Table 1
Comparison among results concerning different model typologies, in terms of global stiffness Kstructure

x of two different spot welded lap shear specimens. Results of model C
regarding four levels of mesh refinement.

Geometry type Model typology No. of nodes in spot region Kstructure
x ½N=mm� % Error

I A 7265 42264 –
B 98 30207 �28.5
C1 34 41563 �1.7
C2 52 41867 �0.9
C3 72 42033 �0.5
C4 84 42190 �0.2

II A 7265 47595 –
B 98 33744 �29.1
C1 34 46322 �2.7
C2 52 47267 �0.7
C3 72 47497 �0.2
C4 84 47509 �0.2

Fig. 15. Dimensionless ux displacement distribution curve as functions of x: comparison between FE results performed using the different modelling techniques (Geometry
type II of simple lap specimens in Fig. 13).
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With the aim to validate the actual use of the spot element and
corresponding results in FE analyses, a multi-spot T-specimen,
whose geometry is shown in Fig. 16, has been analysed. In this case
it is important to remark that in a FE model of a multi-spot struc-
ture, as the T-specimen or more complex structures, the definition
of spot element can be easily performed by creating a macro that
can be used as an add-on in any commercial finite element code.
The structure is loaded with two forces respectively acting
along x-axis and y-axis, as shown in Fig. 16; the three end sections
has been made rigid (as the experimental conditions). In this case
the analyses have been performed using only two modelling crite-
ria: each spot weld region has been modelled through the spot ele-
ment (model CÞ or using a single rigid beam connecting the two
sheets (shell-beam model B); the corresponding FE models are



Fig. 16. Characteristics of spot welded T-specimen ðE ¼ 193 GPa; m ¼ 0:3Þ and corresponding FE model typologies.
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shown in Fig. 16. In previous example the technique that makes
use of spot element has already been compared with the very re-
fined models A, which make use of brick elements.

The comparison has been performed in term of the global stiff-
ness of the joint in two directions, evaluating the ratio between the
applied load and the displacement along the corresponding force
direction. The stiffness has also been accounted experimentally
in the two x and y directions shown in Fig. 16. Results in Table 2
(the values of the last row are the maximum and minimum values
accounted in experimental tests), confirm the good results
achieved by spot element use. Note that spot element model has
a minor influence on mesh size and results obtained by the coarse
model C2 remain good.

A more selective test has been performed in this case, with ref-
erence to spot loads. In Table 3 the loads acting on the most
stressed spot welds are shown, when a load along y-axis
Py ¼ 1000 N has been applied to the T-specimen. It is still possible
to point out the relevant difference between results obtained by
shell-Spot Element model and shell-beam model; note that the
estimate of the torque moment values, in local z-direction, evalu-
ated using model B, are null.
5. First results and discussion: rivet model

Some other results are discussed here, aiming at evaluating the
reliability and potential use of the spot element in the simulation
of riveted joints. As an example, a cross specimen (Fig. 17) has been
firstly modelled by FE, with spot element in rivet version (j–1 and
f–1). A comparison of the proposed procedure (use of spot ele-
ment) with a very accurate 3D model of rivet has been performed.
The 3D FE model, here named full FEM, presents a central nugget
modelled by means of 8 node solid elements, having 3 dofs per
node. The typology of rivet here considered is typical of aeronautic
joint, i.e. the blind rivet. A Cherrymax� rivet (as scheme in Fig. 18a)
having an aluminium sleeve (QQ-A-430) with a steel stem (AMS
6322) has been considered; the rivet diameter is 5.1 mm. The head
and the shop head of the rivet have been simplified in the 3D FE
model as two cylinders (Fig. 18b) and their diameters have been
considered in the mounted blind rivet: their values are 9.5 mm
and 6 mm respectively. These simplifications have a very low influ-
ence on joint stiffness behaviour. The diameter of the mounted riv-
et has been considered as equal to the specimen’s hole
ðdrivet ¼ dhole ¼ 5:1 mmÞ.

Contact elements are used in order to account for the connec-
tion between the two metal sheet and the heads of rivet, between
the hole and the rivet and between the inner part of the two linked
plates (Fig. 18c). A classical Coulomb-friction model, with an as-
sumed friction coefficient ðf ¼ 0:1Þwas used in all the contact pairs
in the model (surface to surface model). A pre-tension of 50 MPa
has been imposed to the rivets in the first step of the analysis.
The pre-tension value has a low influence on global stiffness of
the joint, as confirmed by preliminary FE analysis. Suitable con-
straints allow for a proper junction between translational dofs of
solid elements and rotational dofs of shell elements. During rivet
assembly, the rivet undergoes a local deformation and the little



Table 2
Comparison with experimental data of results concerning two different model typologies and two level of mesh refinement, in terms of global stiffness Kstructure

x of the T-specimen.

Model typology Model nodes Kstructure
x ½N=mm� Error Kstructure

x ½%� Kstructure
y ½N=mm� Error Kstructure

y ½%�

B1 1481 1974 �10.0 � �24.2 1010 �9.0 � �10.1
B2 12085 1705 �22.2 � �34.5 931 �16.2 � �17.1
C1 1477 2272 +3.6 � �12.7 1067 �3.9 � �5.0
C2 11597 2421 +10.4 � �7.0 1105 �0.5 � �1.6
Experimental data 2193 � 2604 – 1111 � 1123 –

Table 3
Comparison among results concerning two different model typologies and experimental data, in terms of loads acting on the most loaded spot welds (upper sheet and lower
sheet) of the T-specimen (Fig. 16); Py ¼ 1000 N. Spot local coordinate system Ox0y0z0 in Fig. 16.

Model typology Spot no. FX ½N� FY ½N� FZ ½N� MX ½N �mm� MY ½N �mm� MZ ½N �mm�

C1 1–2 Up. �2177.0 �460.9 5.4 113.4 8.9 488.9
Lo. 2177.0 460.9 �5.4 2063.6 �469.8 �488.9

B1 Up. �2192.5 �304.5 11.0 217.0 �0.1 0.0
Lo. 2192.5 304.5 �11.0 1975.6 �304.4 0.0

C1 3–5 Up. �1652.2 653.4 4.8 1656.4 592.8 �866.8
Lo. 1652.2 �653.4 �4.8 �4.2 60.6 866.8

B1 Up. �1689.4 500.9 �2.3 1574.8 432.4 0.0
Lo. 1689.4 �500.9 2.3 114.5 68.6 0.0

C1 4 Up. �1107.9 0.0 0.9 16.7 0.0 0.0
Lo. 1107.9 0.0 �0.9 1091.2 0.0 0.0

B1 Up. �1034.3 0.0 �0.2 83.0 0.0 0.0
Lo. 1034.3 0.0 0.2 951.3 0.0 0.0
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gap is made void. Also, this aspect is not taken into account given
its low influence in joint stiffness behaviour, still as verified in pre-
liminary FE analysis. In the full FEM large displacement hypothesis
is considered.

The comparison is presented in terms of global stiffness of the
riveted cross specimens Kstructure

z when a z-load Fz ¼ 100N is applied
to the specimen. Assuming results obtained by full FEM as refer-
ence, Table 4 shows results in terms of stiffness error for various
values of j set in spot element definition and different mesh
refinement. The central region, modelled with the spot element,
has a dimensionless radius bmod ¼ 0:64.

The comparison points out that a very good definition of the
spot element behaviour occurs when j assumes values between
0.4 and 0.6; according to the specimen’s geometry, the f parameter,
which has a remarkable weight only in the in -plane stiffness of the
joint, has very limited impact in terms of local stiffness of the joint,
and its variation is not considered here.

Moreover, by observing results on Table 4, the low influence of
model mesh size on results is confirmed, also in this case of spot
element in rivet version.

In Fig. 19, the dimensionless uz displacement on cross model (uz

is adimensionalized with respect to the maximum z -displacement
picked up by full FEM) is reported along x -axis (see coordinate sys-
Fig. 17. Characteristics of riveted cross specimen ðE ¼ 72:8 GPa; m ¼ 0
tem in Fig. 17). The comparison between FE results performed
using the different j values confirms the good definition of spot
element when j assumes the values before remarked.

With the purpose of evaluating the reliability of results ob-
tained using the spot element, one more example is introduced.
A simple riveted lap shear specimen (Fig. 20), very similar to the
one described above and here used for experimental investigation,
has been modelled by FE with spot element in rivet version (Cher-
rymax� rivet before described has been used). A comparison with a
lap shear FE model having a full FE model of rivet, equal to the one
before described in cross joint modelling, has been conducted. The
free length shown in Fig. 20 is the actual distance between the
clamps of the testing machine; in the specimen FE model this dis-
tance is considered as the total length, where constraints are ap-
plied (here only x translational dofs are free, in the nodes where
the load is applied).

The comparison is at first presented in terms of global stiffness
of the specimen Kstructure

x , assuming results obtained by full FEM as
reference. Table 5 shows results in terms of stiffness error for var-
ious values of j and f set in spot element definition, for Fx ¼ 500 N
and Fx ¼ 1000 N. The comparison shows that a very good definition
of the spot element behaviour occurs when j assumes values be-
tween 0.4 and 0.8 and f assumes values between 0.25 and 0.3.
:27Þ and shell-Spot Element model in rivet version ðbmod ¼ 0:68Þ.



Fig. 18. Cherrymax� rivet joining two sheets (a); detail of full FE model (b); contact elements (c) (Rivet radius b ¼ driv=2 ¼ 2:6 mm, sheet thickness t ¼ 2 mm, Steel stem
diameter 2.2 mm).

Table 4
Percentage error of z-axis global stiffness of specimen Kstructure

z between Spot Element model results and full FEM results, for various values of j and different mesh refinement in
Spot Element model.

N ¼ 48 j

0 0.2 0.4 0.5 0.6 0.8 1

Error Kstructure
z [%] �16.29 �10.24 �3.71 �0.16 3.30 10.68 16.94

j ¼ 0:5 Number of radial beam groups N

96 64 48 32 24 16

Error Kstructure
z [%] �0.07 �0.11 �0.16 �0.50 �0.29 �1.16

Fig. 19. Dimensionless uz displacement distribution curve as functions of x concerning cross specimen of Fig. 17 ðFz ¼ 100 NÞ: comparison between results obtained by full
FEM and shell-Spot Element model with various values of j.
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Results on Table 6, in terms of percentage error of rivet rotation
along y-axis uyriv , indicates that the values of j 0.4 and 0.6 are the
best values. As expected, there are no influence of f on rivet
rotation.

The results obtained by previous numerical comparisons are
also compared with experimental results. The experimental inves-
tigation has been performed by testing aluminium tensile -shear
specimens before described (Fig. 20).

In order to evaluate the stiffness behaviour of the riveted joint,
the test has been performed applying an x-force Fx ¼ 1000 N. The
stiffness of the joint was evaluated using an axial extensometer,
with a base distance of 30 mm, which allows to measure the rela-
tive x-displacement of two points located on the two sheets (as
shown in Fig. 20).

In Fig. 21, the ux displacements distribution curve as a function
of x is shown; here the comparison is made between results ob-
tained by full FEM and shell-Spot Element with various settings
of j and for f ¼ 0:3. The experimental data are shown in terms
of relative ux displacement between the two definite points of
the extensometer.

The influence on specimen stiffness of j parameter on displace-
ment is appreciable for positive x values; this is due to the con-
straint conditions of the model (a full clamping is present for
x ¼ �65 mm) and to the known low value of the actual stiffness



Fig. 20. Characteristics of simple lap specimens ðE ¼ 72:8 GPa; m ¼ 0:27Þ riveted with Cherrymax� rivet described above and shell-Spot Element model in rivet version.

Table 5
Percentage error of x-axis global stiffness of specimen Kstructure

x between Spot Element model results and full FEM results.

j

0 0.2 0.4 0.6 0.8 1

Error Kstructure
x [%]

f 0.2 �12.77 �10.85 �8.60 �6.45 �4.55 �3.22 Fx ¼ 500 N
0.25 �5.26 �3.34 �1.09 1.06 2.96 4.30
0.3 �0.11 1.82 4.07 6.21 8.11 9.45

Error Kstructure
x [%]

f 0.2 �16.32 �14.34 �12.02 �9.80 �7.84 �6.46 Fx ¼ 1000 N
0.25 �8.58 �6.59 �4.27 �2.06 �0.10 1.29
0.3 �3.26 �1.27 1.05 3.26 5.22 6.60

Table 6
Percentage error of rivet rotation along y-axis uyriv between Spot Element model results and full FEM results.

j

0 0.2 0.4 0.6 0.8 1

Error uyriv [%] �9.80 �4.01 2.73 9.17 14.87 18.89 Fx ¼ 500 N
Error uyriv [%] �16.47 �10.34 �3.18 3.64 9.69 13.96 Fx ¼ 1000 N
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of the rivet region if compared to the stiffness of the rest of the
structure.

A very good match between the experimental and numerical
data is evident. Results obtained using spot element having
f ¼ 0:3 and j ¼ 0:4 show an excellent match with experimental
data and full FEM results. Note that the best value of j here found
for lap shear specimen is the same of the best value obtained from
the analyses conducted on the cross specimen. This confirm the
validity of the reference theoretical model here introduced.
6. Conclusions

A new theoretical approach, based on theory of elasticity, and
new closed form solutions are presented in order to define the struc-
tural behaviour of riveted and spot welded joints. The closed-form
solutions lead to the definition of a joint element, useful to FE models
of multi-joints structures. The objective is an accurate evaluation of
the local stiffness of spot joints in FE analysis, which is fundamental
to perform a reliable simulation of multi-joints structures and, con-
sequently, a good estimate of loads acting on spots. On the other
hand, a low entry of degrees of freedom is needed when several spot
joints are present in a complex structure.
In the paper a new spot element is introduced, based on a new
theoretical framework and allowing to precisely evaluate both lo-
cal and overall stiffness of riveted or spot welded joints. The theo-
retical model is a circular plate with a central rigid nugget, flexibly
connected with the inner radius of the plate, subjected to out-of-
plane loads and in-plane loads.

The spot element combines the precision in the simulation with
a very limited number degrees of freedom rivet in the overall finite
element model of structure. The great advantage provided by
introducing the theoretical model presented here makes it possible
to encompass spot weld or several different rivet techniques and
manufacturing technologies, through the use of two parameters
(j and f). This allows to tune the stiffness modelling with the ac-
tual structural behaviour of the rivet technique considered, which
furthermore depends on several controlled and non-controlled
technological parameters.

The method is also able to follow rather accurately all resultant
load acting on the spot and the stress state in the surrounding area
of each spot. The correct evaluation of loads allows to evaluate lo-
cal stress or structural stress around rivets or spot welds, using
closed form solutions here presented as well as other solutions
available in literature.. Moreover, it is possible to follow and simu-
late changes in local stiffness of spot welds or rivets during fatigue



Fig. 21. Displacements ux distribution curve as functions of x concerning lap shear specimen of Fig. 20 ðFx ¼ 1000 NÞ: comparison between results obtained by full FEM and
shell-Spot Element model with various values of j and f ¼ 0:3.
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cycles, managing the mechanical characteristics of the spot
element.

In this paper the new spot element has been applied to simulate
the structural behaviour of various simple joint geometries and the
results have been compared with some experimental data. The
comparison clearly show the good accuracy of the results, that
can be obtained with a very small number of dofs. The use of a spot
element allows to significantly improve the behaviour simulation
of spot welded structures and riveted structures, as compared to
the widespread use of a simple single-beam element connecting
two metal sheets.
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