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of extending this technique to introduce Hermite-based Sheffer polynomials (for example,
Hermite–Laguerre and Hermite–Sister Celine’s polynomials) is also investigated.
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1. Introduction

Recently an increasing interest has grown around operational techniques (involving differential operators) and special
functions. The use of operational techniques combined with the principle of monomiality is a fairly useful tool for treating
various families of special polynomials as well as their new and known generalizations. The idea of monomiality came
from the concept of poweroid suggested by Steffensen [20]. The monomiality principle is reformulated and developed by
Dattoli [6].

According to the principle of monomiality, a family of polynomials pn(x) (n ∈ N, x ∈ C) is said to be “quasi-monomial,”
if two operators M̂ and P̂ , hereafter called “multiplicative” and “derivative” operators respectively can be defined in such a
way that

M̂
{

pn(x)
} = pn+1(x),

P̂
{

pn(x)
} = npn−1(x),

p0(x) = 1. (1.1)

The operators M̂ and P̂ can be recognized as raising and lowering operators acting on the polynomials pn(x). These
operators satisfy the following commutation relation

[ P̂ , M̂] = 1̂ (1.2)

and thus display a Weyl group structure.
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The properties of the polynomials pn(x) can be deduced from those of the M̂ and P̂ operators. If the operators M̂ and P̂
possess a differential realization, then the polynomials pn(x) satisfy the differential equation

M̂ P̂
{

pn(x)
} = npn(x). (1.3)

The pn(x) family can be explicitly constructed through the action of M̂n on p0(x) (in the following, we shall always set
p0(x) = 1):

pn(x) = M̂n{1} (1.4)

and consequently the generating function of pn(x) can be cast in the form

G(x, t) = exp(tM̂){1} =
∞∑

n=0

pn(x)
tn

n! . (1.5)

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) [3], defined by

Hn(x, y) = n!
[ n

2 ]∑
r=0

xn−2r yr

r!(n − 2r)! , (1.6)

have shown to be quasi-monomials under the action of the operators [6, p. 148 (1.9)],

M̂ = x + 2y
∂

∂x
,

P̂ = ∂

∂x
. (1.7)

It is easily seen from definition (1.6) that

Hn(2x,−1) = Hn(x),

and

Hn

(
x,−1

2

)
= Hen(x), (1.8)

with Hn(x) or Hen(x) being ordinary Hermite polynomials [1]. Also

Hn(x,0) = xn. (1.9)

The properties of 2VHKdFP Hn(x, y) are derived by using the monomiality principle, according to which the differential
equation and the generating function for Hn(x, y) are given by [6, p. 149, (1.10) and (1.14)](

2y
∂2

∂x2
+ x

∂

∂x
− n

)
Hn(x, y) = 0 (1.10)

and

exp
(
xt + yt2) =

∞∑
n=0

Hn(x, y)
tn

n! , (1.11)

respectively.
From the above relations, we have

∂

∂ y
Hn(x, y) = ∂2

∂x2
Hn(x, y), (1.12)

which in view of Eq. (1.9), gives the following operational definition for Hn(x, y):

Hn(x, y) = exp

(
y

∂2

∂x2

){
xn}

. (1.13)

Further, the 3-variable Hermite polynomials (3VHP) Hn(x, y, z) are introduced [7, p. 114 (22)]

Hn(x, y, z) = n!
[ n

3 ]∑
r=0

zr Hn−3r(x, y)

r!(n − 3r)! , (1.14)

which are quasi-monomials under the action of the operators

M̂ = x + 2y
∂

∂x
+ 3z

∂2

∂x2
,

P̂ = ∂

∂x
. (1.15)
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The differential equation and the generating function for Hn(x, y, z) are given by(
3z

∂3

∂x3
+ 2y

∂2

∂x2
+ x

∂

∂x
− n

)
Hn(x, y, z) = 0 (1.16)

and

exp
(
xt + yt2 + zt3) =

∞∑
n=0

Hn(x, y, z)
tn

n! , (1.17)

respectively.
Also, the polynomials Hn(x, y, z) satisfy the following relations

∂

∂ y
Hn(x, y, z) = ∂2

∂x2
Hn(x, y, z)

and

∂

∂z
Hn(x, y, z) = ∂3

∂x3
Hn(x, y, z), (1.18)

which in view of the initial condition

Hn(x,0,0) = xn, (1.19)

gives the following operational definition for Hn(x, y, z):

Hn(x, y, z) = exp

(
y

∂2

∂x2
+ z

∂3

∂x3

){
xn}

. (1.20)

The Appell sets [2] may be defined by either of the following equivalent conditions [19, p. 398]: {An(x)} (n = 0,1,2, . . .),
is an Appell set (An being of degree exactly n) if either

(i)
d

dx
An(x) = nAn−1(x), n = 0,1,2, . . . , or (1.21)

(ii) there exists a formal power series A(t) = ∑∞
n=0 antn , a0 �= 0 such that (again formally)

A(t)exp(xt) =
∞∑

n=0

An(x)
tn

n! . (1.22)

The function A(t) may be called the determining function for the set {An(x)}. The Appell polynomials have shown to
be quasi-monomials [10] and characterized by the fact that the relevant derivative operator is just the ordinary derivative.
The Appell polynomials are very often found in different applications in pure and applied mathematics. The Appell family
includes polynomials ranging from the Hermite to the Euler ones. We recall some of the members of Appell family:

(I) If A(t) = t
(et−1)

, then

An(x) = Bn(x): The Bernoulli polynomials [18].

(II) If A(t) = 2
(et+1)

, then

An(x) = En(x): The Euler polynomials [18].

(III) If A(t) = tα

(et−1)α
, then

An(x) = B(α)
n (x): The generalized Bernoulli polynomials [15].

(IV) If A(t) = 2α

(et+1)α
, then

An(x) = E(α)
n (x): The generalized Euler polynomials [15].

(V) If A(t) = α1α2 . . . αmtm[(eα1t − 1)(eα2t − 1) . . . (eαmt − 1)]−1, then

An(x) = The Bernoulli polynomials of order m [14].

(VI) If A(t) = tm

et−∑m−1
h=0 ( th

h! )
, then

An(x) = B[m−1]
n (x), m � 1: The new generalized Bernoulli polynomials [5].
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(VII) If A(t) = 2m[(eα1t + 1)(eα2t + 1) . . . (eαmt + 1)]−1, then

An(x) = The Euler polynomials of order m [14].

(VIII) If A(t) = exp(ξ0 + ξ1t + ξ2t2 + · · · + ξr+1tr+1), ξr+1 �= 0, then

An(x) = The generalized Gould–Hopper polynomials [13], including the Hermite polynomials when r = 1 and

classical 2-orthogonal polynomials when r = 2.

(IX) If A(t) = 1
(1−t)m+1 , then

An(x) = n!G(m)
n (x): The Miller–Lee polynomials [1,8], including the truncated exponential polynomials en(x),

when m = 0 and modified Laguerre polynomials f (α)
n (x) [17], when m = α − 1.

(X) If A(t) = 2t
(et+1)

, then

An(x) = Gn(x): The Genocchi polynomials [9].

Operational methods can be exploited to simplify the derivation of the properties associated with ordinary and gener-
alized special functions and to define new families of functions. In the case of multi-variable generalized special functions,
the use of operational techniques combined with the principle of monomiality provides new means of analysis for the so-
lutions of a wide class of partial differential equations often encountered in physical problems. The importance of the use
of operational techniques in the study of special functions and their applications has been recognized by Dattoli and his
co-workers, see for example [6–12].

Motivated by these contributions, in this paper, we introduce Hermite-based Appell polynomials and discuss their prop-
erties and applications.

2. Hermite-based Appell polynomials

To generate Hermite-based Appell polynomials associated with 3VHP Hn(x, y, z), we introduce the generating function

G(x, y, z; t) = A(t)exp(M̂t),

or, equivalently

G(x, y, z; t) = A(t)exp

((
x + 2y

∂

∂x
+ 3z

∂2

∂x2

)
t

)
, (2.1)

which is the result of replacement of x by the multiplicative operator M̂ of Hn(x, y, z) given in Eq. (1.15).
Now, decoupling the exponential operator appearing in Eq. (2.1), by using the Berry decoupling identity [11]

e Â+B̂ = em2/12e((− m
2 ) Â1/2+ Â)eB̂ , [ Â, B̂] = mÂ1/2, (2.2)

we get the generating function for Hermite-based Appell polynomials H An(x, y, z) in the form

G(x, y, z; t) = A(t)exp
(
xt + yt2 + zt3) =

∞∑
n=0

H An(x, y, z)
tn

n! . (2.3)

Differentiating Eq. (2.3) partially with respect to x, y and z, we get the following differential recurrence relations satisfied
by the Hermite–Appell polynomials H An(x, y, z):

∂

∂x
H An(x, y, z) = n H An−1(x, y, z),

∂

∂ y
H An(x, y, z) = n(n − 1) H An−2(x, y, z),

∂

∂z
H An(x, y, z) = n(n − 1)(n − 2) H An−3(x, y, z). (2.4)

From relations (2.4), we observe that H An(x, y, z) are solutions of the equations

∂

∂ y
H An(x, y, z) = ∂2

∂x2 H An(x, y, z),

∂
H An(x, y, z) = ∂3

3 H An(x, y, z), (2.5)

∂z ∂x
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under the following initial condition

H An(x,0,0) = An(x). (2.6)

Thus from Eqs. (2.5) and (2.6), it follows that:

H An(x, y, z) = exp

(
y

∂2

∂x2
+ z

∂3

∂x3

){
An(x)

}
. (2.7)

According to the aforementioned point of view, the Hermite–Appell polynomials H An(x, y, z) can by generated from the
corresponding Appell polynomials An(x) by merely employing the operational rule (2.7). For example, the Hermite–Bernoulli
polynomials H Bn(x, y, z) and Hermite–Euler polynomials H En(x, y, z) are defined by means of the operational definitions

H Bn(x, y, z) = exp

(
y

∂2

∂x2
+ z

∂3

∂x3

){
Bn(x)

}
, (2.8)

and

H En(x, y, z) = exp

(
y

∂2

∂x2
+ z

∂3

∂x3

){
En(x)

}
, (2.9)

respectively.
Also, in view of Eq. (2.3), we get the generating function for Hermite–Appell polynomials by taking A(t) of the cor-

responding Appell polynomials. For example, by choosing A(t) given in (I), (II) and (IX) of previous section, we get the
generating functions for some polynomials belonging to Hermite–Appell family.

For A(t) = t
(et−1)

, i.e. corresponding to the generating function for Bernoulli polynomials Bn(x) [18]

t

(et − 1)
exp(xt) =

∞∑
n=0

Bn(x)
tn

n! , |t| < 2π, (2.10)

we get the following generating function for Hermite–Bernoulli polynomials H Bn(x, y, z):

t

(et − 1)
exp

(
xt + yt2 + zt3) =

∞∑
n=0

H Bn(x, y, z)
tn

n! . (2.11)

Next, for A(t) = 2
(et+1)

, i.e. corresponding to the generating function for Euler polynomials En(x) [18]

2

(et + 1)
exp(xt) =

∞∑
n=0

En(x)
tn

n! , |t| < π, (2.12)

we get the following generating function for Hermite–Euler polynomials H En(x, y, z):

2

(et + 1)
exp

(
xt + yt2 + zt3) =

∞∑
n=0

H En(x, y, z)
tn

n! . (2.13)

Again, for A(t) = 1
(1−t)m+1 , i.e. corresponding to the generating function for Miller–Lee polynomials G(m)

n (x)

[8, p. 21, (1.11)]

1

(1 − t)m+1
exp(xt) =

∞∑
n=0

G(m)
n (x)tn, |t| < 1, (2.14)

we get the following generating function for Hermite–Miller–Lee polynomials H G(m)
n (x, y, z):

1

(1 − t)m+1
exp

(
xt + yt2 + zt3) =

∞∑
n=0

H G(m)
n (x, y, z)tn, (2.15)

which for m = 0, gives the generating function for Hermite-truncated exponential polynomials H en(x, y, z):

1

(1 − t)
exp

(
xt + yt2 + zt3) =

∞∑
n=0

H en(x, y, z)tn (2.16)

and for m = α − 1, gives the generating function for Hermite-modified Laguerre polynomials H f (α)
n (x, y, z):

1

(1 − t)α
exp

(
xt + yt2 + zt3) =

∞∑
H f (α)

n (x, y, z)tn. (2.17)

n=0
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Further, we recall that the Bernoulli polynomials Bn(x) are defined by means of the following series:

Bn(x) =
n∑

r=0

(
n

r

)
Br xn−r, n � 0, (2.18)

where Bn := Bn(0) are the Bernoulli numbers defined by the generating function

t

(et − 1)
=

∞∑
n=0

Bn
tn

n! . (2.19)

Now, operating exp(y ∂2

∂x2 + z ∂3

∂x3 ) on both sides of Eq. (2.18), we find

exp

(
y

∂2

∂x2
+ z

∂3

∂x3

){
Bn(x)

} =
n∑

r=0

(
n

r

)
Br exp

(
y

∂2

∂x2
+ z

∂3

∂x3

){
xn−r}, (2.20)

which on using the operational definitions (2.8) and (1.20) in the L.H.S. and R.H.S. respectively, yields the series defining the
Hermite–Bernoulli polynomials H Bn(x, y, z) in terms of 3VHP Hn(x, y, z) as

H Bn(x, y, z) =
n∑

r=0

(
n

r

)
Br Hn−r(x, y, z). (2.21)

Similarly, from the series defining the Euler polynomials En(x):

En(x) =
n∑

k=0

2−k
(

n

k

)
Ek

(
x − 1

2

)n−k

, (2.22)

where En := 2n En( 1
2 ) are the Euler numbers defined by the generating function

2et

(e2t + 1)
=

∞∑
n=0

En
tn

n! , (2.23)

we get the series definition for Hermite–Euler polynomials H En(x, y, z) in terms of 3VHP Hn(x, y, z) as

H En(x, y, z) =
n∑

k=0

2−k
(

n

k

)
Ek Hn−k

(
x − 1

2
, y, z

)
. (2.24)

Thus, we conclude that the series definition for Hermite–Appell polynomials H An(x, y, z) can be obtained from the series
defining the corresponding Appell polynomials on replacing the monomial xn by the 3VHP Hn(x, y, z).

3. Applications

Several identities involving Appell polynomials are known. The formalism developed in the previous section can be used
to obtain the corresponding identities involving Hermite–Appell polynomials.

To achieve this, we perform the following operation:

(O) Operating exp(y ∂2

∂x2 + z ∂3

∂x3 ) on both sides of a given relation.

First, we recall the following functional equations involving Bernoulli polynomials Bn(x) [16, p. 26]:

Bn(x + 1) − Bn(x) = nxn−1, n = 0,1,2, . . . ,

n−1∑
m=0

(
n

m

)
Bm(x) = nxn−1, n = 2,3,4, . . . ,

Bn(mx) = mn−1
m−1∑
l=0

Bn

(
x + l

m

)
, n = 0,1,2, . . . ; m = 1,2,3, . . . .

Now, performing the operation (O) on the above equations and using the operational definitions (1.20) and (2.8) on the
resultant equations we get the following identities involving Hermite–Bernoulli polynomials H Bn(x, y, z):
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H Bn(x + 1, y, z) − H Bn(x, y, z) = nHn−1(x, y, z), n = 0,1,2, . . . , (3.1)
n−1∑
m=0

(
n

m

)
H Bm(x, y, z) = nHn−1(x, y, z), n = 2,3,4, . . . , (3.2)

H Bn
(
mx,m2 y,m3z

) = mn−1
m−1∑
l=0

H Bn

(
x + l

m
, y, z

)
, n = 0,1,2, . . . ; m = 1,2,3, . . . . (3.3)

Similarly, corresponding to the functional equations involving Euler polynomials En(x) [16, p. 30]:

En(x + 1) + En(x) = 2xn,

En(mx) = mn
m−1∑
l=0

(−1)l En

(
x + l

m

)
, n = 0,1,2, . . . ; m odd,

we find the following identities involving Hermite–Euler polynomials H En(x, y, z):

H En(x + 1, y, z) + H En(x, y, z) = 2Hn(x, y, z), (3.4)

H En
(
mx,m2 y,m3z

) = mn
m−1∑
l=0

(−1)l
H En

(
x + l

m
, y, z

)
, n = 0,1,2, . . . ; m odd. (3.5)

Further, we recall the following relations between Bernoulli and Euler polynomials [16, pp. 29–30]

Bn(x) = 2−n
n∑

m=0

(
n

m

)
Bn−m Em(2x), n = 0,1,2, . . . ,

En(x) = 2n+1

(n + 1)

[
Bn+1

(
x + 1

2

)
− Bn+1

(
x

2

)]
, n = 0,1,2, . . . ,

En(mx) = − 2mn

(n + 1)

m−1∑
l=0

(−1)l Bn+1

(
x + l

m

)
, n = 0,1,2, . . . ; m even,

which on using the operational definitions (2.8) and (2.9), after performing the operation (O), yield the following relations
between Hermite–Bernoulli and Hermite–Euler polynomials:

H Bn(x, y, z) = 2−n
n∑

m=0

(
n

m

)
Bn−m H Em(2x,4y,8z), n = 0,1,2, . . . , (3.6)

H En(x, y, z) = 2n+1

(n + 1)

[
H Bn+1

(
x + 1

2
,

y

4
,

z

8

)
− H Bn+1

(
x

2
,

y

4
,

z

8

)]
, n = 0,1,2, . . . , (3.7)

H En
(
mx,m2 y,m3z

) = − 2mn

(n + 1)

m−1∑
l=0

(−1)l
H Bn+1

(
x + l

m
, y, z

)
, n = 0,1,2, . . . ; m even. (3.8)

The above examples show that by using the operation (O) on an identity involving Appell polynomials and then using
the operational definition of Hermite–Appell polynomials, we get the corresponding identity involving Hermite–Appell poly-
nomials. To provide further examples, we consider the following recently derived recurrence relation involving Genocchi
polynomials Gn(x) [9, p. 1038, (42)]

2nxn−1 = Gn+1(x) + Gn(x),

which yields the following recurrence relation involving 3VHP Hn(x, y, z) and Hermite–Genocchi polynomials H Gn(x, y, z):

2nHn−1(x, y, z) = H Gn+1(x, y, z) + H Gn(x, y, z). (3.9)

Also, corresponding to the summation formula involving Genocchi polynomials Gn(x) [9, p. 1038, (43)]

m∑
k=1

(−1)k(x + k)n = 1

2(n + 1)

[
(−1)mGn+1(x + m + 1) − Gn+1(x)

]
,

we find the following summation formula involving 3VHP Hn(x, y, z) and Hermite–Genocchi polynomials H Gn(x, y, z):

m∑
k=1

(−1)k Hn(x + k, y, z) = 1

2(n + 1)

[
(−1)m

H Gn+1(x + m + 1, y, z) − H Gn+1(x, y, z)
]
. (3.10)
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4. Concluding remarks

The Appell family {An(x)}∞n=0 generated by (1.22) is obviously rather restrictive; it does not allow the treatment of some
other polynomial sets on the Laguerre or the Bessel polynomials within the context of the operational formalism. Recently,
Dattoli et al. [9] have shown that the extension of Appell family to Sheffer family [18] allows such a possibility.

A polynomial sequence {Sn(x)} (n = 0,1,2, . . .) (Sn(x) being a polynomial of degree n), is called of a Sheffer A-type
zero [18] (which we shall call here Sheffer-type) if Sn(x) possesses the following exponential generating function:

S(t)exp
(
xH(t)

) =
∞∑

n=0

Sn(x)
tn

n! , (4.1)

in which H(t) and S(t) have (at least the formal) expansions

H(t) =
∞∑

n=0

hntn+1, h0 �= 0,

and

S(t) =
∞∑

n=0

antn, a0 �= 0,

respectively.
Clearly the Appell polynomials belong to this family too. If Sn(x) are of Sheffer type, then it is always possible to find the

explicit representations of the multiplicative and derivative operators M̂ and P̂ . Conversely, if M̂ = M̂(x, D) and P̂ = P̂ (x, D)

(D ≡ d
dx ), then pn(x) of Eq. (1.1) are necessarily of Sheffer-type, see for details [4] and references cited therein. Among the

polynomials encountered in quantum mechanics, Hermite and Laguerre polynomials are of Sheffer type, whereas Legendre,
Jacobi and Gegenbauer polynomials are not.

We note that if

S(t) = 1

1 − t
and H(t) = −t

(1 − t)
,

then Sn(x) = n!Ln(x), where Ln(x) are the Laguerre polynomials [18].
Again, if

S(t) = 1

1 − t
and H(t) = −4t

(1 − t)2
,

then Sn(x) = n! fn(x), where fn(x) are the Sister Celine polynomials [18].
Let us explore the possibility of introducing some polynomials belonging to Hermite–Sheffer family.
Starting from the generating function for Laguerre polynomials

1

(1 − t)
exp

(
− xt

(1 − t)

)
=

∞∑
n=0

Ln(x)tn (4.2)

and replacing x by the multiplicative operator M̂ of Hn(x, y, z), we find

H(x, y, z; t) = 1

(1 − t)
exp

(
−

(
x + 2y

∂

∂x
+ 3z

∂2

∂x2

)(
t

1 − t

))
. (4.3)

Now, decoupling the exponential operator in (4.3) by using the identity (2.2), we get the generating function for Hermite–
Laguerre polynomials H Ln(x, y, z) in the form:

H(x, y, z; t) = 1

(1 − t)
exp

(
− xt

1 − t
+ yt2

(1 − t)2
− zt3

(1 − t)3

)
=

∞∑
n=0

H Ln(x, y, z)tn. (4.4)

Next, we consider the generating function for Sister Celine’s polynomials fn(x) [18, p. 292, (18)]

1

(1 − t)
exp

(
− 4xt

(1 − t)2

)
=

∞∑
n=0

fn(x)tn, (4.5)

which on replacing x by the multiplicative operator M̂ of Hn(x, y, z) and decoupling the exponential operator in the resul-
tant equation using identity (2.2) yields the generating function for Hermite–Sister Celine’s polynomials H fn(x, y, z) in the
form:

1

(1 − t)
exp

(
− 4xt

(1 − t)2
+ 16yt2

(1 − t)4
− 64zt3

(1 − t)6

)
=

∞∑
H fn(x, y, z)tn. (4.6)
n=0
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In this paper, it has been shown that the Hermite-based Appell polynomials can be “generated” by replacing x with the
multiplicative operator M̂ of 3VHP Hn(x, y, z) in the generating function of Appell polynomials. The Sheffer polynomials,
which include Appell polynomials as a special case along with the underlying operational formalism, offer a powerful tool
for investigation of the properties of a wide class of polynomials. Here, we have introduced Hermite–Laguerre and Hermite–
Sister Celine’s polynomials as two members of the family of Hermite-based Sheffer polynomials. A general approach to
generate Hermite-based Sheffer polynomials associated with 3VHP Hn(x, y, z) will be discussed in a forthcoming investiga-
tion. Also, there are possibilities to generate Hermite-based Appell and Hermite-based Sheffer polynomials associated with
m-variable Hermite polynomials Hn(x1, x2, . . . , xm−1, xm).

References

[1] L.C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, 1985.
[2] P. Appell, Sur une classe de polynom̂es, Ann. Sci. Ecole Norm. Sup. 9 (2) (1880) 119–144.
[3] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’ Hermite, Gauthier–Villars, Paris, 1926.
[4] P. Blasiak, G. Dattoli, A. Horzela, K.A. Penson, Representations of monomiality principle with Sheffer-type polynomials and bason normal ordering,

Phys. Lett. A 352 (2006) 7–12.
[5] G. Bretti, P. Natalini, P.E. Ricci, Generalizations of the Bernoulli and Appell polynomials, Abstr. Appl. Anal. 7 (2004) 613–623.
[6] G. Dattoli, Hermite–Bessel and Laguerre–Bessel functions: A by product of the monomiality principle, in: Advanced Special Functions and Applications,

Melfi, 1999, in: Proc. Melfi Sch. Adv. Top. Math. Phys., vol. 1, Aracne, Rome, 2000, pp. 147–164.
[7] G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math. 118 (2000) 111–123.
[8] G. Dattoli, S. Lorenzutta, D. Sacchetti, Integral representations of new families of polynomials, Ital. J. Pure Appl. Math. 15 (2004) 19–28.
[9] G. Dattoli, M. Migliorati, H.M. Srivastava, Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials, Math.

Comput. Modelling 45 (2007) 1033–1041.
[10] G. Dattoli, M. Migliorati, Subuhi Khan, Appell polynomial series expansions, preprint.
[11] G. Dattoli, P.L. Ottavini, A. Torre, L. Vázquez, Evolution operator equations; integration with algebraic and finite difference methods, applications to

physical problem in classical and quantum mechanics and quantum field theory, Rev. Nuovo Cimento Soc. Ital. Fis. (4) 20 (2) (1997) 1–133.
[12] G. Dattoli, A. Torre, Operational identities and properties of ordinary and generalized special functions, J. Math. Anal. Appl. 236 (1999) 399–414.
[13] K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math. 70 (2) (1996) 279–295.
[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Function, vols. I and II, McGraw–Hill Book Company, New York–Toronto–

London, 1953.
[15] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Function, vol. III, McGraw–Hill Book Company, New York–Toronto–London,

1955.
[16] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966.
[17] E.B. McBride, Obtaining Generating Functions, Springer-Verlag, New York–Heidelberg–Berlin, 1971.
[18] E.D. Rainville, Special Functions, Macmillan, New York, 1960, reprinted by Chelsea Publ. Co., Bronx, New York, 1971.
[19] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Press–Ellis Horwood Limited–John Wiley and Sons, New York–Chichester–

Brisbane–Toronto, 1984.
[20] J.F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta Math. 73 (1941) 333–366.


	Hermite-based Appell polynomials: Properties and applications
	Introduction
	Hermite-based Appell polynomials
	Applications
	Concluding remarks
	References


