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Any r-edge-coloured n-vertex complete graph Kn contains at most r mono-
chromatic trees, all of different colours, whose vertex sets partition the vertex set of
Kn, provided n�3r4r! (1&1�r)3(1&r) log r. This comes close to proving, for large n,
a conjecture of Erdo� s, Gya� rfa� s, and Pyber, which states that r&1 trees suffice for
all n. � 1996 Academic Press, Inc.

1. INTRODUCTION

The tree partition number of r-edge-coloured complete graphs is defined
to be the minimum k such that whenever the edges of a complete graph Kn

are coloured with r colours, the vertices of Kn can be covered by at most
k vertex-disjoint monochromatic trees. The cycle partition number is defined
similarly. Erdo� s, Gya� rfa� s, and Pyber [1] proved that the cycle partition
number (and hence the tree partition number) is at most cr2 log r for some
constant c. They conjectured in [1] that the cycle partition number is r,
and that the tree partition number is r&1. Here we prove that the tree
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partition number is at most r provided n is sufficiently large with respect
to r. Our main theorem, the proof of which is postponed until the next sec-
tion, is as follows.

Theorem 1. Let r�1 and n�3r4r!(1&1�r)3(1&r) log r be integers, and
suppose the edges of Kn are coloured with r colours. Then K n contains t�r
monochromatic trees T1 , . . . , Tt of radius at most 2, each of a different colour,
such that their vertex sets V(Ti) (1�i�t) partition the vertex set of Kn.

Note that the lower bound for n above is, for large r, about 3e3r4r! log r.
As shown in [1], the conjecture for tree partitions is best possible, if true,
when r&1 is a prime power. To see this, let n=(r&1)2, and let K n be a
complete graph whose vertices are labelled with the points of an affine
plane of order r&1. Let a colouring of the edges of K n be given by
assigning colour i to the edge xy if the line through x and y is in the i th
parallel class. Then each monochromatic component of this colouring is a
complete subgraph of order r&1, and so at least r&1 monochromatic
trees would be required to partition the set of vertices. This example can
be extended to an example for any n�(r&1)2 (r&2), by replacing each
vertex x of K (r&1)2

with a set of vertices X of size wn�(r&1)2x or
Wn�(r&1)2X. Then edge zw for z # Z, w # W is given colour i if Z{W and
the line through Z and W is in the i th parallel class, and colour 1 if Z=W.
Then the monochromatic components of this colouring each have at most
(r&1)Wn�(r&1)2X<n�(r&2) vertices, and hence any tree partition would
require at least r&1 trees.

The tree partition conjecture for r=2 is equivalent to the fact that either
a graph or its complement is connected, an old remark of Erdo� s and Rado.
For r=3 the conjecture was proved by Erdo� s, Gya� rfa� s, and Pyber [1]. It
was proved by Hajnal (see [4]) that the tree partition number for r-edge-
coloured infinite complete graphs is at most r. Rado [5] proved that an
r-edge-coloured countably infinite complete graph may be partitioned into
r monochromatic, possibly one-way infinite, paths, generalising a result of
Erdo� s, who had proved this statement for r=2.

A problem that is related to tree partitioning is finding the tree cover
number for r-edge-coloured complete graphs, the minimum number k such
that the vertices of an r-edge-coloured complete graph can be covered by
k (not necessarily disjoint) monochromatic trees. It is clear that this
number is at most r, as the set of monochromatic stars centred at any ver-
tex give a cover, and in the example described previously it is at least r&1.
As shown by Gya� rfa� s [3], proving that the tree cover number is r&1 is
equivalent to proving a conjecture of Lova� sz and Ryser (see, e.g., Fu� redi
[2]), which states that an r-partite intersecting hypergraph has a transver-
sal of size at most r&1. This was proved by Tuza for r�5 in [6].
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2. PROOF OF THEOREM 1

Let integers r and n as in the statement of the theorem be given. We may
assume that r�4. Suppose the edges of Kn have been coloured with
colours from [r]=[1, . . . , r]

We start with some definitions. Let s1=W(n&1)�rX , and define the
integers si (2�i�r) by letting

si=\ 1
r&i+1 \1&

1
r+

2

si&1�. (1)

It is clear that the si form a non-increasing sequence. A straightforward but
somewhat tedious calculation shows that sr�r3 log n, since n is assumed to
be sufficiently large with respect to r. (Throughout this note, log will
denote the natural logarithm.)

Let B be a complete bipartite subgraph of our Kn with a specified bipar-
tition V(B)=X _ Y. Suppose that X=[x1 , . . . , xt], where 1�t�r, and
|Y|�st . We say that B is an anchor graph if the colouring of Kn is such
that the colour of the edge xiy ( y # Y) depends only on xi , and this colour
is distinct for each xi (1�i�t). We refer to t as the index of B. Thus, an
anchor graph of index t is formed by t monochromatic stars in Kn, all of
distinct colours, and with the same set of leaves.

Let 1�t�r be the largest integer for which Kn contains an anchor graph
of index t. Fix an anchor graph B/Kn of index t, and suppose without loss
of generality that the edges xiy ( y # Y) have colour i for all 1�i�t.

For v # Kn, U/V(K n)"[v], and 1�i�r, we let 1i (v, U) be the set of
vertices from U that are joined to v by edges of colour i. Put
di (v, U)=|1i (v, U)|. Observe that, by the maximality of t, we have
di (z, Y)<st+1 for every z # Z=V(Kn)"V(B) and every t<i�r.

We now use a simple greedy procedure to find a covering of Z by
monochromatic stars with centres in Y. To be precise, suppose that, for some
q�0, vertices y1 , . . . , yq # Y, colours i1 , . . . , iq # [t], and pairwise disjoint
sets Z1 , . . . , Zq /Z have been defined such that, for all 1�k�q, we have

(i) Zk /1ik( yk , Z),

(ii) putting Z$0=Z and Z$k=Z"�k
j=1 Zj , for 1�k�q we have

|Z$k |�|Z$k&1 | exp {&
1
tr=. (2)

If Z=�q
k=1 Zk , we have found the desired covering. Thus suppose that

Z$q=Z"�q
k=1 Zk {<. Condition (ii) applied recursively gives that

|Z$q |�|Z| exp[&q�tr]<ne&q�tr,

220 HAXELL AND KOHAYAKAWA



File: 582B 170604 . By:CV . Date:31:10:96 . Time:13:37 LOP8M. V8.0. Page 01:01
Codes: 2778 Signs: 1598 . Length: 45 pic 0 pts, 190 mm

and hence, since Z$q {<, we deduce that q<tr log n. As observed above,
sr�r3 log n, whence

sr>rq. (3)

Therefore Y$q=Y"[ y1 , . . . , yq]{< since |Y|�st�sr>rq�q. Now to
continue the procedure, we let yq+1 and iq+1 be such that diq+1

( yq+1, Z$q)
is maximal over all choices of yq+1 # Y$q {< and iq+1 # [t]. Put Zq+1=
1iq+1

( yq+1 , Z$q). We now check that (i) and (ii) hold for k=q+1. Clearly,
the only work lies in checking (2). Let us first observe that the number of
edges of colours 1, . . . , t between Y$q and Z$q is at least

:
z # Z$q

:
1�i�t

di (z, Y$q)�|Z$q | [ |Y|&q&(r&t) st+1],

where sr+1 is taken to be 0. Thus

diq+1
( yq+1 , Z$q)=max[di ( y, Z$q): 1�i�t, y # Y$q]

�
1
t \1&

(r&t) st+1

|Y|&q + |Z$q |.

Hence, putting Z$q+l=Z"�q+1
k=1 Zk , we have

|Z$q+1 |�\1&
1
t \1&

(r&t) st+1

|Y|&q ++ |Z$q |

�|Z$q | exp {&
1
t \1&

(r&t) st+1

|Y|&q +=.

But 1&(r&t) st+1 �( |Y|&q)�1&(r&t) st+1 �(1&1�r) st�1�r, where the
first inequality follows from (3) and the second follows from (1). Therefore
|Z$q+1 |�|Z$q | exp[&1�tr], as required.

The considerations above show that our procedure terminates with a
covering of Z by monochromatic stars with centres y1 , . . . , yq0

, colours
i1 , . . . , iq0

, and sets of leaves Z1 , . . . , Zq0
. To complete our tree partition, we

define trees T1 , . . . , Tt of colours 1, . . . , t as follows. The tree Ti (1�i�t)
has vertex set V(Ti)=[xi] _ � ([ yk] _ Zk) and edge set E(Ti)=
� ([xiyk] _ [ ykz: z # Zk]), where the unions range over all k # [q] with
ik=i. Clearly � t

i=1V(Ti)=X _ Y0 _ Z, where Y0=[ y1 , . . . , yq0
]. It can be

easily seen that the vertices in Y"Y0 may be added to T1 as leaves to give
a tree partition of Kn as required. This completes the proof of the theorem.
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