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Abstract. The set of pattern graphs for which the fixed directed subgraph homeomorphism 
problem is NP-complete is characterized. A polynomial time algorithm is given for the remaining 
cases. The restricted problem where the input graph is a directed acyclic graph is in polynomial ti. ie 
for all pattern graphs and an algorithm is giver?. 

1. Introduction 

The subgraph homeomorphism problem is to determine: if a pattern graph p is 
homeomorphic to a subgraph of an input graph G. The homeomorphism maps nodes 
of P to nodes of G and arcs of P to simple paths in G. The graphs P and G are either 
both directed or both undirected. The paths in G corresponding to arcs in P must be 
pairwise node-disjoint. The mapping of nodes in P to nodes in G may be specified or 
left arbitrary. 

This problem can be viewed as a generalized path-finding problem. For example, if 
the pattern graph consists of two disjoint arcs and the node mapping is given, then the 
problem is equivalent to finding a disjoint pair of paths between specified vertices in 
the input graph. In. turn, this problem is equivalent to the unit capacity two 
commodity flow problem studied in [2]. Other applications of scbgraph homeomor- 
phism include flow graph reducibility [3] and programming schema [41]. 

It is easy to see that the problem is NP-complete if it is posed as ‘Gwen a pair (P, G) 
as input, possibly with a node mapping specified, does G contain a subgraph 
homeomorphic to P ‘?‘. This follows from the Hamilton circuit problem if the node 
mapping is unspecified and the results of Even, Itai and Shamir [2] on multi- 
commodity network flows if the node mapping is specified. LaPaugh and Rivest [5] 
discuss this in more detail. 

* This research was supported in part by the office of Naval Research under contract number 
NQ0014-76-C-0018. 
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We consider the question, for fixed pattern graph P, ‘Given as input a graph G with 
node-mapping specified, does G contain a subgraph homeomorphic to P?‘. We refer 
to this as the fixed subgraph homeomorphism problem. In this paper, under the 
assumption P # NP, we characterize the pattern graphs for which the fixed directed 
subgraph homeomorphism problem is NP-complete and for which pattern graphs it 
is polynomial time decidable. We also show that if the input graphs are restricted to 
being directed and acyclic, then there is always a polynomial time algorithm. The 
general case of the undire :ed fixed subgraph homeomorphism problem remains 
open, although polynomial time algorithms are known for the pattern consisting of a 
cycle of length three [S] and the pattern of two disjoint edges [7]. 

2. Definitions 

A directed graph G consists of a set N of nodes, a set A of arcs, and two functions 
head and tail mapping arcs to nodes. Given an arc a, we say that its head is the node 
head (a), or that a is incident to head (a). The tail of an arc and the expression 
‘incident from’ are defined analogously. We use this definition to allow graphs to 
have multiple parallel arcs as well as loops (a loop is an arc with identical head and 
tail). A path of length k from node x to node y is a sequence of arcs (al, a2, . . . , ak) 
such that x = tail (al), y = head (ak) and tail (ai) = head (ai- 1) for i = 2, . . . , k. A path 
from n: to y is simple if no node occuring as the head or tail of an arc is repeated, 
except that x may equal y. Two simple paths are node-disjoint if they have no nodes 
in common except that endpoints may be equal. 

Given directed graphs P and G and a one-to-one mapping y%2 of the nodes of P into 
the nodes of G, we say P is homeomorphic to a subgraph of G if there exists a 
mapping from arcs of P to pairwise node-disjoint paths in G such that an arc with 
head h and tail t is mapped to a simple path from m(t) to m(h). The fixed subgraph 
homeomorphism problem, for fixed pattern graph P, is the problem of determining 
on an input graph G and a node mapping m whether P is homeomorphic tc a 
subgraph of G. We assume without loss of generality that every node in P has at least 
one incident arc. 

We note that paths could be required to be pairwise arc-disjoint rather than 
node-disjoint. However, LaPaugh and Rivest [4] have shown that the two formula- 
tions are computationally equivalent for directed graphs. 

3. The general directed case 

Under the assumption that P f NP we now characterize those directed pattern 
graphs for which the fixed subgraph homeomorphism problem is polynomial time 
decidable and those for which the problem is NP-complete. Let C be the colkction of 
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all directed graphs with a distinguished node called the root possessing the property 
that either the root is the head of every arc or the root is the tail of every arc. Note that 
the root may be both the head and tail of some arcs and thus loops at the root are 
allowed. Equivalently, a graph is in C if, when all loops at the root are deleted and 
multiple arcs between pairs of nodes are merged into single arcs, the resultjng graph 
is a tree of height at most one. 

Theorem 1. For each Pin C there is a polynomial time algorithm for the fixed subgraph 
homeomorphism problem with pattern P. 

Proof. We will use the fact that finding maximum single-commodity flows in a 
directed network with node capacities is computable in polynomial time [ 11. Suppose 
the pattern graph P is in C; we will assume all arcs in P are directed away from the 
root. The case with the reverse direction is analogous. Also suppose we have an input 
graph G together with a mapping of the nodes of P to nodes of G. 

We first note that if there are loops at the root of P, we can obtain an equivalent 
problem without loops as follows. We split the root of P into a new leaf and new root, 
with the loop arcs directed from the n6w root to the new leaf. All other edges incident 
from the old root are incident from the new root. In the input graph G we must now 
split the image of the old root into two nodes, one with all the incoming arcs and one 
with all the outgoing arcs. T’?e new root in P is mapped to the node with outgoing 
arcs; the new leaf in P is mapped to the node with incoming arcs. Clearly, the original 
problem has a solution if and only if the new one does. 

Now label the image of the root of P as a source with capacity equal to the 
outdegree of the root of P. Label the image of every other node in P as a sink with 
capacity equal to the indegree of the node in P. Give every unlabelled node in G 
capacity one, and every arc in G capacity one. Now decide if there is a flow in G equal 
to the capacity of the source. Clearly, since P is ‘tree-like’, if F is homeomorphic to a 
subgraph of t?, the flow exists. Conversely, if the flow exists, then the condition that 
all non-source, non-sink nodes have capacity one guarantees that the arcs in P map 
to node-disjoint paths in G. 

Next we show that for each pattern P not in C the fixed subgraph hnmeomorphism 
problem with pattern P is NP-complete. We proceed with several lemmas. 

Lemma 1. Suppose Pis a subgraph of Q, and the subgraph homeomorphism problem is 
NP-hard with pattern P. Then it is NP-hard with pattern 0. 

Proof. Given a graph G together with a mapping g of nodes of P into nodes of G, we 
construct in polynomial time a graph M together with a mapping h of nodes of 0 into 
nodes of H such that P is holmeomorphic to a subgraph of G if and only if Q is 
homeomorphic to a subgraph (\f H. 
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Let Q-P be the graph consisting of arcs in Q not in P, together with incident 
nodes. Form H by adding to G a copy of Q -P, where a node y1 of Q -P also in the 
node set of P is identified with the node g(pt) in G. Extend the mapping g to a 
mapping h from nodes of Q to nodes of H in the obvious way. If a is an arc in Q -P, 
then we denote by a’ the corresponding arc in H. 

Clearly, if P is homeomorphic to a subgraph of G, then Q is homeomorphic to a 
subgraph of H. We show the converse by induction on the number of arcs in Q -P. 
This is vacuously true if Q -P is empty, so suppose Q -P is not empty and Q is 
homeomorphic to a subgraph of H. If every arc a in P has image in G, then P is 
homeomorphic to a subgraph of G. So suppose the image of some arc p in P contains 
an arc q’ which is in H but not G. Since the image of any arc a in Q -P with at least 
one of its endpoints not in P can only have as its image the corresponding arc a’ in H 
(or an arc parallel to it), both endpoints of the arc q’ must lie in G. For both endpoints 
of q’ to be in G but not the arc q’ itself, there must be an arc q in Q -P which forced q’ 
to be added to H. Arc q’ must be the entire image of p, or else the homeomorphism h 
would not map to node-disjoint paths; thus, p and q are parallel in Q. The mapping h’ 
formed by interchanging the values of h(p) and h (q) is a homeomorphism from Q to 
H. By restricting the domain of h’ to Q -{q}, we have shown Q -{q} homeomorphic 
to a subgraph of H -{q’}, therefore P homeomorphic to a subgraph of G follows by 
induction. 

Lemma 2. Consider the subgraph in Fig. 1. Suppose there are two node-disjoint paths 
passing through the subgraph-one leaving at node A and the other entering at B. Then 
the~athleavingatAmusthaveenteredatCandthepathenteringatBmustleaveatD. 
Further, there is exactly one additional path through the subgraph and it is either 

8+9+10+4+11 or 8’+9’~10’+4’+11’ 

depending on the actual routing of the path leaving at A. 

Proof. Consider the path leaving at A, call it the ‘A-path’. It must use either arc 1 or 
arc 1’. Since the subgraph is symmetric, assume it uses arc 1. Thus it must also use arc 
2. The path entering at B, call it the ‘B-path’ cannot use arc 6, hence it must use arc 6’ 
and arc 2’. It cannot use arc l’, so it must use arc 7’ and arc 9. The A-path cannot use 
arc 6, so it must use arcs 3 and 4. It cannot use arc 10, so it must use arc 5 and enter at 
C The B-path cannot use arc 10 so it must use arc 12 and leave at D. The path 
8~9-*10-,4~11isnowblockedand8’-,9’~10’~4’~11’isfree.Noticethatifa 
path enters at 8, it must leave at 11’ as arcs 3’ and 12’ are blocked. Similarly, if a path 
leaves at 11’ it must enter at 8’. 

We call the subgraph of Fig. 1 a switch. We can stack arbitrarily many switches and 
still have the lemma apply by merging the C and D arcs of one switch with the A and 
B arcs of the next switch, respectively. A switch is represented schematically in Fig. 
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Fig. 1. A switch. 

2, where the vertical arcs represent the paths 

8+9+ 10-,4+ 11 and 8’+9’+ 10’+4’+ 11’ 

and the horizontal line, not an arc, indicates that at most one of the vertical arcs can 
be used. The A- and B-paths are implicit in Fig. 2. 

Lemma 3 Let Pconsist of two disjoint directed arcs and the four incident vertices. Then 
the fixed SHP with pattern P is NP-hard. 

Proof. We will reduce the satisfiability problem for Boolean formulas in 3-CNF to 
the subgraph homeomorphism problem with pattern P. Fix a formula F with 
variables x1 9 9 l xk and clauses tl l l l tl. We construct a graph GF as follows: 

For each variable xi make a copy of the subgraph appearing in Fig. 3. We associate 
one column of vertical arcs with the literal xi, the other with ii. The number of arcs in 

Fig. 2. Schematic representation of a switch. 
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Fig. 3. Subgraph associated with each literal in GF. 

each column is the number of occurrences of its associated literal in F. The subgraphs 
are stacked by connecting the bottom node of the subgraph for xi to the top node of 
the subgraph for Xi+1 by an arc. There are also nodes no l l l nl corresponding to the 
clauses tl l l l tl of F, with three arcs directed from yti to ni+l for each i. There is also an 
arc from the bottom of the subgraph of xk to no. 

Now for each literal y appearing in each clause ti we replace one of the arcs 
between ni-l and ni and one of the arcs in the column associated with y by a switch. 
The switches are linked together as described in the discussion after Lemma 2. 
Finally we add nodes labelled W, X, Y and 2. The arc from Y is identified with the B 
input arc of the iirst switch, the arc from the D output of the last switch is connected 
to the top node of the subgraph for x1, and there is an arc from nl to 2. The C input 
arc of the last switch is connected to W and the A output arc of the first switch is 
connected to X. Am example of GF is shown in Fig. 4. 

We claim there are node-disjoint paths from W to X and from Y to 2 in GF if and 
only if the formula F is satisfiable. Suppose F is satisfiable. Then the path from Y to 
2 can go through the column associated with y’ if y is true in the satisfying 
assignment. Then since at least one literal in each clause ti is satisfied, there will 
always be at least one switch path usable from ni-1 to ni. Conversely, if node-disjoint 
paths exist they must pass through the switches as described in Lemma 2. Hence the 
Y to 2 path must proceed through the subgraphs for :he xi’s and through nodes no to 
nt. The assignment realized by setting literal y to be gcue if and only if the Y to Z path 
uses the column associated with y’ must satisfy F. This reduction from 3-CNF 
satisfiability to the fixed SHP is computable in polynomial time, hence the fixed SHP 
with pattern P is NP-hard. 
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C input of 
last switch 

A output of 
firs? switch 

ti ix 
Fig. 4. An example of GF. 

Theorem 2. For each P not in C the fixed subgraph homeomorphism problem with 
pattern P is NP-complete. 

Proof. The fixed SHP for any pattern graph Pis clearly in NP, so we need only show 
that for P& C, the problem is NP-hard. 

An alternative characterization of C is that a graph G is not in C if and only if G 
contains one of the following subgraphs: 

(i) two disjoint edges, one or both of which may be a loop, 
(ii) a path of two arcs visiting three distinct vertices, or 

(iii) a cycle, of length two. 
By showing that the fixed SHP for each of the above three subgraphs is NP-hard 

and then by applying Lemma 1, the theorem is established for all pattern graphs 
containing one of these graphs as a subgraph and hence for all graphs not in C. 
Lemma 3 establishes the NP-hardness of subgraph (i) in the case that there are no 
loops. If there are loops, identifying W with X and/or Y with 2 allows the same 
construction to be used. For case (ii), identifying X and Y establishes the theorem, 
and finally in case (iii), identifying the pairs of vertices W, 2 and X, Y allows the 
proof of Lemma 3 to carry over to this case. 
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4, Directed acyclic graphs 

In this section we show that for any fixed pattern graph the directed subgraph 
homeomorphism problem for acyclic input gcaphs has a polynomial time algorithm. 
The degree of the polynomial depends on the particular pattern graph. The 
algorithm works whether or not the node mapping of pattern to input graph is 
specified. The result is a generalization of Per1 and Shiloach’s algorithm [6] for 
finding two node-disjoint paths in a directed acyclic graph. 

Fix a pattern graph and assume for the moment that the mapping of the nodes of 
the pattern graph to nodes of the input graph is specified with the input graph. The 
algorithm is described in terms of a pebbling game played on the nodes of the input 
graph. Pebbles will correspond to the arcs of the pattern graph; the path traced by a 
pebble during the game will be the image of an arc in the pattern graph. 

We define the &eI of a node in the input graph to be the length of a longest path in 
the graph from the node. Clearly, if there is a path from v to w, then the level of v is 
greater than the level of w. 

The rules of the pebbling game are as follows: 
(1) For each arc ai in ?be pattern graph there is a pebble pie Initially, for each node 

s in the pattern graph, the pebbles corresponding to arcs leaving s are placed on the 
image of s in the input graph. 

(2) At any step pebble pi may be moved along a directed arc from n to m if 
(a) n has the largest level of any pebbled node. (If two pebbles are on nodes of 

equal, largest level either may be moved), and 
(6) m has no pebble on it, and 
(c) m is not the image of any node in the pattern graph, except possibly the head 

Of ai. 
(3) Pebble pi may be removed from the graph if it is placed on the image of the 

head of ai. 
The game is won if all pebbles can be removed from the input graph. 

Lemma 4. The pebbling game can be won if and only if the pattern graph is 
homeomotphic to a subgraph of the input graph. 

Proof. First suppose there is a winning strategy. Clearly the sequence of arcs 
traversed by pebble pi is a path from the image of the tail of Ui to the image of the 
head of ai. We need to show that all the paths are node-disjoint, except of course for 
endpoints. Suppose the paths of pebbles pi and pi intersect at a node m which is not 
the endpoint of path i. Node m is not the image of a node in the pattern graph by 
condition (2~). Without loss of generality we can assume pebble pj visits m first. By 
condition (2b), pebble pi must leave m before pebble pi arrives. But this contradicts 
condition (2a), as the level of the node on which pi resides *must be hligher than the 
level of node m, or; which pi resides. Hence all paths are node-disjoint, 
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Conversely, assume that the pattern graph is homeomorphic to a subgraph H of 
the input graph. Number every arc in H by the level of its tail in the input graph. It is 
easy to see that repeatedly executing the following strategy wins the pe:bbling game. 
Choose a highest numbered arc a in hi, move pebble pi along a where t;‘i is chosen so 
that the image of arc ai contains a, and delete a from H. If pi is now placed on the 
image of the head of arc ai, remove pi from the graph. 

Theorem 3. For any fixed directed pattern graph P, there is a polynomial time 
algorithm to decide if a directed acyclic graph G contains a subgraph homeomorphic to 
P. 

Proof. We first assume the node mapping is specified. Suppose P has k arcs. For an 
input graph with n nodes, there are (n + 1)’ ways of putting k or fewer pebbles on the 
graph. Thus there are at most (n + l)k configurations of the pebbling game. A 
polynomial time algorithm can construct a graph G’ where nodes correspond to 
c jntigurations and arcs to legal moves. A path finding algorithm can then decide if 
tht>yP IS a path from the node corresponding to the starting configuration to the node 
of the winning configuration. 

If node mappings are not given, the above algorithm can be run for all (F) possible 
mappings where s is the number of nodes in the pattern graph. 

We note that the result of Even, Itai and Shamir [2] on multicommodity fiows 
implies that the directed subgraph homeomorphism problem is NP-complete if both 
pattern and input graphs are given as input, even if the input graph is acyclic. 

5. Conclusions 

We have characterized the complexity of the fixed directed subgraph homeomc+ 
phism problem for all pattern graphs. However, many questions remain open. One 
obvious one is the problem for undirected graphs. We do not know how to construct a 
‘switch’, as in Lemma 2, to prove the problem NP-complete. It is conceivable that 
there are polynomial time algorithms for all undirected pattern graphs, with the 
polynomial depending on the pattern. LaPaugh and Rivest [5] have given a poly- 
nomial time algorithm for the pattern cons!& 1g of a cycle of length three; !Shil~~ch 
[7] has given a polynomial time algorithm for the pattern of two disjslnt edges. The 
problems for the corresponding directed patterns are NP-complete. 

Another possible question is to study other restricted classes of input graphs. For 
example, the question of whether the fixed directed subgraph homeomcrrphism 
problem for planar graphs is NP-complete is open. 

If we consider the directed subgraph homeomorphism problem when node 
mappings are not given, that is, when we are to find a homeomorphic image: of the 
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pattern graph anywhere in the input graph, the problem is still NP-complete for some 
pattern graphs. To see this, first note that the input graph constructed in the proof of 
Theorem 2 can easily be modified so that every node has sum of indegree plus 
outdegree at most three. Hence the directed subgraph homeomorphism problem 
with node mappings specified is still NP-complete if both pattern and input graphs 
have nodes with degree at most three. Now notice that even if node mappings cannot 
be specified as input, any desired mapping can be enforced as follows. Add enough 
new nodes and new arcs to the pattern graph so that every original node in the pattern 
graph has unique degree greater than three. In a corresponding fashion add new 
nodes and arcs tothe images of the pattern nodes in the input graph. Then the only 
possible homeomorphism is one which preserves the desired mapping. The preced- 
ing is a reduction of the directed fixed subgraph homeomorphism problem for graphs 
of degree at most 3 with node mappings specified to the directed fixed subgraph 
homeomorphism problem for graphs of arbitrary degree without node mappings 
specified. Therefore the latter problem is NP-complete. 

An amusing example is that testing for the presence of the subgraph of Fig. 5(b) is 
in polynomial time, since it is absent if and only if the graph is reducible [3], while 
testing for the presence of the subgraph of Fig. S(a) is NP-complete. The latter 
follows since nodes A and B are effectively labelled by giving them degree 4. Nodes 
A and B need not be uniquely labelled since the graph is symmetric with respect to 
them. A natural question to study is the directed subgraph homeomorphism problem 
without node mappings when nodes are restricted to having either indegree 1 and 
outdegree 2 or indegree 2 and outdegree 1. 

Alternatively one could study collections of patterns. Testing for the presence of 
the subgraph in Fig. 6(a) or testing for the presence of the subgraph in Fig. 6(b) are: 
both NP-complete problems. Nevertheless if we don’t care which subgraph is present 
there is a polynomial time algorithm. Conceivably in the undirected, unlabelled case, 
determining if a specific Kuratowski subgraph is present is NP-complete even though 
there is a polynomial planarity testing algorithm. 

(a) (b) 
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Fig. 6. 
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