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Any r-edge-coloured n-vertex complete graph K" contains at most r mono-
chromatic trees, all of different colours, whose vertex sets partition the vertex set of
K", provided n>=3r*! (1 —1/r)>*! =" log r. This comes close to proving, for large n,
a conjecture of Erdés, Gyarfas, and Pyber, which states that r — 1 trees suffice for
all n.  © 1996 Academic Press, Inc.

1. INTRODUCTION

The tree partition number of r-edge-coloured complete graphs is defined
to be the minimum k such that whenever the edges of a complete graph K”
are coloured with r colours, the vertices of K” can be covered by at most
k vertex-disjoint monochromatic trees. The cycle partition number is defined
similarly. Erdés, Gyarfas, and Pyber [1] proved that the cycle partition
number (and hence the tree partition number) is at most ¢r> log r for some
constant ¢. They conjectured in [1] that the cycle partition number is r,
and that the tree partition number is r— 1. Here we prove that the tree
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partition number is at most r provided » is sufficiently large with respect
to r. Our main theorem, the proof of which is postponed until the next sec-
tion, is as follows.

THEOREM 1. Let r=1 and n=3r*r!(1 —1/r)*Y =" log r be integers, and
suppose the edges of K" are coloured with r colours. Then K" contains t <r
monochromatic trees Ty, ..., T, of radius at most 2, each of a different colour,
such that their vertex sets V(T;) (1 <i<t) partition the vertex set of K".

Note that the lower bound for n above is, for large r, about 3e3r*r! log r.
As shown in [ 1], the conjecture for tree partitions is best possible, if true,
when r—1 is a prime power. To see this, let n=(r—1)?, and let K" be a
complete graph whose vertices are labelled with the points of an affine
plane of order r—1. Let a colouring of the edges of K" be given by
assigning colour i to the edge xy if the line through x and y is in the ith
parallel class. Then each monochromatic component of this colouring is a
complete subgraph of order r—1, and so at least »r —1 monochromatic
trees would be required to partition the set of vertices. This example can
be extended to an example for any n > (r —1)? (r —2), by replacing each
vertex x of KU~ with a set of vertices X of size [ n/(r—1)>] or
n/(r—1)>7. Then edge zw for ze Z, we W is given colour i if Z# W and
the line through Z and W is in the ith parallel class, and colour 1 if Z= W.
Then the monochromatic components of this colouring each have at most
(r—1)n/(r—1)*7<n/(r —2) vertices, and hence any tree partition would
require at least r — 1 trees.

The tree partition conjecture for » =2 is equivalent to the fact that either
a graph or its complement is connected, an old remark of Erdés and Rado.
For r =3 the conjecture was proved by Erdés, Gyarfas, and Pyber [1]. It
was proved by Hajnal (see [4]) that the tree partition number for r-edge-
coloured infinite complete graphs is at most . Rado [5] proved that an
r-edge-coloured countably infinite complete graph may be partitioned into
r monochromatic, possibly one-way infinite, paths, generalising a result of
Erdés, who had proved this statement for r =2.

A problem that is related to tree partitioning is finding the tree cover
number for r-edge-coloured complete graphs, the minimum number k& such
that the vertices of an r-edge-coloured complete graph can be covered by
k (not necessarily disjoint) monochromatic trees. It is clear that this
number is at most r, as the set of monochromatic stars centred at any ver-
tex give a cover, and in the example described previously it is at least r — 1.
As shown by Gyarfas [3], proving that the tree cover number is r —1 is
equivalent to proving a conjecture of Lovasz and Ryser (see, e.g., Firedi
[2]), which states that an r-partite intersecting hypergraph has a transver-
sal of size at most r — 1. This was proved by Tuza for r <5 in [6].
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2. PROOF OF THEOREM 1

Let integers » and #n as in the statement of the theorem be given. We may
assume that r>4. Suppose the edges of K" have been coloured with
colours from [r]={1,...,r}

We start with some definitions. Let s, =[(n—1)/r7], and define the
integers s; (2<i<r) by letting

1 1\2
&:{r_i+l<1_r>‘gﬁ. (1)

It is clear that the s, form a non-increasing sequence. A straightforward but
somewhat tedious calculation shows that s,> r* log n, since n is assumed to
be sufficiently large with respect to r. (Throughout this note, log will
denote the natural logarithm.)

Let B be a complete bipartite subgraph of our K" with a specified bipar-
tition V(B)=Xu Y. Suppose that X={x,,...,x,}, where 1 <7<r, and
| Y| =s,. We say that B is an anchor graph if the colouring of K” is such
that the colour of the edge x;y (y € Y) depends only on x;, and this colour
is distinct for each x; (1 <i<t). We refer to ¢ as the index of B. Thus, an
anchor graph of index ¢ is formed by ¢ monochromatic stars in K”, all of
distinct colours, and with the same set of leaves.

Let 1 <7< be the largest integer for which K" contains an anchor graph
of index ¢. Fix an anchor graph B < K” of index ¢, and suppose without loss
of generality that the edges x;y (y € Y) have colour i for all 1 <i<t

For ve K", U= V(K")\{v}, and 1<i<r, we let I',(v, U) be the set of
vertices from U that are joined to v by edges of colour i Put
d.(v, U)y=|I;(v, U)|. Observe that, by the maximality of ¢, we have
di(z, Y)<s,,, for every ze Z=V(K")\V(B) and every t <i<r.

We now use a simple greedy procedure to find a covering of Z by
monochromatic stars with centres in Y. To be precise, suppose that, for some
g=0, vertices y,,...,y, €Y, colours i,...,i, €[], and pairwise disjoint
sets Z,, ..., Z, = Z have been defined such that, for all 1 <k <g, we have

(1) chrik(ykﬂ Z)7
(ii) putting Zy=Z and Z;,=Z\U}_, Z,, for 1 <k <gq we have

1
Zil<izi e |~ ) )

If Z={_, Z,, we have found the desired covering. Thus suppose that
Z,=Z\U{_, Z, # . Condition (ii) applied recursively gives that

|Z,| <|Z| exp{ —q/tr} <ne ",
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and hence, since Z;, # &, we deduce that g <rlogn. As observed above,
s, =r>log n, whence

5, > rq. (3)

Therefore Y, =Y\{y,,....,y,} #Q since |Y|>=s,>s,>rq>q. Now to
continue the procedure, we let y,,, and i, be such that d; ,(y,.1, Z7)
is maximal over all choices of y,, €Y, #J and i, ,€[t]. Put Z,, =
Iy (Y415 Z,). We now check that (i) and (ii) hold for k=g + 1. Clearly,
the only work lies in checking (2). Let us first observe that the number of

edges of colours 1, ..., f between Y, and Z is at least

Y X Az Y)ZIZ 1Y —g—(r—1) 5,41},

zeZyl<i<t

where s, is taken to be 0. Thus

di, (g1, Zy) =max{d(y, Z,): 1<i<t,yeY,}

>1<1_(V_[)St+l> |Z:1|
t Yl —q

Hence, putting Z),, ,=Z\J{*| Z,, we have

1 (V—Z)S,+1>> ’
< _ S e o
|Zq+1| <1 t(l |Y|_q |Zq
1 (V—I)S,+1>}
Z'| ex l—— .
<1% p{ r( Y| —¢

But 1—(r—1¢)s,.,/(|Y|—q)=1—(r—1t)s,,.,/(1=1/r)s,=1/r, where the
first inequality follows from (3) and the second follows from (1). Therefore
|Z, . 1| <|Z,| exp{ —1/tr}, as required.

The con51derat10ns above show that our procedure terminates with a
covering of Z by monochromatic stars with centres y,,...,»,,, colours
iy,...,1,,and sets of leaves Z,, ..., Z, . To complete our tree partition, we
define trees T, ..., T, of colours 1, ..., t as follows. The tree T, (1 <i<1t)
has vertex set W(T,)={x;} Ul ({y} vZ,) and edge set E(T,)=
U ({xyi} U{yiziz€Z,}), where the unions range over all ke[¢] with
iy =i. Clearly U;_, (T,))=XuU Y, UZ, where Yo={y,,...,»,}. It can be
easily seen that the vertices in Y\ Y, may be added to T as leaves to give
a tree partition of K" as required. This completes the proof of the theorem.
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