Partitioning by Monochromatic Trees*

P. E. Haxell ${ }^{\dagger}$
Department of Combinatorics and Optimisation, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
and

Y. Kohayakawa ${ }^{\ddagger}$

Instituto de Matemática e Estatistica, Universidade de São Paulo, Cidade Universitária, Rua do Matão 1010. 05508-900 São Paulo. SP. Brazil
View metadata, citation and similar papers at core.ac.uk

Any r-edge-coloured n-vertex complete graph K^{n} contains at most r monochromatic trees, all of different colours, whose vertex sets partition the vertex set of K^{n}, provided $n \geqslant 3 r^{4} r!(1-1 / r)^{3(1-r)} \log r$. This comes close to proving, for large n, a conjecture of Erdős, Gyárfás, and Pyber, which states that $r-1$ trees suffice for all n. © 1996 Academic Press, Inc.

1. INTRODUCTION

The tree partition number of r-edge-coloured complete graphs is defined to be the minimum k such that whenever the edges of a complete graph K^{n} are coloured with r colours, the vertices of K^{n} can be covered by at most k vertex-disjoint monochromatic trees. The cycle partition number is defined similarly. Erdős, Gyárfás, and Pyber [1] proved that the cycle partition number (and hence the tree partition number) is at most $c r^{2} \log r$ for some constant c. They conjectured in [1] that the cycle partition number is r, and that the tree partition number is $r-1$. Here we prove that the tree

[^0]partition number is at most r provided n is sufficiently large with respect to r. Our main theorem, the proof of which is postponed until the next section, is as follows.

Theorem 1. Let $r \geqslant 1$ and $n \geqslant 3 r^{4} r!(1-1 / r)^{3(1-r)} \log r$ be integers, and suppose the edges of K^{n} are coloured with r colours. Then K^{n} contains $t \leqslant r$ monochromatic trees T_{1}, \ldots, T_{t} of radius at most 2 , each of a different colour, such that their vertex sets $V\left(T_{i}\right)(1 \leqslant i \leqslant t)$ partition the vertex set of K^{n}.

Note that the lower bound for n above is, for large r, about $3 e^{3} r^{4} r!\log r$. As shown in [1], the conjecture for tree partitions is best possible, if true, when $r-1$ is a prime power. To see this, let $n=(r-1)^{2}$, and let K^{n} be a complete graph whose vertices are labelled with the points of an affine plane of order $r-1$. Let a colouring of the edges of K^{n} be given by assigning colour i to the edge $x y$ if the line through x and y is in the i th parallel class. Then each monochromatic component of this colouring is a complete subgraph of order $r-1$, and so at least $r-1$ monochromatic trees would be required to partition the set of vertices. This example can be extended to an example for any $n \geqslant(r-1)^{2}(r-2)$, by replacing each vertex x of $K^{(r-1)^{2}}$ with a set of vertices X of size $\left\lfloor n /(r-1)^{2}\right\rfloor$ or $\left\lceil n /(r-1)^{2}\right\rceil$. Then edge $z w$ for $z \in Z, w \in W$ is given colour i if $Z \neq W$ and the line through Z and W is in the i th parallel class, and colour 1 if $Z=W$. Then the monochromatic components of this colouring each have at most $(r-1)\left\lceil n /(r-1)^{2}\right\rceil<n /(r-2)$ vertices, and hence any tree partition would require at least $r-1$ trees.

The tree partition conjecture for $r=2$ is equivalent to the fact that either a graph or its complement is connected, an old remark of Erdős and Rado. For $r=3$ the conjecture was proved by Erdős, Gyárfás, and Pyber [1]. It was proved by Hajnal (see [4]) that the tree partition number for r-edgecoloured infinite complete graphs is at most r. Rado [5] proved that an r-edge-coloured countably infinite complete graph may be partitioned into r monochromatic, possibly one-way infinite, paths, generalising a result of Erdős, who had proved this statement for $r=2$.

A problem that is related to tree partitioning is finding the tree cover number for r-edge-coloured complete graphs, the minimum number k such that the vertices of an r-edge-coloured complete graph can be covered by k (not necessarily disjoint) monochromatic trees. It is clear that this number is at most r, as the set of monochromatic stars centred at any vertex give a cover, and in the example described previously it is at least $r-1$. As shown by Gyárfás [3], proving that the tree cover number is $r-1$ is equivalent to proving a conjecture of Lovász and Ryser (see, e.g., Füredi [2]), which states that an r-partite intersecting hypergraph has a transversal of size at most $r-1$. This was proved by Tuza for $r \leqslant 5$ in [6].

2. PROOF OF THEOREM 1

Let integers r and n as in the statement of the theorem be given. We may assume that $r \geqslant 4$. Suppose the edges of K^{n} have been coloured with colours from $[r]=\{1, \ldots, r\}$

We start with some definitions. Let $s_{1}=\lceil(n-1) / r\rceil$, and define the integers $s_{i}(2 \leqslant i \leqslant r)$ by letting

$$
\begin{equation*}
s_{i}=\left\lfloor\frac{1}{r-i+1}\left(1-\frac{1}{r}\right)^{2} s_{i-1}\right\rfloor . \tag{1}
\end{equation*}
$$

It is clear that the s_{i} form a non-increasing sequence. A straightforward but somewhat tedious calculation shows that $s_{r} \geqslant r^{3} \log n$, since n is assumed to be sufficiently large with respect to r. (Throughout this note, log will denote the natural logarithm.)

Let B be a complete bipartite subgraph of our K^{n} with a specified bipartition $V(B)=X \cup Y$. Suppose that $X=\left\{x_{1}, \ldots, x_{t}\right\}$, where $1 \leqslant t \leqslant r$, and $|Y| \geqslant s_{t}$. We say that B is an anchor graph if the colouring of K^{n} is such that the colour of the edge $x_{i} y(y \in Y)$ depends only on x_{i}, and this colour is distinct for each $x_{i}(1 \leqslant i \leqslant t)$. We refer to t as the index of B. Thus, an anchor graph of index t is formed by t monochromatic stars in K^{n}, all of distinct colours, and with the same set of leaves.

Let $1 \leqslant t \leqslant r$ be the largest integer for which K^{n} contains an anchor graph of index t. Fix an anchor graph $B \subset K^{n}$ of index t, and suppose without loss of generality that the edges $x_{i} y(y \in Y)$ have colour i for all $1 \leqslant i \leqslant t$.

For $v \in K^{n}, U \subset V\left(K^{n}\right) \backslash\{v\}$, and $1 \leqslant i \leqslant r$, we let $\Gamma_{i}(v, U)$ be the set of vertices from U that are joined to v by edges of colour i. Put $d_{i}(v, U)=\left|\Gamma_{i}(v, U)\right|$. Observe that, by the maximality of t, we have $d_{i}(z, Y)<s_{t+1}$ for every $z \in Z=V\left(K^{n}\right) \backslash V(B)$ and every $t<i \leqslant r$.

We now use a simple greedy procedure to find a covering of Z by monochromatic stars with centres in Y. To be precise, suppose that, for some $q \geqslant 0$, vertices $y_{1}, \ldots, y_{q} \in Y$, colours $i_{1}, \ldots, i_{q} \in[t]$, and pairwise disjoint sets $Z_{1}, \ldots, Z_{q} \subset Z$ have been defined such that, for all $1 \leqslant k \leqslant q$, we have
(i) $Z_{k} \subset \Gamma_{i_{k}}\left(y_{k}, Z\right)$,
(ii) putting $Z_{0}^{\prime}=Z$ and $Z_{k}^{\prime}=Z \backslash \bigcup_{j=1}^{k} Z_{j}$, for $1 \leqslant k \leqslant q$ we have

$$
\begin{equation*}
\left|Z_{k}^{\prime}\right| \leqslant\left|Z_{k-1}^{\prime}\right| \exp \left\{-\frac{1}{t r}\right\} . \tag{2}
\end{equation*}
$$

If $Z=\bigcup_{k=1}^{q} Z_{k}$, we have found the desired covering. Thus suppose that $Z_{q}^{\prime}=Z \backslash \bigcup_{k=1}^{q} Z_{k} \neq \varnothing$. Condition (ii) applied recursively gives that

$$
\left|Z_{q}^{\prime}\right| \leqslant|Z| \exp \{-q / t r\}<n e^{-q / t r}
$$

and hence, since $Z_{q}^{\prime} \neq \varnothing$, we deduce that $q<\operatorname{tr} \log n$. As observed above, $s_{r} \geqslant r^{3} \log n$, whence

$$
\begin{equation*}
s_{r}>r q . \tag{3}
\end{equation*}
$$

Therefore $\quad Y_{q}^{\prime}=Y \backslash\left\{y_{1}, \ldots, y_{q}\right\} \neq \varnothing$ since $|Y| \geqslant s_{t} \geqslant s_{r}>r q \geqslant q$. Now to continue the procedure, we let y_{q+1} and i_{q+1} be such that $d_{i_{q+1}}\left(y_{q+1}, Z_{q}^{\prime}\right)$ is maximal over all choices of $y_{q+1} \in Y_{q}^{\prime} \neq \varnothing$ and $i_{q+1} \in[t]$. Put $Z_{q+1}=$ $\Gamma_{i_{q+1}}\left(y_{q+1}, Z_{q}^{\prime}\right)$. We now check that (i) and (ii) hold for $k=q+1$. Clearly, the only work lies in checking (2). Let us first observe that the number of edges of colours $1, \ldots, t$ between Y_{q}^{\prime} and Z_{q}^{\prime} is at least

$$
\sum_{z \in Z_{q}^{\prime}} \sum_{1 \leqslant i \leqslant t} d_{i}\left(z, Y_{q}^{\prime}\right) \geqslant\left|Z_{q}^{\prime}\right|\left\{|Y|-q-(r-t) s_{t+1}\right\},
$$

where s_{r+1} is taken to be 0 . Thus

$$
\begin{aligned}
d_{i_{q+1}}\left(y_{q+1}, Z_{q}^{\prime}\right) & =\max \left\{d_{i}\left(y, Z_{q}^{\prime}\right): 1 \leqslant i \leqslant t, y \in Y_{q}^{\prime}\right\} \\
& \geqslant \frac{1}{t}\left(1-\frac{(r-t) s_{t+1}}{|Y|-q}\right)\left|Z_{q}^{\prime}\right| .
\end{aligned}
$$

Hence, putting $Z_{q+l}^{\prime}=Z \backslash \bigcup_{k=1}^{q+1} Z_{k}$, we have

$$
\begin{aligned}
\left|Z_{q+1}^{\prime}\right| & \leqslant\left(1-\frac{1}{t}\left(1-\frac{(r-t) s_{t+1}}{|Y|-q}\right)\right)\left|Z_{q}^{\prime}\right| \\
& \leqslant\left|Z_{q}^{\prime}\right| \exp \left\{-\frac{1}{t}\left(1-\frac{(r-t) s_{t+1}}{|Y|-q}\right)\right\} .
\end{aligned}
$$

But $1-(r-t) s_{t+1} /(|Y|-q) \geqslant 1-(r-t) s_{t+1} /(1-1 / r) s_{t} \geqslant 1 / r$, where the first inequality follows from (3) and the second follows from (1). Therefore $\left|Z_{q+1}^{\prime}\right| \leqslant\left|Z_{q}^{\prime}\right| \exp \{-1 / t r\}$, as required.

The considerations above show that our procedure terminates with a covering of Z by monochromatic stars with centres $y_{1}, \ldots, y_{q_{0}}$, colours $i_{1}, \ldots, i_{q_{0}}$, and sets of leaves $Z_{1}, \ldots, Z_{q_{0}}$. To complete our tree partition, we define trees T_{1}, \ldots, T_{t} of colours $1, \ldots, t$ as follows. The tree $T_{i}(1 \leqslant i \leqslant t)$ has vertex set $V\left(T_{i}\right)=\left\{x_{i}\right\} \cup \bigcup\left(\left\{y_{k}\right\} \cup Z_{k}\right)$ and edge set $E\left(T_{i}\right)=$ $\cup\left(\left\{x_{i} y_{k}\right\} \cup\left\{y_{k} z: z \in Z_{k}\right\}\right)$, where the unions range over all $k \in[q]$ with $i_{k}=i$. Clearly $\bigcup_{i=1}^{t} V\left(T_{i}\right)=X \cup Y_{0} \cup Z$, where $Y_{0}=\left\{y_{1}, \ldots, y_{q_{0}}\right\}$. It can be easily seen that the vertices in $Y \backslash Y_{0}$ may be added to T_{1} as leaves to give a tree partition of K^{n} as required. This completes the proof of the theorem.

REFERENCES

1. P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and trees, J. Combin. Theory Ser. B 51 (1991), 90-95.
2. Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin. 4 (1988), 115-206.
3. A. Gyárfás, Partition covers and blocking sets in hypergraphs, MTA SZTAKI Stud. 71 (1977). [In Hungarian]
4. A. Hajnal, P. Komjáth, L. Soukup, and I. Szalkai, Decompositions of edge coloured infinite complete graphs, in "Combinatorics: 7th Hungarian Colloquium, Eger 1987" (A. Hajnal, L. Lovász, and V. T. Sós, Eds.), pp. 277-280, Colloquia Mathematica Societatis János Bolyai, Vol. 52, North-Holland, Amsterdam, 1988.
5. R. Rado, Monochromatic paths in graphs, in "Advances in Graph Theory" (B. Bollobás, Ed.), pp. 191-194, Annals of Discrete Mathematics, Vol. 3, North-Holland, Amsterdam, 1978.
6. Zs. Tuza, Some special cases of Ryser's conjecture (1978), preprint.

[^0]: * The first author was partially supported by NSERC. The second author was partially supported by FAPESP (Proc. 93/0603-1) and by CNPq (Proc. 300334/93-1 and ProTeM-CC-II Project ProComb).
 ${ }^{\dagger}$ E-mail: pehaxell@math.uwaterloo.ca.
 \# E-mail: yoshi@ime.usp.br.

