
Cell Stem Cell

Resource
Mapping Cellular Hierarchy
by Single-Cell Analysis
of the Cell Surface Repertoire
Guoji Guo,1 Sidinh Luc,1 Eugenio Marco,3 Ta-Wei Lin,4 Cong Peng,1 Marc A. Kerenyi,1 Semir Beyaz,1 Woojin Kim,1

Jian Xu,1 Partha Pratim Das,1 Tobias Neff,5 Keyong Zou,6 Guo-Cheng Yuan,3 and Stuart H. Orkin1,2,*
1Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute,

Harvard Medical School, Boston, MA 02115, USA
2Howard Hughes Medical Institute, Boston, MA 02115, USA
3Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston,

MA 02115, USA
4Molecular Genetics Core Facility, Children’s Hospital Boston, Boston, MA 02115, USA
5Pediatric Hematology/Oncology/BMT, University of Colorado, Aurora, CO 80045, USA
6Boston Open Labs, Cambridge, MA 02138, USA

*Correspondence: stuart_orkin@dfci.harvard.edu

http://dx.doi.org/10.1016/j.stem.2013.07.017
SUMMARY

Stem cell differentiation pathways are most often
studied at the population level, whereas critical deci-
sions are executed at the level of single cells. We
have established a highly multiplexed, quantitative
PCR assay to profile in an unbiased manner a panel
of all commonly used cell surface markers (280
genes) from individual cells. With this method, we
analyzed over 1,500 single cells throughout the
mouse hematopoietic system and illustrate its util-
ity for revealing important biological insights. The
comprehensive single cell data set permits mapping
of the mouse hematopoietic stem cell differentiation
hierarchy by computational lineage progression
analysis. Further profiling of 180 intracellular regula-
tors enabled construction of a genetic network to
assign the earliest differentiation event during he-
matopoietic lineage specification. Analysis of acute
myeloid leukemia elicited by MLL-AF9 uncovered a
distinct cellular hierarchy containing two indepen-
dent self-renewing lineages with different clonal
activities. The strategy has broad applicability in
other cellular systems.

INTRODUCTION

Cellular differentiation is commonly depicted as a sequential

binary commitment process through multiple intermediate

states. Using combinations of markers, different types of stem

and progenitor cells have been identified in various systems.

Further enrichment and analysis of these populations has aided

appreciation of stepwise lineage specification. However, the

choice of a small number of markers for enrichment of cell pop-

ulations often masks potential heterogeneity and may bias an

understanding of the cellular hierarchy.
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Extensive cellular and molecular studies have contributed to

the characterization of vertebrate hematopoietic differentiation

pathways (Orkin and Zon, 2008). The prospective identification

of mouse hematopoietic stem and progenitor cells (Muller-Sie-

burg et al., 1986; Visser et al., 1984) and further separation of

hematopoietic stem cells (HSCs) from multipotent progenitors

(MPPs) (Kiel et al., 2005; Morrison et al., 1997; Morrison and

Weissman, 1994; Osawa et al., 1996) suggested a cellular hierar-

chy, whereby self-renewing HSCs produce transiently ampli-

fying MPP. Subsequent identification of common lymphoid

(CLPs) and myeloid progenitors (CMPs) (Akashi et al., 2000;

Kondo et al., 1997) led to the conventional model in which line-

age specification first takes place as a lymphoid (CLP) versus

myeloid (CMP) bifurcation event. Several findings, however,

challenge this simple view. They describe heterogeneity of early

progenitor populations and posit that lymphomyeloid lineage

commitment may occur upstream of the separation of CLP

and CMP (Adolfsson et al., 2005; Arinobu et al., 2007; Pronk

et al., 2007). Different marker panels and fluorescence-activated

cell sorting (FACS) purification schemes have prevented resolu-

tion of these alternative models.

Cells within leukemias are also believed to form a hierarchy,

yet descriptions of leukemia stem cells (LSCs) are often seem-

ingly contradictory. Original support for the existence of LSCs

rested on the observation that only a rare subset of human acute

myeloid leukemia (AML) cells, characterized by a surface pheno-

type similar to that of hematopoietic stem/progenitor cells, was

competent to reinitiate disease upon transplantation in immuno-

deficient mice (Bonnet and Dick, 1997). More recent findings

derived from amousemodel of AML driven byMLL-AF9 suggest

that LSCs display a granulocyte/monocyte progenitor (GMP)-

like phenotype and stand at the top of the leukemia hierarchy

(Krivtsov et al., 2006). Other reports argue that leukemia

cells with immunophenotypes of lineage cells may perform as

functional LSCs in mouse AML (Gibbs et al., 2012; Somervaille

and Cleary, 2006), adding to the complexity of the leukemia

hierarchy.

Single-cell gene expression analysis offers potential to resolve

these issues. Recently, several hallmark technical advances
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Figure 1. Single-Cell Gene Expression Analysis of the Cell Surface Repertoire

(A) Flow chart of single-cell assay development.

(B) A heatmap showing that the unbiased hierarchical clustering well separates single-cell gene expression signatures from different types of adult stem cells.

Each row corresponds to a specific gene; each column corresponds to a particular single cell. Red to yellow suggest high tomiddle expression, whereas green to

blue suggest low to no expression.

(C) A heatmap highlighting examples of lineage-specific markers from Figure 1B. The color scale and sample layout are the same as in Figure 1B.

See also Figure S1 and Tables S1 and S7.
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have been achieved. Single-cell messenger RNA (mRNA)

sequencing strategies enable whole transcriptome analysis

from individual cells (Islam et al., 2012; Ramsköld et al., 2012;

Tang et al., 2009, 2010). Alternatively, single-cell mass cytometry

constitutes a powerful system for multiplexed gene expression

analysis at the protein level (Bendall et al., 2011). When both

sample size and assayed gene number are taken into consider-

ation, high-throughput single-cell quantitative PCR (qPCR)

represents a favorable option (Buganim et al., 2012; Dalerba

et al., 2011; Guo et al., 2010; Moignard et al., 2013). The qPCR

approach is highly sensitive in detecting quantitative differences

at mRNA level (Guo et al., 2010).

Here, we sought to improve the utility and value of current sin-

gle-cell qPCR technology by increasing its throughput so as to

assess expression of nearly all commonly used cell surface

markers. We illustrate how this enhanced approach provides

biological insights into normal and leukemic hematopoiesis.

The approach we describe should be applicable to other devel-

opmental systems and allow for cross-tissue and cross-experi-

ment comparisons. The method allows dissection of heteroge-

neous populations and the identification of cellular states at

single-cell resolution.

RESULTS

Single-Cell GeneExpressionAnalysis of theCell Surface
Repertoire
By introducing algorithm-basedprimer design andoptimizing the

cycling conditions for highlymultiplexedPCR,wehave increased

the capacity of single-cell mRNA sequence-specific preamplifi-

cation (Figure 1A). In addition, the use of EvaGreen real-time
Ce
PCR chemistry (Biotium) and melting curve analysis allows for

nonspecific signal control during gene-specific qPCR on the

BioMark real-time PCR system (Fluidigm). Finally, inclusion of

nested primers filters out primer dimer signals (Figure 1A). In

the highly multiplexed PCR preamplification, the chance of form-

ing a dimer between a given primer pair of the same gene is actu-

ally very low. The subsequent gene-specific qPCRwill select and

enrich target amplicons, even from extremely low starting mate-

rials (Figures S1A and S1B available online). We have designed

and optimized a panel of assays to cover all commonly used

cell surface markers (Lai et al., 1998) with a total of 280 genes

(a few important transcription factors are also included) in estab-

lishing an analysis platform for all mouse cell types. After 280

multiplexed, single-cell preamplification, individual gene expres-

sion is quantifiedon theBioMark real-timePCRsystem (Fluidigm)

using three 96.96 dynamic arrays.

To assess the ability of the assay to discriminate different cell

types at single-cell level, we used flow cytometry to sort stem

cell populations from a broad range of tissues, including neural,

prostate, mammary gland, intestinal, and hematopoietic stem

cells, according to published protocols (Table S1A), and applied

the single-cell assay for gene expression profiling. As shown in

Figure 1B, hierarchical clustering of the single cell data faithfully

groups cells of the same origin together. The clustering also

reveals lineage-specific markers, such as CD56 for neural stem

cells, Ceacam2 for prostate stem cells, Icam1 for mammary

gland stem cells, Lgr5 for intestinal stem cells, and Ifitm1 for

hematopoietic stem cells (Figure 1C). False positive signal from

a no-cell preamplification control is extremely rare and weak

(Figure S1C). These results provide initial evidence on behalf of

the robustness of the single-cell approach.
ll Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc. 493
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Comprehensive Single-Cell Analysis of the
Hematopoietic System
We utilized the single-cell assay for a systematic analysis of the

mouse hematopoietic system. To enrich stem cell and progeni-

tor cell populations and represent all possible cellular transitional

states during differentiation, we used FACS to sort the principal

hematopoietic compartments of the bone marrow by use of the

cell surfacemarkers Kit and Sca1, as well as a lineage (Lin) cock-

tail that recognizes mature cells of the major hematopoietic cell

lineages, including T lymphocytes, B lymphocytes, monocytes/

macrophages, granulocytes, and erythrocytes. Sorted popula-

tions include Lin+, Lin-Sca1+Kit+ (LSK), Lin-Sca1+Kit�
(LSK�), Lin-Sca1�Kit+ (LS�K), and Lin-Sca1�Kit� (LS�K�)

populations (Figure 2A). In addition, we sorted conventionally

defined stem and progenitor cell types (including HSCs, MPP,

CMP, CLP, common dendritic cell progenitor [CDP] [Onai

et al., 2007], megakaryocyte/erythroid progenitor [MEP], and

GMP) as well as a set of differentiated cell types (Figure S2;

Table S1). A similar strategy was used to sort CD4+ T cells,

CD8+ T cells, CD4+CD8+ double positive T cells, earliest thymic

progenitors (ETP), CD4�CD8� double-negative (DN) 2, DN3,

and DN4 stage thymocyte progenitors (Figures 2A and S2;

Table S1). An average of around 50 single cells are analyzed

for each sorted population (Table S1). We analyzed more than

1,500 single cells throughout the mouse hematopoietic system

and quantified all 280 genes for each individual cell (Table S2).

Unsupervised hierarchical clustering of the single cell data set

reveals high correlation of gene expression clusters with cell-

type clusters (Figure 2B). As highlighted by white boxes,

CD11c, CD3, Blnk, Kit, CD11b, and Gypa clusters correspond

to dendritic, T, B, stem and progenitor, myeloid, andmegakaryo-

cytic and erythroid (MegE) lineage cells, respectively. The prin-

cipal lineage-specific gene clusters are summarized in Table

S3. Subclusters also exist within thesemain clusters. In addition,

the quantified mRNA level differences correlate with different

FACS sorting schemes; Actb and Gapdh expression levels are

relatively consistent (Figure S3A). The clustering data suggest

that differential global gene expression signatures at the single

level are reproducible in both progenitor and differentiated cells

types. The clustering pattern may then be used to identify novel

markers and populations.

To visualize the overall pattern of gene expression (280 param-

eters) at the single-cell level, we used the Gene Expression

Dynamics Inspector (GEDI) program (Chang et al., 2008) to

generate individual expression maps (Figure 2C). The color of

each pixel on the map indicates the centroid value of the gene

expression level for eachminigene cluster generated by the soft-

ware. Representative single-cell maps fromdifferent populations

illustrate how the method can be used to identify and classify

virtually all cell types. As an example, we show that an incom-

pletely defined LSK� population is very heterogeneous, as

revealed by the clustering (Figure 2C). According to the single-

cell gene expression signature, this population contains not

only CLP-like progenitors and B cell progenitors but also plas-

macytoid dendritic cells (PDC) (Onai et al., 2007) and nuocytes

(Neill et al., 2010). Changes during cellular differentiation may

be visualized from the maps. The gradual transition of the

GEDI map from sorted MEP to CD71+ erythroid progenitors

and then to Ter119+ cells provides an example. Interestingly,
494 Cell Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc.
we have identified bone marrow MPP-like cells in the spleen

(MPP-SP) and thymus (MPP-TH), consistent with the circulation

of hematopoietic progenitor cells throughout the body.

Heterogeneity of Hematopoietic Progenitor Cell Types
Having established a robust methodology for single-cell anal-

ysis, we proceeded to examine the classically defined hemato-

poietic progenitor cell types (Figures 3A–3E). Each of these

progenitor types reveals marked heterogeneity. For example,

we profiled 47 single CMP cells, originally defined by the Lin-

IL7R-Kit+Sca1-CD34+CD16/CD32lo profile, and ranked 280

genes by their standard deviation across all CMP samples. The

top four most variable genes were CD53, Sell, CD55, and Flt3

(Figure 3A). Hierarchical clustering of these variable genes

reveals two principal populations with different gene expression

patterns. To address whether these gene expression differences

reflect stochastic noise (Chang et al., 2008), we applied violin

plot analysis to visualize the distribution of gene expression

levels. In this plot, the Y- and X-axes correspond to the gene

expression level and distribution frequency, respectively. Theo-

retically, expression noise should exhibit unimodal distribution

around a reference level, whereas a multimodal distribution

should indicate quantitative differences. As expected, the distri-

butions of Actb and Gapdh levels are unimodal, with a very nar-

row peak indicative of low variation (Figures 3A and S3B). In

contrast, the top four most variable genes within the CMP pop-

ulation show clear bimodal distribution. To confirm mRNA level

differences at the protein level, we used available antibodies to

the surface marker CD55 to further analyze the CMP compart-

ment. Flow cytometry validated the heterogeneous nature of

the CMP population detected by single-cell qPCR (Figure 3A).

We then continued to dissect heterogeneity further in the

CD55-CMP population and revealed Csf1r as one of the most

differentially expressed markers (Figure 3B). Comparable ana-

lyses were performed for GMP, CLP, MEP, ETP, and CDP. We

observed discrete heterogeneity within all populations (Figures

3C–3E). The analysis also reveals dynamic changes in LSK het-

erogeneity during the aging process (Figure S3C) and permits

assessment of the purity of HSCs from different enrichment

protocols (Figure S3D). The bimodal distribution of mRNA tran-

scripts is present in all the cell types that we have purified, sug-

gesting extensive unknown heterogeneities. Although the mRNA

level expression is not always reflective of protein level expres-

sion, we argue that it should be indicative of a cell’s transcrip-

tional state and functional potential.

Mapping Hematopoietic Hierarchy by Computational
Lineage Progression Analysis
We hypothesized that the similarity of different single-cell signa-

tures and continuity of transitional states during differentiation

could form the foundation of an in silico strategy to organize

high-dimensional data into ordered, stepwise cell fate commit-

ment pathways. To accomplish this, we first removed redun-

dancy by extracting the average value of 40 distinct gene

expression clusters from the entire data set (Table S3) and

then used spanning-tree progression analysis of density-normal-

ized events (SPADE) (Bendall et al., 2011; Qiu et al., 2011)

analysis to distill 40 dimensional single-cell data down to a

single interconnected cluster of transitional cell populations.



Figure 2. Comprehensive Single-Cell Analysis of the Mouse Hematopoietic System

(A) Single-cell sorting strategy to enrich stem and progenitor cells but to cover all possible populations.

(B) A master heatmap showing the hierarchical clustering of gene expression signatures from 1,500 single cells throughout the hematopoietic system. Each row

corresponds to a specific gene; each column corresponds to a particular single cell. Strong correlation between gene and cell clusters are highlighted by white

boxes and labeled by cell type-specific clusters. Red to yellow suggest high to middle expression, whereas green to blue suggest low to no expression.

(C) GEDI plot allows for visualization of single-cell global signatures. Examples of single-cell GEDI map from different cell types are presented. Color scale is as

described in Figure 1B. The lower right corner, which is always red, corresponds to endogenous control genes that are highly expressed in all single-cell samples.

From the Lin-Sca1+Kit� population, there are clusters of single cells (the red lines separate different clusters in the heatmap of Lin-Sca1+Kit� single-cell data)

with nuocyte signature and PDC signature.

See also Figure S2 and Tables S2 and S7.
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The unsupervised computationally constructed hierarchy shows

high resemblance to the hematopoietic differentiation lineage

tree (Figure 4A). Different cell lineages are readily separated
Ce
into distinct branches, as revealed by the overlaid expression

level of different gene clusters. Branches expressing Kit cluster

and Gypa cluster genes correspond to stem and progenitor
ll Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc. 495
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Figure 3. Dissection of Heterogeneity within Classical Progenitor Types

(A–D) Top four most variable genes are listed according to their standard deviation value within a particular progenitor cell type. The hierarchical clustering

heatmap and violin density plot reveal the heterogeneity in the population. The percentages of cells with positive expression levels are marked on the violin plot.

Color scale is as described in Figure 1B. FACS analysis confirms gene expression differences at protein level.

(E) Violin plots showing the expression pattern of top four most variable genes in MEP, ETP, and CDP progenitor populations.

See also Figure S3 and Table S7.
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and to MegE lineage cells, respectively. The dendritic, macro-

phage, B cell, and T cell branches, as well as lymphomyeloid

progenitor cells, are marked by expression of CD11c, CD11b,

Blnk, CD3, and Flt3 clusters, respectively. The Gapdh endoge-

nous control cluster is expressed broadly.

In the hierarchy generated from single-cell expression data,

the MegE lineage branch is closely connected to the long-term

repopulating HSC branch. These data suggest that the MegE

lineage separates very early from lymphomyeloid lineage cells.

Upon inspection of the composition of different nodes, we found

that phenotypic CMP cells are located on two separate differen-

tiation pathways, with half merged to the MegE lineage and half

merged to the lymphomyeloid lineage (Figure 4B). This pattern is

inconsistent with the conventionally portrayed, classical differ-

entiation scheme that positions the MegE progenitor after the

bifurcation of CMP and CLP and is reminiscent of an alternative

model (Adolfsson et al., 2005; Pronk et al., 2007).

To validate this alternate scheme functionally, we sought to

predict an early MegE lineage-specific marker from our data

resource. We compared gene expression differences between

the two separated CMP compartments (CMP1 and CMP2) and

identified CD55 as the most differentially expressed MegE

marker (Figure 4C). In addition, we found that CD55 expression
496 Cell Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc.
strongly correlated with theGata1 transcription factor (Figure 4C

and S4A), a master regulator of MegE lineage specification

(Arinobu et al., 2007; Fujiwara et al., 1996; Iwasaki et al., 2003).

FACS analyses indicate that Lin-Kit+Sca1� cells can be sepa-

rated by CD55 into two main compartments (Figure S4B). To

overcome the limitation of traditional two-dimensional gating

strategy, we used SPADE analysis to analyze multidimensional

FACS data from mouse bone marrow stained with CD55,

CD150, CD34, CD16/CD32, Sca1, Kit, and lineage antibodies.

We focused on Lin� Kit+ data points and generated a simplified

lineage tree with seven dimensional single-cell profiles. Consis-

tent with our qPCR expression findings, the MegE lineage

branch is closely connected with the HSC containing cell

cluster nodes (Figures 4D and S4C), confirming early MegE

specification.

We next separated CMP (Lin-IL7R-Sca1+Kit+CD34+CD16/

CD32lo) and MPP (Lin-Sca1+Kit+CD34+) compartments into

CD55+ and CD55� subpopulations (Figure 4E) and tested their

function using in vitro colony-forming assays. Both CD55+

MPP and CD55+ CMP produce predominantly erythroid and

megakaryocytic colonies, whereas few MegE colonies arise

from CD55� MPP or CD55� CMP, revealing a functional differ-

ence in these early progenitor compartments (Figures 4F and
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S4D). In order to confirm the early MegE separation in vivo, we

used Actb-GFP mice for transplantation studies (Figure 4G).

CD55+ CMPs transiently give rise to CD61+ platelets, whereas

CD55� CMPs produce mainly myeloid cells (Figure 4H).

CD55+ MPPs achieved more than 50% platelet reconstitution,

whereas there was no reproducible contribution of CD55�
MPPs to CD61+ platelets (Figures 4I and S4E). Importantly,

CD55� CMPs and CD55� MPPs failed to produce platelets

in vivo, whereas CD150� progenitors exhibited robust MegE

potential (Pronk et al., 2007), suggesting that CD55 is an

improved marker for separating early MegE progenitors. In

conclusion, by computational analysis of single-cell data, we

have predicted and validated CD55 as a marker to establish a

functional separation between early MegE and lymphomyeloid

differentiation at both CMP and MPP stages.

Genetic Network Construction by Single-Cell Analysis
To explore potential molecular mechanisms underlying early

hematopoietic lineage specification, we designed primers to

assay expression of an additional 180 genes, including line-

age-specific transcription factors, epigenetic modifiers, and

cell-cycle regulators. We assayed single cells from HSCs

(CD48�CD34�CD150+LSK), MPP (CD34+LSK), CMP, MEP,

GMP, and CLP populations (Table S4) and calculated gene

expression covariance across the data set to uncover hidden

regulatory links. We then used Cytoscape software to integrate

expression correlations with published chromatin immunopre-

cipitation sequencing (ChIP-seq) binding data sets for ten major

stem cell transcriptional regulators (including Scl/Tal1, Lyl1,

Lmo2, Gata2, Runx1, Meis1, PU.1, Erg, Fli1, and Gfi1b) from

HPC-7 cell line (Wilson et al., 2010). The network (Figure S5A)

only depicts links in which the covariance was above 0.1 for

correlated genes (green edges) or below �0.1 for anticorrelated

genes (red edges). The network contains 76 nodes, connected

through 71 edges between correlated genes and 74 edges

between anticorrelated genes. Figure 5A highlights the tran-

scription factor components of the complete network. As re-

vealed, Gata2, a central hematopoietic stem cell regulator (Tsai

et al., 1994; Wilson et al., 2010), lies at the core of the lineage

specification pathway (Figure 5A), positively correlates with a

MegE lineage module (characterized by Gata1, Gfi1b, Nfia, and
Figure 4. Mapping Cellular Hierarchy by Lineage Progression Analysis

(A) Spanning-tree progression analysis of density-normalized events from single

cluster is listed in Table S3. Overlaid expression pattern of different gene clusters

(B) Single-cell SPADE hierarchy suggests early separation of MegE lineage and

(C) CD55 is the most differentially expressed MegE cell surface marker betwe

expression across the single-cell data set.

(D) SPADE analysis of FACS data from mouse bone marrow stained with CD55, C

defined by lineage signal < 1,000, kit signal > 1,000) data points are included in the

the HSCs (as defined by CD150 signal > 1,000, CD48 signal < 1,000, CD34 signal <

are closely related with MegE branch, as defined by overlaid expression in Figur

(E) CD55 can be used to separate both CMP and MPP progenitors.

(F) In vitro colony-forming assays using erythropoietin (EPO)-containing methylcel

subpopulations. One hundred fifty cells from each populationwere plated in 1.5ml

megakaryocytes; m, monocytes; n, neutrophils.

(G–I) Reconstitution experiment using Actb GFP mice validated the early separ

correspond to sampling time. Y-axes correspond to GFP% of the total reconstitu

represented as mean of four biological replicates for each group. The error bars

See also Figure S4 and Tables S3 and S7.

498 Cell Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc.
Klf1), and negatively correlates with a lymphomyeloid module

(characterized by Flt3, Sell, Cebpa, and Notch1). This is also

depicted on a gene-to-gene correlation heatmap in Figure 5B.

Time-course, single-cell tracing experiments suggest that upre-

gulation or downregulation of Gata2 marks the first molecular

event during colony formation (Figure S5B). The correlation in

expression level between Gata2 and Gata1 is maintained during

both in vivo and in vitro differentiation (Figure S5C). As revealed

in Figure 5C, Gata2, Runx1, Meis1, Scl, Lyl1, and Lmo2

co-occupy at Gata1 and Gfi1b regulatory regions (Figure 5C).

The stem cell transcription factor Gata2 occupies regulatory

elements of multiple MegE lineage-related genes, as well as

HSC-enriched genes (Figure S5D).

As a functional test of this predicted genetic network, we

examined the consequences of perturbation of the level of

Gata2. BecauseGata2�/� embryos die early due to hematopoi-

etic failure (Tsai et al., 1994), we analyzed gene expression

changes in viable Gata2+/� mice at single-cell resolution.

Consistent with a previous report (Rodrigues et al., 2005), we

observed a reduction in the size of the LSK population in

Gata2 heterozygous mice as compared with wild-type. Single-

cell gene expression analysis of Gata2 +/+ and Gata2 +/� LSK

reveals that haploinsufficiency is associated with an altered reg-

ulatory network during early lineage differentiation (Figures 5D

and S5E), revealing sensitivity of the network to modest quanti-

tative changes inGata2 expression. Haploinsufficiency forGata2

leads to downregulation of the MegE marker Gfi1b and Gata1

and upregulation of lymphomyeloid markers, including Flt3,

Sell, CD34, CD53, and Cebpa in hematopoietic stem and pro-

genitor cell populations (Figures 5D and S5E). Taken together,

single-cell-level gene expression in combination with functional

studies validates a genetic network underlying early differentia-

tion of MegE lineage from the lymphomyeloid lineage.

MegE Priming in the Most Primitive HSCs
In single-cell, in vitro tracing experiments (Figure S5B), we

noticed that pure megakaryocytic colonies are the first to

emerge in cultures of HSCs. These results encouraged us to

investigate the heterogeneity and existing MegE network within

themost primitive HSC (CD48�CD34�CD150+LSK) population.

Remarkably, a MegE module, characterized by expression of
-cell expression pattern of 40 gene clusters. The information regarding each

helped to define distinct cell lineages. Color scale is as described in Figure 1B.

lymphomyeloid lineage.

en the CMP1 and CMP2. In addition, CD55 is highly correlated with Gata1

D150, CD34, CD16/CD32, Sca1, Kit, and lineage antibodies. Only Lin-Kit+ (as

analysis to reduce complexity. The two cell cluster nodes that contain most of

1,000, Sca1 signal > 1,000) containing nodes are labeled in red. The two nodes

e S4C.

lulose suggest that CD55 divides both CMP andMPP into functionally different

ofMethocultM3434 (StemCell Technologies) in duplicates. E, erythrocytes;M,

ation of MegE lineage potential and lymphomyeloid potential in vivo. X-axes

ted cells. Mice are irradiated by two doses of 5 Gy with a 4 hr interval. Data are

represent SD.
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Figure 5. Genetic Regulation during HSC

Differentiation

(A) A genetic network constructed by Cytoscape

using transcription factor ChIP-seq binding in-

formation and single cell-level gene expression

correlation data. It highlights transcription factors

components within the complete network in Fig-

ure S5A. Green arrow corresponds to positive

correlation, whereas red arrow corresponds to

anticorrelation. The width of the line corresponds

to absolute value of the covariance between two

linked gene nodes.

(B) Gene-to-gene correlation heatmaps contain-

ing HSC, MegE, myeloid, and lymphoid modules

in MPP and CMP.

(C) HSC module transcription factors co-occupy

Gata1 and Gfi1b upstream region.

(D) Gene expression level distribution of LSK

single cells from wild-type and Gata2 heterozy-

gous mice are presented with violin density plots.

The percentages of cells with positive expres-

sion levels are marked on the violin plots. Note

the decrease in MegE-primed cells (Gfi1b+ or

Gata1+) cells and increase in lymphomyeloid

primed cells (Cebpa+, Flt3+, CD53+, or Sell+) in

the Gata2 +/� LSK population.

See also Figure S5 and Tables S4 and S7.

Cell Stem Cell

Single-Cell Analysis of Cell Surface Repertoire
Fli1, CD41, CD150, Gata1, vWF, Mpl, and Gfi1b, maintains high

correlation in single HSCs (Figure 6A). MegE lineage-specific

gene expression is detected in HSCs purified by different enrich-

ment protocols and further confirmed by single-cell NanoString

technology (Figures 6B, S6A, and S6B; Table S5). Such tran-
Cell Stem Cell 13, 492–505
scriptional priming does not appear to

be stochastic but rather controlled by

an intertwined HSC regulatory network.

We ranked single HSCs by the expres-

sion level of Gata2 and compared gene

expression between Gata2high HSCs

(top 50%) and Gata2int HSCs (bottom

50%). CD150 emerged as a candidate

marker for separating HSCs according

to different levels of Gata2 expres-

sion (Figure 6C), as well as different

degrees of MegE priming (Figure S6C).

To confirm these differences, we

FACS-sorted HSCs into CD150high

and CD150int compartments for gene

expression analysis (Figure 6D). Indeed,

CD150high HSCs express higher levels

of Gata2, Gata1, and CD61, as well

as other MegE lineage-related genes

(Figure 6E). In colony-forming assays,

CD150high HSCs generate greater

numbers of MegE lineage-containing

colonies thanCD150intHSCs (Figure6F).

Similar biased differentiation readouts

were also seen in HSCs that were sepa-

rated by relative expression levels of

CD55, CD41, or CD9 (Figure S6D). These
results suggest that MegE differentiation bias is already estab-

lished at the HSC level.

The positive correlation of Gata2 with the MegE priming

expression suggests that the regulatory network within HSCs

is intrinsically unstable. As such, higher levels of Gata2 in
, October 3, 2013 ª2013 Elsevier Inc. 499
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Single-Cell Analysis of Cell Surface Repertoire
HSCsmay activateMegE lineage expression and promoteMegE

lineage skewing. When stained with the full panel of HSC

markers, we observed a reduced number of CD150high HSCs

in the Gata2 haploinsufficient state (Figure 6G). In addition, in

the most primitive HSCs of Gata2 +/� mice, we observed a

reduction in the number of Gata1+ or Gfi1b+ HSCs, as well as

the average level of MegE priming (Figure 6H). Consistent with

these findings, overexpression of Gata2 has been reported to

promote MegE differentiation (Huang et al., 2009; Kitajima

et al., 2006). The characterization of MegE priming in HSCs sup-

ports the cellular hierarchy and genetic network derived from sin-

gle-cell expression data and illustrates the power of single-cell

analysis in detecting the earliest regulatory events during stem

cell differentiation.

Single-Cell Analysis of the AML Cellular Hierarchy
Having obtained a comprehensive data set in the wild-type

hematopoietic system, we next applied the single-cell expres-

sion approach to characterization of LSCs in MLL-AF9-driven

AML, a clinically relevant model of hematopoietic malignancy

(Krivtsov et al., 2006; Neff et al., 2012). In this model, LSCs

resemble GMPs and are hence described as LGMPs. Others,

however, have described alternative cellular hierarchies of AML

(Gibbs et al., 2012; Somervaille and Cleary, 2006). We generated

MLL-AF9 primary leukemia in mice (Neff et al., 2012) and profiled

single cells of the originally defined LGMP LSC population (Lin-

Il7r-Kit+Sca1�CD34+CD16/CD32+), as well as the leukemic

Lin+ (LLin+) population from bone marrow (Figure 7A and Table

S1). As shown in Figure 7B, hierarchical clustering of gene

expression data from leukemia cells and the wild-type myeloid

cells reveals clear separation of the two groups. The LLin+ clus-

ters closely with a group of LGMP cells, suggesting that lineage

marker expression does not define a clear hierarchy in the leuke-

mia. Two strong gene clusters are observed in the leukemia cells:

a Csf1r, Ccr2, Ccr5 cluster and a CD24, Vcam1, CD133 cluster

(Figure 7B). We adapted SPADE to analyze the data (Figure 7C).

To allow for comparison of the wild-type and leukemia lineages,

we extracted 40 clusters from the combined data sets of LGMP,

LLin+, GMP, and Lin+ single cells (Table S6). We then used these

clusters to infer lineage hierarchy for both cellular systems. From

the overlaid expression level of different gene clusters, we

observed clear separation of the CD24+ lineage branch and

the Csf1r+ lineage branch within the tested leukemia cells

(Figure 7C). By comparing the twomain leukemia cell type signa-

tures with other hematopoietic cell types, we find that MLL-AF9

leukemia cells display a unique signature with high expression of
Figure 6. MegE Lineage Priming in HSCs
(A) Gene-to-gene correlation heatmaps reveal correlation of MegE lineage marke

(B) Violin plot suggests significant MegE lineage priming in HSCs (CD48�CD34�
(C) CD150 stands out as the top differentially expressed gene between Gata2hig

(D) FACS of CD150high and CD150int HSCs.

(E) Gene expression difference between the sorted CD150high versus CD150int

(F) In vitro colony-forming assays using Methocult M3434 (Stem Cell Technolo

colonies than the CD150int HSCs. FACS analysis of day 7 methylcellulose cultu

generated from the CD150high HSCs when compared to CD150int HSCs. CD11

(G) Gata2 haploinsufficiency results in a reduction of CD150high HSCs. Three an

(H) Gata2 haploinsufficiency results in a reduction ofGata1 andGfi1b priming in th

Single cells are ordered by Gata1 or Gfi1b expression.

See also Figure S6 and Tables S5 and S7.

Ce
Lamp1, Lamp2, Ifngr1,CD47, andCD33 (Figure 7D). Notably, the

leukemia cellular state differs from other hematopoietic cellular

states both at the single cell and population levels.

In the previously defined LGMP population, in which LSCs are

highly enriched (Krivtsov et al., 2006), we observed clear hetero-

geneity. Guided from single-cell data, we separated the LGMP

into two populations using CD24 antibody (Figure 7E). To assess

potential functional difference of these two compartments, we

transplanted each into sublethally irradiated secondary recipi-

ents. Both CD24� LGMP and CD24+ LGMP are capable of initi-

ating AML (Figure 7F). However, mice transplanted with CD24+

LGMPs exhibited a marked delay in disease progression.

Analysis of the bone marrow from secondary leukemia mice

indicated that CD24� leukemia cells and CD24+ leukemia cells

maintain their respective signatures and fail to reconstitute

each other during clonal expansion (Figure 7G). Thus, CD24

marks two distinct, self-renewing clones within MLL-AF9-driven

AML. Further profiling of additional intracellular regulators

reveals different genetic programs used by CD24� LGMP and

CD24+ LGMP (Figure S7A). Interestingly, Ezh2, a core polycomb

repressive complex 2 (PRC2) component, is overexpressed in

CD24� LGMPs (Figure S7A). Our analysis also reveals high vari-

ation of Ezh2 at the single-cell level, which strongly correlates

with Ccna2, Ccnb1, and Ccnb2 expression (Figure S7B). Such

correlation may account in part for the more aggressive behavior

of the CD24� Ezh2high leukemia clone, as compared with the

CD24+ Ezh2low leukemia clone. In microarray data of synchro-

nized HeLa cells (Whitfield et al., 2002), Ezh2 expression is

lowest in G1 and peaks at S phase (Figure S7C). In addition,

many cell-cycle regulators are direct targets of PRC2, as

assessed from PRC2 chromatin occupancy data (Figures S7D–

S7G). Moreover, inhibition of Ezh2 function with the specific

inhibitor GSK126 (McCabe et al., 2012) leads to an increase in

G1 phase cells and a decrease in S phase cells in MLL-AF9

cultures (Figure S7H). Our findings are in general agreement

with the observation that EZH2 overexpression correlates with

poor prognosis in several tumor types (Cavalli, 2012; McCabe

et al., 2012).

DISCUSSION

Single-cell analysis technologies provide a powerful approach to

the study of rare cell types and cell heterogeneity. For both

genome analysis and transcriptome analysis of single cells,

amplification of small amounts of material is required and pre-

sents technical challenges. For assessment of gene expression,
rs in single cells from HSCs (CD48�CD34�CD150+LSK).

CD150+LSK).

h HSCs and Gata2int HSCs.

HSCs.

gies) suggest that CD150high HSCs produce more MegE lineage-containing

res also suggests a decreased percentage of CD11b+ or Gr1+ myeloid cells

b� and Gr1� cells were defined as nonmyeloid cells.

imals were analyzed for each genotype; results are shown as mean ± SD.

e HSC compartment. A total of 87 single cells were analyzed for each genotype.

ll Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc. 501



B

CD24 VCAM1
CD133 Cluster 

CSF1R CCR2 CCR5 
Cluster

390 single cells 

280 genes 

Actb

GMP Lin+ LGMP2 LGMP1 and LLin+ 

ACTB GAPDH CD24A FLT3 VCAM1 PECAM1

-5
0

5
10

15
20

TOP 4 
Variable 
Genes 

STDEV 

CD24A 4.87 
FLT3 4.84 
VCAM1 4.78 
PECAM1 4.62 FS

C
-A

 

CD24A 

LGMP

78% 41% 55% 57% 

Ex
pr

es
si

on
 le

ve
l

ACTB
GAPDH
CD24A
VCAM1
FLT3
PECAM1

0 

14 

0 103 104 105
0

50K

100K

150K

200K

250K

55.6 41.7

Lin-Il7R-Sca1-Kit+CD34+CD16/32+

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 10 20 30 40 50 60 

CD24+LGMP 

CD24-LGMP 

CD24

CD24+LGMP transplanted BMCD24-LGMP transplanted BM

S
u
rv

iv
a
l (

%
)

Days post-transplant

F

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

CD24

K
itK
it

C
D

24-
C

D
24+

ACTB
LAMP1
LAMP2
IFNGR1
CD47

0 

14 

E G

D

CD33
GAPDH
TLR1

A

0 50K 100K 150K 200K 250K

FSC

0

103

104

105

24

38.8

0 103 104 105

0

103

104

105

43.1

0 103 104 105

0

102

103

104

105

44.5

Li
n

Ki
t

Sca1

CD34

C
D

16
/3

2
MLL-AF9 Bone Marrow

C

0 14 0 14 0 14 0 14 

0 14 0 14 0 14 0 14 

CD24 VCAM1 CD133 Cluster 
LGMP and LLin+ 

CSF1R CCR2 CCR5 Cluster 
LGMP and LLin+ 

ABCG2 CD47 LAMP1 Cluster 
LGMP and LLin+ 

CD38 LIFR ITGB7 Cluster 
LGMP and LLin+ 

GMP and Lin+ GMP and Lin+ GMP and Lin+ GMP and Lin+ 
CD24 VCAM1 CD133 Cluster CSF1R CCR2 CCR5 Cluster ABCG2 CD47 LAMP1 Cluster CD38 LIFR ITGB7 Cluster 

(legend on next page)

Cell Stem Cell

Single-Cell Analysis of Cell Surface Repertoire

502 Cell Stem Cell 13, 492–505, October 3, 2013 ª2013 Elsevier Inc.



Cell Stem Cell

Single-Cell Analysis of Cell Surface Repertoire
single-cell, high-throughput qPCR has several advantages. First,

it utilizes one-tube one-step single-cell sequence-specific pre-

amplification, which involves minimal sample handling time

and allows for high-throughput complementary DNA (cDNA)

library generation. Second, the targeted PCR approach enables

specific amplification of lowly expressed genes. Finally, Biomark

(Fluidigm) microfluidic qPCR permits well-controlled, parallel

analysis of 96 single-cell samples. The system minimizes tech-

nical variation, allowing for comparison of different samples

without normalization. A major challenge relates to primer dimer

formation during multiplexed, sequence-specific preamplifica-

tion step, which generates false-positive signals (Guo et al.,

2010). To overcome this obstacle, we have introduced multi-

plexed primer design, lowered the preamplification primer

concentration, and included nested primers to avoid primer

dimer signals. These optimizations significantly increased the

throughput of single-cell qPCR technology and permitted anal-

ysis of the cell surface repertoire in many single cells from a

broad range of tissue types. We show with functional validation

that such data sets can be used for classification of cell type,

dissection of heterogeneity, mapping of cellular hierarchy, and

computational construction of genetic networks.

We have applied our analysis to examine cellular lineages

of the mouse hematopoietic system. Computational lineage

progression analysis provided an unbiased view of cellular

state transition during differentiation from HSCs. Our findings

independently support an alternative hematopoietic hierarchy

first proposed by Jacobsen and colleagues (Adolfsson et al.,

2005) and provide a molecular model for early MegE lineage

separation. The sensitivity of the assay allowed detection of

coordinated MegE transcriptional priming within the most highly

enriched HSCs. We then extended the analysis to a robust,

clinically relevant model of AML. At the level of single cells, we

showed that leukemia cells are intrinsically distinct from any of

the wild-type hematopoietic lineages. Interestingly, the most

significant heterogeneity within the leukemia corresponded to

two independent, disease-initiating clones. Moreover, we found

that Ezh2 is overexpressed in the more highly proliferative leuke-

mia cells and uncovered a link with cell-cycle progression.

No two cells are identical, a concept evident in our data set.

Even the most closely related cells, which correspond to two

erythroid progenitor cells from our complete data-clustering

heatmap (Figure 2B), exhibit differences in gene expression pat-

terns. Variation detected in single-cell gene expression data may

reflect biological and/or technical noise or may correspond to
Figure 7. Single-Cell Analysis of the AML Cellular Hierarchy

(A) Single-cell sorting strategy for different leukemia compartments in the MLL-A

(B) A heatmap showing hierarchical clustering of gene expression signatures from

CD32+ or Lin+ bone marrow) and MLL-AF9 primary leukemia cells (Lin-Il7r-Kit+S

specific gene; each column corresponds to a particular single cell. White boxes hi

Figure 1B.

(C) SPADE analysis of the wild-type myeloid hierarchy and leukemia hierarchy

different gene clusters helped to define distinct cell lineages in the MLL-AF9 leu

(D) Gene expression clustering heatmap of gene expression from the main leuk

leukemia-specific expression.

(E) Dissection of heterogeneity in the LGMP (Lin-Il7r-Kit+Sca1�CD34+CD16/CD

(F) Survival of secondary recipient mice receiving 800 CD24+ LGMP or CD24� L

(G) Reconstitution of two leukemia lineages in the secondary recipient bone mar

See also Figure S7 and Tables S6 and S7.

Ce
function. Distinguishing these two types of variation is very

important. Here, we assayed many single-cell samples and

searched for correlated gene clusters rather than variation in

expression of individual genes. Such correlated gene expression

behavior is more likely to represent genetic network function

rather than biological noise. By this approach, we correlated

MegE priming in the HSCs and correlated Ezh2 dynamics with

cell cycle, which were then both functionally validated. Single-

cell gene expression data is extremely valuable for extracting

such correlated gene expression clusters, because single cells

represent the fundamental unit of genetic network regulation.

The mammalian epigenetic landscape contains numerous

transitional cellular states within lineage differentiation path-

ways. Comprehensive mapping of this landscape requires

single-cell gene expression analysis in order to represent all

possible states. Such an assay needs to be both quantitative

and thorough, so that the data are experimentally robust and

reflects all major cell types. We suggest that the strategy

described here satisfies these requisites. In order to validate bio-

logical differences in cell populations, we have relied extensively

on study of cell surfacemarkers, as available antibodies can then

be used for prospective cell isolation. The approach is readily

applicable to other biological contexts. Its use should facilitate

identification of new surface markers for functional assessment

of stem and progenitor cells and the construction of cellular

hierarchies in other organ systems. The strategy is suitable for

deconvoluting cellular heterogeneity within different types of

cancers. Further accumulation of data sets from diverse con-

texts should eventually allow for themapping of all nonredundant

cellular states on the mammalian differentiation hierarchy.
EXPERIMENTAL PROCEDURES

Multiplexed Primer Design for Single-Cell Analysis

Gene symbol list for commonly used surface markers is summarized from two

resources: a comprehensive mouse cell surface antigens review paper (Lai

et al., 1998) and the eBioscience website mouse cellular antigen charts

(http://www.ebioscience.com/resources/mouse-cd-chart.htm). Gene sym-

bols are then converted to mRNA refseq ID by DAVID tools (http://david.

abcc.ncifcrf.gov/). mRNA sequences for each gene are retrieved from Univer-

sity of California Santa Cruz table browser; only common regions are used for

geneswith different isoforms.Multiplexed, gene-specific primers are designed

using a Primer3-based (http://primer3.wi.mit.edu/) algorithm to ensure that

each primer within the designed pool has a maximum complimentary

sequence of 7 bp to all the other primers. All primers (Table S7) are synthesized

and provided by Boston Open Labs (http://bolresearch.com/).
F9 AML mouse model.

390 single cells from wild-type myeloid cells (Lin-Il7r-Kit+Sca1�CD34+CD16/

ca1�CD34+CD16/CD32+ or Lin+ bone marrow). Each row corresponds to a

ghlight strongly correlated gene and cell clusters. Color scale is as described in

using the high-dimensional, single-cell data. Overlaid expression pattern of

kemia system.

emia cell clusters and all the main hematopoietic cell clusters reveals distinct

32+) according to described method in Figure 3.

GMP cells.

row.
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FACS and Single-Cell Collection

Seven- to twelve-week-old C57Bl/6 mice or Actb-GFP C57Bl/6 transgenic

mice were used throughout this study (except for fetal liver and aged

mice). Bone marrow cells were isolated by crushing iliac crest bones,

femurae, and tibiae in PBS containing 5% fetal calf serum and 2 mM

EDTA. After red blood cell lysis, the remaining cells were stained with mono-

clonal antibodies, analyzed, and sorted on the BD FACSAria II (BD Biosci-

ence). Individual cells were sorted directly into 96 well PCR plates loaded

with PCR buffer under single-cell mode. Monoclonal antibodies and conju-

gations used in this study are found in Table S7. All data were analyzed

with FlowJo (Tree Star).

One-Tube Single-Cell Sequence-Specific Preamplification

Individual primer sets (total of 300) were pooled to a final concentration of

0.1 mM for each primer. Individual cells were sorted directly into 96 well PCR

plates loaded with 5 ml RT-PCR master mix (2.5 ml CellsDirect reaction mix,

Invitrogen; 0.5 ml primer pool; 0.1 ml RT/Taq enzyme, Invitrogen; 1.9 ml nuclease

free water) in eachwell. Sorted plates were immediately frozen on dry ice. After

brief centrifugation at 4�C, the plates were immediately placed on PCR

machine. Cell lyses and sequence-specific reverse transcription were per-

formed at 50�C for 60 min. Then, reverse transcriptase inactivation and Taq

polymerase activation was achieved by heating to 95�C for 3 min. Subse-

quently, in the same tube, cDNA went through 20 cycles of sequence-specific

amplification by denaturing at 95�C for 15 s, annealing, and elongation at 60�C
for 15 min. After preamplification, PCR plates were stored at �80�C to avoid

evaporation.

High-Throughput Microfluidic Real-Time PCR

Preamplified products were diluted 5-fold prior to analysis. Amplified single-

cell samples were analyzed with Universal PCR Master Mix (Applied Bio-

systems), EvaGreen Binding Dye (Biotium), and individual qPCR primers using

96.96 Dynamic Arrays on a BioMark System (Fluidigm). Three Dynamic Arrays

loaded with different primer sets were used for each sample plate. Threshold

crossing (Ct) values were calculated using the BioMark Real-Time PCR Anal-

ysis software (Fluidigm).

Single-Cell NanoString

Reporter probes are designed and synthesized by NanoString R&D team.

Target sequences are amplified from single cells using one-tube single-cell

sequence-specific preamplification as described before. Twenty-five percent

of the amplified cDNA are subject to gene expression quantification using the

GEN2 Digital Analyzer. Raw counts are compiled, normalized, and analyzed

using nSolver. The data are then subtracted with the background signal and

transformed to Log2 scale before analysis.

Computational Processing of Single-Cell Data

A background Ct of 28 was used for all real-time signals. Samples with low

Actb expression level (Ct higher than 18) are outliers of normal distribution

and are excluded from the analysis. These samples had low or no expression

for all the other genes, suggesting that they correspond to empty wells or bad

single-cell samples. Hierarchical clustering was done with MultiExperiment

Viewer program. For all hierarchical clustering heatmaps, the rainbow scheme

color scale is set from 0 to 14, corresponding to Log2 gene expression above

background of 28. GEDI plots are generated using the gene expression

dynamics inspector. Each pixel on the 10.10 GEDI map corresponds to a

particular minigene cluster generated by the software. Violin plot, box plot,

and correlation heatmap were generated with R software. SPADE analysis

was performed with Matlab. Lineage specific gene lists for the 180 intracellular

regulator assay set and for Figure S5D are generated from the Immgenwebsite

analysis tool. ChIP-seq peak visualization was done with Integrative Genomics

Viewer program. The genetic networks in Figures 5A and S5A were con-

structed using Cytoscape 3 software.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes Supplemental Experimental

Procedures, seven figures, and seven tables and can be found with this article

online at http://dx.doi.org/10.1016/j.stem.2013.07.017.
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