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tion.
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Detection of Metabolites of Fumaric Acid Esters in Human
Urine: Implications for Their Mode of Action
Journal of Investigative Dermatology (2009) 129, 231–234; doi:10.1038/jid.2008.197; published online 14 August 2008

TO THE EDITOR
In the treatment of psoriasis, fumaric
acid esters show good clinical efficacy
combined with a favorable safety pro-
file (Mrowietz et al., 1999).

Fumaderm, registered in Germany,
consists of dimethylfumarate (DMF) and
three salts of monoethylfumarate (MEF),
and it has been shown that only DMF is
required for clinical effect (Nieboer

et al., 1990). It is not yet clear whether
DMF itself represents the active com-
pound in vivo because only its hydro-
lysis product monomethylfumarate
(MMF) could be detected in the plasma
of healthy humans after oral intake
(Litjens et al., 2004a).

DMF exerts pharmacodynamic effects
in low concentrations in vitro but could
not be detected in vivo. In contrast, MMF
showed in vitro effects only at concen-

Abbreviations: DMF, dimethylfumarate; GS-DMS, S-(1,2-dimethoxycarbonylethyl)glutathione;
GSH, glutathione; MEF, monoethylfumarate; MMF, monomethylfumarate; NAC-DMS, N-acetyl-S-(1,2-
dimethoxycarbonylethyl)cysteine; NAC-MES, mixture of N-acetyl-S-(1-carboxy-2-ethoxycarbonylethyl)-
cysteine and N-acetyl-S-(2-carboxy-1-ethoxycarbonylethyl)cysteine; NAC-MMS, mixture of N-acetyl-S-
(1-carboxy-2-methoxycarbonylethyl)cysteine and N-acetyl-S-(2-carboxy-1-methoxycarbonylethyl)-cysteine
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trations much higher than those detect-
able in plasma of humans after intake of
one Fumaderm tablet (120 mg of DMF)
(Zhu and Mrowietz, 2001; Treumer
et al., 2003; Litjens et al., 2006; Gerdes
et al., 2007).

It has been shown in vitro that DMF
as an a,b-unsaturated carboxylic acid
ester reacts with glutathione (GSH)
quickly and completely at physiological
pH through a Michael-type addition
reaction, leading to the formation
of S-(1,2-dimethoxycarbonylethyl)gluta-
thione (GS-DMS). In vitro, MMF reacts

spontaneously with GSH to form a
mixture of S-(1-carboxy-2-methoxycar-
bonylethyl)glutathione and S-(2-
carboxy-1-methoxycarbonylethyl)gluta-
thione, but much slower and to a
smaller extent than DMF (Schmidt
et al., 2007). In vivo GSH-adducts
conjugates often underlie a sequence
of enzymatically catalyzed reactions to
mercapturic acids, which can be ex-
creted in the urine (Figure 1).

Here, we report the results of an
in vivo study where urine samples of
psoriasis patients were analyzed for

mercapturic acids of MMF, MEF, and
DMF (mixture of N-acetyl-S-(1-car-
boxy-2-methoxycarbonylethyl)cysteine
and N-acetyl-S-(2-carboxy-1-methoxy-
carbonylethyl)cysteine (NAC-MMS),
mixture of N-acetyl-S-(1-carboxy-2-
ethoxycarbonylethyl)cysteine and N-
acetyl-S-(2-carboxy-1-ethoxycarbonyl-
ethyl)cysteine (NAC-MES), and N-acetyl-
S-(1,2-dimethoxycarbonylethyl)cysteine
(NAC-DMS)) after oral intake of
two tablets of Fumaderm (240 mg of
DMF) under fasting conditions. The
study was conducted according to the
Declaration of Helsinki principles and
written informed consent was obtained
from all patients taking part in the
study.

A liquid chromatography/mass spec-
trometry system was used to detect
mercapturic acids. Using an ESIþ ion
source, fragmentation of NAC-MMS,
NAC-MES, and NAC-DMS was observed
characteristic for each substance. A
representative mass spectrum of a
NAC-DMS standard is shown in Figure
2a. All urine samples obtained before
drug intake were free of analytes.

In the first part of this study, rela-
tively high concentrations of NAC-DMS
and NAC-MMS, but not of NAC-MES,
were detected in the urine of three
subjects 210–240 minutes after drug
intake (NAC-MMS 4.1±3.5 mM; NAC-
DMS 5.8±2.1 mM). Six hours after
drug intake, concentrations increased
to 33.1±5.0 mM NAC-MMS and
54.4±9.5 mM NAC-DMS. A representa-
tive mass spectrum of NAC-DMS de-
tected in urine is shown in Figure 2b.

In the second part of our study,
NAC-DMS and NAC-MMS were quan-
tified in urine collected for 24 hours
from four subjects. On average, 12.4±
3.3 mg of NAC-MMS and 5.4±4.4 mg
of NAC-DMS were detected.

The presence of NAC-MMS in the
urine may result from nonenzymatic
hydrolysis of one ester group of
GS-DMS, its intermediate metabolites,
and/or NAC-DMS (Figure 1) and there-
fore seems not to be the product of a
reaction from MMF with GSH (data not
shown).

The main result of our study, the
detection of NAC-DMS in urine, sub-
stantiates that DMF treatment is GSH
consumptive. The formation of GS-
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GS-DMS is metabolized to NAC-DMS followed by excretion in the urine.
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DMS may already occur in blood cells
including immune cells of the portal
vein blood, as DMF is not detectable in
the plasma of peripheral venous blood
after oral intake of Fumaderm, has a
high tendency to penetrate into cells,
and reacts very quickly and completely
with GSH (Werdenberg et al., 2003;
Schmidt et al., 2007). This is supported
by DMF stability data, where it was
concluded that blood cells are able to
‘‘bind’’ DMF (Litjens et al., 2004b). A
reaction of DMF with intracellular GSH
in enterocytes seems to be negligible,
as DMF penetrates fast through a CaCo-
2 monolayer, and therefore cannot
react with GSH to a greater extent
(Rostami-Yazdi et al., in preparation).

Taken together, our findings can
explain the discrepancy between DMF
being active in vitro and the lack of
plasma levels in vivo. It is known that
T cells promote inflammatory events
in psoriatic skin, and treatment with
Fumaderm leads to a reduction of
T cells in vivo, which is at least in part
due to apoptosis before the clinical
effect becomes evident (Höxtermann
et al., 1998; Schimrigk et al., 2006;
Sabat et al., 2007). In vitro DMF
induces apoptosis in various cell types,
including T cells (Zhu and Mrowietz,
2001; Treumer et al., 2003).

This effect can be explained by
DMF’s ability to strongly deplete in-
tracellular GSH, which correlates with
induction of apoptosis (Held et al.,

1991; Nelson et al. 1999; Hollins
et al., 2006).

Another effect of fumaric acid ester
therapy is that peripheral blood mono-
nuclear cells of psoriasis patients pro-
duce lower levels of proinflammatory
Th-1 cytokines (Litjens et al., 2003). In
addition, it has been shown in vitro that
treatment of peripheral blood mono-
nuclear cells with 5 mM DMF inhibits
the production of proinflammatory
cytokines (Stoof et al., 2001).

These effects of DMF were linked
to the fact that in GSH-depleted mice,
a correlation with the induction of
anti-inflammatory cytokines could be
shown (Peterson et al., 1998). Further-
more, decreased GSH levels of T cells
were correlated with downregulation of
Th1-cytokines (Hadzic et al., 2005).

In summary, the postulated mode of
action of fumaric acid esters is based on
the ability of DMF to deplete intracel-
lular GSH in immune cells followed
by the generation of anti-inflammatory
cytokines and/or induction of apoptosis.

To our knowledge, the results of our
study, that a considerable part of DMF
is not hydrolyzed after oral intake
but enters circulation and reacts with
GSH in vivo, are previously unreported.
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Figure 2. NAC-DMS was determined in the urine of psoriasis patients after oral intake of Fumaderm. (a) Representative mass spectrum of an NAC-DMS

(m/z 308 [MþH]þ ) standard and (b) NAC-DMS detected in urine of psoriasis patients after application of two tablets of Fumaderm; ion source: ESIþ .

Arrows mark characteristic ions for NAC-DMS resulting from fragmentation.
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Poly(ADP-Ribose) Polymerase Mediates Inflammation
in a Mouse Model of Contact Hypersensitivity
Journal of Investigative Dermatology (2009) 129, 234–238; doi:10.1038/jid.2008.196; published online 17 July 2008

TO THE EDITOR
Contact hypersensitivity (CHS) is a form
of a delayed type of hypersensitivity, a
classic T-cell-mediated, clinically im-
portant phenomenon elicited by small
molecular weight molecules (haptens)
that bind to host proteins to form
a complete allergen (Grabbe and
Schwarz, 1998). The CHS reaction can
be divided in to two phases: sensitiza-
tion and elicitation. The elicitation
phase is dominated by the production
of proinflammatory cytokines and cel-
lular infiltration by lymphocytes and
granulocytes. Infiltration is accompa-
nied by strong oxidative stress due to
the formation of superoxide, nitric
oxide, peroxynitrite, and further reac-
tive species (Rowe et al., 1997; Ross
et al., 1998).

The poly(ADP-ribose) polymerase
(PARP) superfamily consists of 17
members (Ame et al., 2004). A sub-

group of these enzymes can be acti-
vated by DNA single-strand breaks and
aberrant DNA forms (Ame et al., 1999;
Schreiber et al., 2006). In tissues and
cells, PARP-1 is responsible for most of
the PARP activity due to its abundance
and high catalytic activity. Activated
PARP-1 uses NADþ as a substrate and
synthesizes the formation of poly(ADP-
ribose) polymers covalently attached to
different acceptor proteins. The pre-
sence of poly(ADP-ribose) polymers
may regulate the functions of the
acceptor proteins (Schreiber et al.,
2006). Inhibition of PARP activity or
knocking out the PARP-1 gene has
been shown to suppress inflammatory
reactions such as colitis, arthritis, and
uveitis (Shall and De Murcia, 2000;
Virag and Szabo, 2002; Cuzzocrea,
2005). Prevention of cellular dysfunc-
tion and inhibition of NF-kB activation
have been proposed to be the mechan-

isms underlying the anti-inflammatory
effects of PARP inhibition/knockout
(Virag and Szabo, 2002).

Poly(ADP-ribose) polymerase plays
a role in the regulation of the transcrip-
tion of various inflammatory mediators
such as cytokines, chemokines, induci-
ble nitric oxide synthase, and matrix
metalloproteinases (MMPs).

In our previous report, we have
demonstrated peroxynitrite production,
DNA breakage, and poly(ADP-ribose)
formation during the elicitation phase
of the CHS (Szabo et al., 2001). More-
over, we have shown that peroxynitrite,
superoxide, and hydrogen peroxide
impair proliferation and viability of
HaCaT keratinocytes (Szabo et al.,
2001). PARP inhibitors prevented
necrotic cell death with a slight in-
crease in apoptotic DNA fragmentation
and also reduced cytokine-induced ex-
pression of IL-8 and ICAM-1 in HaCaT
cells. (Szabo et al., 2001). Kehe et al.
(2008) reported similar findings in a
model of sulfur mustard-induced cell
death of HaCaT cells. They also found

Abbreviations: CHS, contact hypersensitivity; MMP, matrix metalloproteinase; MPO, myeloperoxidase;
PARP, poly(ADP-ribose) polymerase; ROI, reactive oxygen intermediate; RNI, reactive nitrogen
intermediate; TIMP, tissue inhibitor of metalloproteinases
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