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ABSTRACT It has recently been discovered that many biological systems, when represented as graphs, exhibit a scale-free
topology. One such system is the set of structural relationships among protein domains. The scale-free nature of this and other
systems has previously been explained using network growth models that, although motivated by biological processes, do not
explicitly consider the underlying physics or biology. In this work we explore a sequence-based model for the evolution protein
structures and demonstrate that this model is able to recapitulate the scale-free nature observed in graphs of real protein
structures. We find that this model also reproduces other statistical feature of the protein domain graph. This represents, to our
knowledge, the first such microscopic, physics-based evolutionary model for a scale-free network of biological importance and
as such has strong implications for our understanding of the evolution of protein structures and of other biological networks.

INTRODUCTION

Protein structural evolution, and specifically the discovery

of new sequence-structure pairs, represents one of the most

important facets of molecular evolution (Koonin et al.,

2002). Recently, our understanding of structural evolution

has advanced considerably, based at least in part on the

application of graph theoretic methods to the study of protein

structural similarity (Qian et al., 2001; Dokholyan et al.,

2002; Koonin et al., 2002; Deeds et al., 2004 ). One such

application is the protein domain universe graph (PDUG),

which is constructed by representing the nonredundant set of

protein structural domains as nodes and using the structural

similarity between those domains to define the edges on the

graph (Dokholyan et al., 2002). Analysis of the PDUG

demonstrated that the distribution of the number of structural

neighbors k per domain (known as the degree distribution, or

p(k)) follows a power law; that is, p(k); k�g, where g; 1.6,

a finding that indicates that the PDUG is a scale-free network

(Albert and Barabasi, 2002; Dokholyan et al., 2002). This

observation, along with other features of the PDUG and

proteome-specific subgraphs, has led to the conclusion that

structural evolution has been largely divergent in nature,

with existing sequence-structure pairs giving rise to new

structures through processes such as duplication and di-

vergence. One of the major pieces of evidence for this

divergent paradigm has been the observation that graph

evolution models based on ‘‘divergent’’ rules are able to

create graphs with power-law degree distributions that have

exponents g ; 1.6 (Dokholyan et al., 2002; Deeds et al.,

2004). These models, like most models of the evolution of

biological scale-free networks (Barabasi and Albert, 1999;

Kim et al., 2002; Albert and Barabasi, 2002), are entirely

arbitrary; that is, although they attempt to mimic mecha-

nisms such as duplication and divergence, they do not

directly model those processes. Thus a major outstanding

question in structural evolution revolves around whether or

not models based on the a priori evolution of actual protein

sequences could result in scale-free networks similar to that

of the PDUG.

One of the major obstacles to building such a model is the

fact that the protein-folding problem remains unsolved for

structures with realistic degrees of freedom (Lesk et al.,

2001), making it difficult to accurately model the evolution

of actual polypeptides. Model systems exist, however, in

which the folding problem has been solved, and it is

possible to approach the question of sequence evolution in

such systems. Lattice polymers are one such system, and

extensive study of such polymers has provided insight into

protein folding, designability, and protein evolution

(Shakhnovich and Gutin, 1990; Li et al., 1996, 2004;

Mirny and Shakhnovich, 1996; Tiana et al., 2000, 2004;

Chan and Bornberg-Bauer, 2002; Deeds et al., 2003;

England and Shakhnovich, 2003; Xia and Levitt, 2004).

Although lattice polymers are indeed only a crude approx-

imation to real protein structures, the fact that lattice

sequences can posses and fold into unique native structures

captures one of the key features of real proteins. In this

work, we focus on maximally compact 27-mers on the 3 3
3 3 3 cubic lattice. The 27-mer represents a particularly

interesting lattice system due to the fact that all maximally

compact conformations of this polymer may be enumer-

ated (Chan and Dill, 1990; Shakhnovich and Gutin, 1990),

and recent studies have revealed that a graph based on the

structural similarity between all of these possible structures

(constructed in a manner similar to that used to make the

PDUG) exhibits a degree distribution similar to a random

graph (Deeds et al., 2003). Furthermore, it has been
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demonstrated that subgraphs of this lattice structure graph

(LSG) can exhibit scale-free degree distributions when the

structures are sampled according to divergent evolutionary

rules (Deeds et al., 2003).

Although the existence of scale-free ‘‘evolved’’ subgraphs

of the LSG is suggestive, these graphs are obtained using

algorithms that evaluate the structural similarity of ‘‘candi-

date’’ nodes to existing nodes to determine if they will

indeed be added to the evolving graph (Deeds et al., 2003).

Such calculations are most likely not performed by or-

ganisms as they evolve, and thus the question thus remains

as to whether sequence dynamics alone can explain the

emergence of scale-free networks from the entire set of

possible lattice structures. In this study, we demonstrate that

models based solely on the duplication, divergence, and

folding of lattice sequences can also result in model graphs

that are similar to the PDUG. For the purpose of com-

putational efficiency and for comparison with results from

previous studies of the LSG (Deeds et al., 2003) we constrain

our study to the 27-mer on the cubic lattice. We demonstrate

the similarity between our evolved graphs and the PDUG not

only in terms of the traditional degree distribution but also in

terms of other statistical features of these graphs. To our

knowledge this represents the first instance in which a model

based solely on physical and biological mechanisms has

reproduced the features of a biologically relevant scale-free

network.

METHODS

Lattice model

As discussed later, our evolutionary model is based on the standard physics

of lattice polymers (Shakhnovich and Gutin, 1990; Li et al., 1996, 2004;

Mirny and Shakhnovich, 1996; Dinner et al., 1999; Tiana et al., 2004). The

potential energy of a sequence in a given lattice conformation is based on the

contacts between monomers that occur in that structure, i.e.,

Ec ¼ +
L

i¼1

+
L

j¼i1 1

esisjDij;

where Ec is the potential energy of the sequence in conformation c, L is the

length of the polymer (in this case 27), esisj is the potential energy of a contact
between beads of type si, and sj in the sequence and Dij is set to 1 if positions

i and j are in contact in conformation c and 0 otherwise. Residues are defined

to be in contact if they are neighbors in space but not neighbors in sequence.

The matrix of contact energies is taken from the Mirny-Shakhnovich (MS)

potential and is very similar to the potential of Miyazawa and Jernigan

(Miyazawa and Jernigan, 1985; Mirny and Shakhnovich, 1996; Miyazawa

and Jernigan, 1996). Folding in this model may be assayed using a Z-score

technique (Goldstein et al., 1992; Mirny and Shakhnovich, 1996; Dinner

et al., 1999; Li et al., 2004); the Z-score of the native state is defined as:

Znat ¼ Enat � ÆEæ
sE

where Enat is the energy of the native state, ÆEæ is the average energy of the

sequence in all 103346 compact conformations, and sE is the standard

deviation in energy for the entire compact ensemble. When the native state is

much more stable than the average member of the nonnative ensemble, i.e.,

when the Z-score for the native state has a large negative value, the sequence

is assumed to fold into the native state. This method allows for fast evalua-

tion of the folding of sequences and has been used successfully in other

contexts (Mirny and Shakhnovich, 1996; Li et al., 2004).

Evolutionary algorithm

Our evolutionary model is built on the above physical model and represents

a simple interpretation of duplication and divergence. The algorithm begins

with a single sequence that has been designed to fold into an arbitrarily

chosen lattice structure with a Z-score of ,�7. In each case, folding of the

seed sequence into the seed structure is verified using standard Monte Carlo

lattice folding techniques (Mirny and Shakhnovich, 1996; Tiana et al., 2000,

2004; Li et al., 2004). These simulations allow for noncompact conforma-

tions and the sequence is assayed to assure folding into the specified native

state. At each step of the evolutionary algorithm, an existing sequence-

structure pair is randomly chosen for duplication. One of the duplicate

sequences is then subjected to a number of mutations (m). The algorithm

then identifies the new native state of this modified sequence by determining

the lowest energy conformation out of all compact possibilities. The Z-score

of the newly evolved sequence in this native structure is then checked to

determine if the sequence will fold according to some Z-score cutoff. If the
sequence folds, the newly evolved sequence-structure pair is added to the

model graph; if not, the sequence is discarded and a new sequence is

randomly chosen for duplication. The features of this model are diagrammed

in Fig. 1. In all cases we evolve 3500 structures using our algorithm. This is

done both for computational reasons (much larger graphs are difficult to

evolve in a reasonable period of time) and also to obtain graphs with a

number of nodes similar to the number of nodes (3464) in the PDUG.

Constructing graphs of lattice structures

Structural similarity between conformations on the lattice is defined

according to (Deeds et al., 2003); this method is based on calculating the

FIGURE 1 Diagram of the structural evolution model. At each step, one

existing sequence-structure pair is chosen for duplication. A set of m

mutations is made to one of resulting duplicates (the other is preserved on

the graph unchanged). The native state of the new sequence is the maximally

compact lattice structure in which the new sequence exhibits the lowest

energy. Folding of the new sequence into this structure is tested via a Z-score

procedure as described in the text. If the new sequence folds into its native

structure, it is added to the graph, and if not, that sequence structure pair is

discarded.
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statistical significance (S-score) of the overlap between two contact maps

defining two conformations. The nodes in each graph are constructed from

the set of lattice structures chosen by the evolutionary algorithm. Edges

are drawn at structural similarity cutoffs (Smin’s) chosen according to the

transition in the giant component of each graph (Albert and Barabasi, 2002;

Dokholyan et al., 2002; Deeds et al., 2003). The Smin chosen according to

this method is between 7 and 8 for all of our evolved graphs, a cutoff that is

very similar to the cutoff found for graphs evolved according to our earlier

lattice-based model (Deeds et al., 2003).

RESULTS

Sequence evolution without a folding constraint

To determine whether sequence dynamics of the simplest

kind could reproduce scale-free networks with g ; 1.6, the

first runs of this model are performed without a folding

cutoff: in this case, every new native state is added to the

graph regardless of its ability to fold (this is equivalent

to setting the Z-score cutoff in Fig. 1 to positive infinity).

Although this instantiation of the model does not implement

the restraint of protein folding, it is important to note that

the choice of each new structure as the conformation in

which the new sequence exhibits the lowest energy repre-

sents an important ‘‘physical’’ component of the algorithm.

As discussed in the Methods section we begin the evolution

with an arbitrarily chosen sequence-structure pair (see Fig. 2

A). When m, the number of mutations per duplication step, is

set to 1, the resulting graphs do indeed exhibit scale-free

degree distributions, but in these cases we find values of g
around 1 for most runs of the algorithm (Fig. 3 A), indicating
that point mutations alone are insufficient to produce PDUG-

like behavior even in the absence of folding constraints.

When m is increased to 2, however, networks with g ; 1.6

are readily observed (Fig. 3 B), whereas m ¼ 3 results in

scale-free networks with g ; 2 (Fig. 3 C). For this particular
model, various runs with the same parameters yield similar

graphs: in the case of setting m to 2, the graphs that are

evolved exhibit exponents in the range of 1.4–1.6. Indeed,

if a second arbitrarily chosen (but structurally unrelated)

sequence-structure pair is used to seed the algorithm (see

Fig. 2 B), graphs with exponents of ;1.6 (with a similar

range) are observed for m ¼ 2 (for a representative run see

Fig. 3 D).
These results indicate that ‘‘PDUG-like’’ scale-free net-

works may be sampled from the underlying random-graph

topology of the LSG solely based on the divergence of

sequences into new native states. Furthermore, for the above

model we find that the amount of sequence divergence

employed by the model is intimately related to the observed

exponent in the evolved graph. In a certain sense, this power-

law exponent represents a gross measure of the structural di-

versity of the graph (i.e., the number of orphan and sparsely

connected nodes as compared to the number of highly con-

nected nodes). Thus the dependence of g on m is relatively

intuitive: the greater the level of sequence divergence em-

ployed in the model, the greater the level of structural di-

versity one observes in the evolved graph.

Sequence evolution with a folding criterion

Real proteins, of course, are subject to rather stringent

folding criteria, and so a more realistic set of runs of the

model were performed with a folding Z-score cutoff. For the
purposes of this work, the cutoff is set to �6 in a heuristic

manner: we find that the model runs prohibitively slowly

when significantly more stringent folding criteria are applied.

Sequences evolved at this cutoff do, however, reliably fold to

their native states in Monte Carlo simulations: we tested

folding for a set of 10 randomly chosen sequence structure

pairs evolved using this cutoff (data not shown). Although

these simulations allow for noncompact conformations we

observed reliable folding to the specified native state, in-

dicating that sequences evolved using this algorithm have

a high probability of actually folding. Sequences evolved

under less stringent criteria do not fold as reliably (also, see

Li et al., 2004). Given this folding criterion, we find that the

model requires a much larger value of m to obtain graphs

with exponents of 1.6. For one particular starting structure,

we find that m ¼ 2 (which gave PDUG-like behavior in the

nonfolding model above) leads to graphs with exponents;1

(see Fig. 4 A). This result indicates that, when a folding

constraint is imposed, the algorithm tends to select structures

that are highly similar to the original structure when the

number of mutations is small, leading to graphs that lack the

structural diversity characteristic of the PDUG. Indeed,

graphs with exponents similar to that of the PDUG are only

readily observed from this starting structure when m is set to

8 (see Fig. 4 B). It is important to note that this result does not

imply that real proteins evolve on the basis of large numbers

of simultaneous mutations: it simply indicates that a large

amount of sequence divergence is necessary to observe

PDUG-like behavior in this lattice model.

The number of mutations required to observe an exponent

of 1.6 depends strongly on the starting structure. As men-

tioned above, an m of 8 is sufficient to observe PDUG-like

graphs for a given starting sequence and structure. For the

FIGURE 2 (A) The first arbitrarily chosen lattice structure used to seed

the evolutionary algorithm. (B) The second structure chosen to seed the

algorithm. This lattice conformation is structurally unrelated to the first

structure shown in A.
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alternate seed sequence-structure pair discussed above,

however, setting m to 8 results in graphs with exponents of

;1 or less (Fig. 4 C), although it is important to note that, in

cases where the exponent is close to (or smaller than) 1, the

power-law fit becomes somewhat less statistically robust.

For this particular starting structure exponents of 1.6 are not

observed until m is set to 10 (Fig. 4 D), indicating that

a significantly greater degree of sequence divergence is thus

required to recapitulate the degree distribution (and structural

diversity) of the PDUG from that region of sequence-

structure space. When the folding criterion is relaxed, how-

ever, we find that the behavior of the model from both

starting structures is similar (see Fig. 3 D), implying that it is

the nature of ‘‘foldability’’ or designability (England and

Shakhnovich, 2003) in the vicinity of this starting structure

that gives rise to the difference between runs based on this

starting structure compared to the first.

Although degree distributions with g ; 1.6 are readily

observed with m ¼ 8 and 10 for the two starting structures

discussed above, the statistical features of the resulting

graphs differ quite significantly from run to run. Graphs with

exponents ranging from �0.8 to �1.8 can be observed in

simulations based on the same starting structure and the same

evolutionary parameters (see Fig. 4 D), indicating that the

evolution in this case represents a highly nonergodic and

nonequilibrium sampling of sequence-structure space. Sto-

chastic events early in the simulation seem to set the overall

behavior of the graph that is eventually produced by the

algorithm, indicating that this model is highly sensitive to

random fluctuations especially during the early stages of the

evolution. This characteristic of our simulations may have to

do with the small size and strict conformational restrictions

of the polymers in our model; larger polymers with a more

realistic surface area to volume ratio or polymers with greater

conformational freedom might not be as sensitive to early

steps in the mutational dynamics. Longer simulations might

also result in ergodic sampling. The ‘‘giant fluctuations’’ we

observe, however, have been observed in other duplication-

and-divergence models, such as models describing the

evolution of protein-protein interactions (Kim et al., 2002),

and in some cases even very long simulations do not

converge to graphs with similar properties. In our case such

convergence might not occur until equilibrium has been

reached in the structural ensemble, and, although this would

FIGURE 3 (A) Degree distribution of a set of 3500 structures evolved with no folding constraints and m set to 1. In this plot, as with all other figures of

degree distributions in this work, the degree of each node is increased by 1 to allow for display of nodes with degree 0 on log-log plots. Also, the straight line in

this and all other degree distribution plots in this figure represents a power-law fit of the data, and the indicated exponent is taken from that fit. (B) The degree

distribution for a graph evolved with m ¼ 2. (C) The degree distribution for a graph evolved with m ¼ 3. (D) The degree distribution for a graph evolved from

a different starting structure than that employed for A, B, and C. In this case, m is set to 2.
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result in ergodic simulations, our earlier studies indicate that

the structures resulting from equilibrium sampling are not

likely to represent scale-free networks (Deeds et al., 2003).

It is clear, however, that the space of possible polypeptide

structures is likely to be very large when compared to the

number of structures that have been discovered over the

course of evolution. Given that the PDUG represents the only

available ‘‘run’’ of actual protein evolution, it is difficult to

determine the extent to which this nonergodic heterogeneity

might have influenced the scale-free nature of the PDUG.

We leave further exploration of the relationship between

conformational possibility, sequence-structure landscapes,

and evolutionary algorithms to future work.

Clustering coefficient distributions

Although the correspondence between the degree distribu-

tions of sequence-based model graphs and that of the PDUG

is quite suggestive, the degree distribution represents only

one of the statistical features of the network, and one may ask

how other features compare between the model graphs and

the PDUG. One such feature is the distribution of the

clustering coefficient of each node, which is a measure

of how many connections exist between a given node’s

structural neighbors. Ci(k) is the clustering coefficient of

node i and is defined as follows (Albert and Barabasi 2002):

CiðkÞ ¼ EN;i

kðk� 1Þ
2

;

where EN,i is the number of edges between the neighbors of

node i and k is the degree of node i. The distribution of C(k)
for the PDUG (Fig. 5 A) is relatively flat. This distribution

is markedly different from that observed for the entire graph

of unique 33333 lattice structures (Deeds et al., 2003)

(Fig. 5 B), which provides both a ‘‘random-graph’’ and

polymer control for the C(k) behavior. To determine if this

distribution is simply a consequence of the scale-free nature

of the PDUG, we create a ‘‘randomly rewired’’ version of

the PDUG. This randomly rewired graph is created using an

algorithm similar to that used in (Maslov and Sneppen

2002): at each step, two edges on the graph are ‘‘swapped’’

such that the degree of each node is maintained. The C(k)
distribution for the randomly rewired graph is also markedly

FIGURE 4 (A) Degree distribution of a set of 3500 structures evolved with a folding Z-score cutoff of �6 and m ¼ 2. The straight line in this and all other

plots in this figure represents a power-law fit of the data, and the indicated exponent is taken from that fit. (B) The degree distribution of a graph evolved with

a folding Z-score cutoff of �6 and m ¼ 8. (C) The degree distribution of a graph evolved with a different starting structure than A and B (the same alternative

starting structure employed for Fig. 3 D). In this case, the folding Z-score cutoff is again set to �6 and m is set to 8. (D) The degree distribution of a graph

evolved with the same starting structure used in C, but with m ¼ 10.
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different from that of the PDUG (Fig. 5 C). This difference is
most readily apparent at larger values of C(k)—the PDUG

contains a preponderance of highly interconnected, ‘‘cliqu-

ish’’ regions compared to both the LSG and to the randomly

rewired control. We find that the graphs produced by our

sequence-based evolutionary model also exhibit relatively

flat C(k) distributions with strong bias toward larger values

of C(k) (Fig. 5 D) that is not observed in randomly rewired

model graphs. Very similar C(k) distributions are obtained

for graphs obtained from the original nodes-and-edges evo-

lutionary model for the PDUG (Dokholyan et al., 2002) and

nonsequence-based divergent models sampling from the

LSG (Deeds et al., 2003) (data not shown). The sequence-

based model discussed above (like other models of the

evolution of the PDUG) is thus not only able to recapitulate

the degree distribution of the PDUG but other statistical

features of the graph as well.

CONCLUSIONS

The results described above represent, to our knowledge, the

first demonstration that a scale-free network that describes

a particular biological system (such as the PDUG) may be

recapitulated using an evolutionary algorithm that attempts

to accurately model the underlying biology and physics of

the evolution of that system. This constitutes an important

extension of graph-theoretic models beyond algorithms in

which edges are placed between newly evolved nodes and

the rest of the graph according to evolutionarily reasonable

but nonetheless highly abstract and artificial rules. Despite

this fundamental advancement, this work is nonetheless still

a proof of the principle that sequences can divergently

sample structural spaces in such a way that scale-free net-

works similar to the PDUG are produced. Indeed, the large

mutational ‘‘steps’’ required to obtain realistic structural

diversity in the above model (i.e., m values of 8 or 10) have

no clear analog for real proteins, and reasonable mechanisms

underlying large sequence divergence, such as recombina-

tion or insertion-deletion, must be implemented to develop

more accurate models. The realism of the current model,

however, is in some ways most severely limited by fact that

the ‘‘proteins’’ we consider are constrained to a lattice space,

and it is quite unclear how mechanisms such as recombina-

tion might be ‘‘accurately’’ built into such a model. It is also

unclear to what extent specific features of our simulations,

such as the nonergodic behavior that we observe, result from

FIGURE 5 (A) Distribution of the clustering coefficients of domains on the PDUG. (B) The distribution of the clustering coefficients for structures in the

LSG, which is composed of all maximally compact 27-mer structures. (C) The distribution of clustering coefficients for a randomly rewired version of the

PDUG. (D) Comparison of the clustering coefficient distribution between the PDUG, a randomly rewired version of the PDUG, and a graph evolved using

the evolutionary model. The evolutionary graph here starts with the first seed sequence-structure pair, is evolved using a folding Z-score cutoff of �6 and

m ¼ 8, and has a degree distribution with g ; 1.6.
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these restrictions. We thus leave more realistic physical and

mutational models to future work.

Our findings have important implications not only for the

study of protein evolution, but also for the evolution of

biological network and the study of protein folding. In case

of the former, the existence of a successful a priori model for

the divergent evolution of protein structures indicates that

future models of other biological networks could be based on

models of the underlying mechanisms. Indeed, given that

many functional features of proteins are in large measure

dictated by their structure, one might imagine that the

divergent evolution of protein structures has played a

dominant role in the evolution of scale-free transcriptional,

metabolic, and protein-protein interaction networks. Also,

the highly nonequilibrium nature of this model has strong

implications for the study of protein folding, particularly for

the development of residue-residue or atom-atom interaction

potentials. It is possible that the nature of sequence-structure

sampling over the course of structural evolution may lead to

biases in the resulting database of structures that might

reduce the accuracy of knowledge-based potentials derived

form such databases. To test this hypothesis, one may

employ sets of evolved lattice structures to derive knowl-

edge-based potentials and test the resulting potential against

the potential used to design (or in this case evolve) the lattice

structures (Mirny and Shakhnovich, 1996; Thomas and Dill,

1996; Zhang and Skolnick, 1998; Chiu and Goldstein, 2000).

Such a study would not only provide some indication of the

extent to which the highly nonequilibrium nature of struc-

tural evolution might have an influence on such potentials

but might also lead to the development of more accurate

knowledge-based methods.
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