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Fibrosis is a highly conserved wound healing response and represents the final common pathway of virtually
all chronic inflammatory injuries. Over the past 3 decades detailed analysis of hepatic extracellular matrix
synthesis and degradation using approaches incorporating human disease, experimental animal models
and cell culture have highlighted the extraordinarily dynamic nature of tissue repair and remodelling in
this solid organ. Furthermore emerging studies of fibrosis in other organs demonstrate that basic common
mechanisms exist, suggesting that bidirectionality of the fibrotic process may not solely be the preserve of
the liver. In this review we will examine the cellular and molecular mechanisms that govern extracellular
matrix degradation and fibrosis resolution, and highlight how manipulation of these processes may result
in the development of effective anti-fibrotic therapies. This article is part of a Special Issue entitled: Fibrosis:
Translation of basic research to human disease.

© 2012 Elsevier B.V. All rights reserved.
1. Background

Chronic inflammation invariably gives rise to tissue fibrosis, which
can be considered a dysregulated fibroproliferative response ulti-
mately impacting on tissue architecture and function. Fibrosis results
from the interplay of a number of different cell types including mac-
rophages, myofibroblasts and epithelial cells and results in the accu-
mulation of fibrillar collagens (predominantly collagens I and III) as
a result of both changes in matrix synthesis and in the pattern of ex-
tracellular matrix (ECM) degradation. It has been estimated that in-
flammation and fibrosis contribute to 45% of deaths in the western
hemisphere [1].

Hepatic fibrosis, the common final pathway of virtually every
chronic inflammatory liver injury, represents a particularly well in-
vestigated model of the generic inflammation–fibrosis–progression/
resolution pathological continuum [2]. Research interest in liver
fibrosis continues to grow particularly because the burden of chronic
liver disease is increasing; cirrhosis, the end-stage of fibrotic liver dis-
ease, is currently the fifth commonest cause of mortality in the UK [3].
Liver fibrosis can be considered a paradigm for the generic aspects of
this pathological process and as such it is at the vanguard of studies of
ECM and ECM turnover in experimental pathology [2]. Indeed, hepat-
ic fibrosis in both progression and resolution has arguably been stud-
ied in greater detail than any other organmodel system. This is in part
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because of the tractability of animal models of liver fibrosis where in-
duction of sterile inflammatory injury is relatively straightforward,
consistent and can be studied in a predictable and practical time-
frame. But there has also been an increase in our detailed knowledge
of both the natural history of human liver disease and the response of
the fibrotic human liver to well characterised therapeutic interven-
tions (particularly interferon in the treatment of chronic hepatitis B
and C) which has established a powerful model illuminating critical
aspects of matrix synthesis and degradation across relevant species
[2,4–9]. For these reasons this review will focus primarily on the
pathogenesis of liver fibrosis, but with reference to other organ sys-
tems where appropriate.

2. Introduction of key concepts

At a cellular level the perisinusoidal hepatic stellate cell (HSC) has
been extensively studied as a key effector of fibrogenesis [10–12]. In
acute and chronic injury this vitamin A storing cell sheds its retinoid
and lipid droplets and transforms to an “activated” myofibroblast-like
phenotype. Activation of this cell to an extracellular matrix-secreting
myofibroblast phenotype is associated with fibrillar collagen production
and fibrotic matrix deposition in vivo. Activated HSCs also express
tissue inhibitors of metalloproteinases (TIMPs) [13–15] as well as
chemotactic and vasoactive factors. The major secreted TIMP, TIMP-1
inhibits the endogenous matrix degrading activities of a wide range of
matrix metalloproteinases (MMPs) favouring scar deposition. Further-
more, using a host of different model systems has allowed us to gain a
deeper understanding of the complexity of liver inflammation and re-
pair. In particular the dynamic interplay between the epithelial, inflam-
matory, myofibroblast and extracellular matrix components of tissue
repair are becoming increasingly well defined [16]. Other key emerging
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concepts include the idea that inflammatory cell phenotypes demon-
strate plasticity and that specific inflammatory cell types may contrib-
ute to matrix degradation not only in the development but also in the
spontaneous resolution of liver fibrosis [17], and the observation that
liver myofibroblasts may arise from a number of different cell lineages
[2]. Perhaps most promising and of direct relevance to this review is
the growing body of in vivo and in vitro evidence that suggests that
liver fibrosis is a bidirectional process [2]. These data challenge the tra-
ditional dogma that fibrosis is at best irreversible and importantly are
supported by robust clinical observations in humans. Understanding fi-
brosis resolution has the potential to highlight the essential attributes of
an antifibrotic, or more accurately a pro-resolution therapy applicable
to the liver and potentially other organs.

3. Matrix components of the liver in health and disease

The extracellularmatrixwithin the normal liver is composed of a se-
ries of classes ofmacromoleculeswhich include collagens (types I, III, IV,
V and VI), the non- collagenous glycoproteins which encompass lami-
nin and fibronectin amongst others and proteoglycans [18,19]. In the
normal liver sinusoid, there is a non-electron dense basement mem-
brane matrix which comprises laminin and type IV collagen. During
the development of fibrosis this matrix becomes progressively replaced
by one rich in interstitial collagens particularly collagens I and III
[19–21]. Initially, and by virtue of changes in cell-matrix interactions,
this accumulation of fibrillar ECM is associated with capillarization of
the sinusoids; a loss of the sinusoidal endothelial fenestrae and physical
change in the hepatocyteswhich lose theirmicrovilli [19–21]. Ultimate-
ly the accumulation of collagens increases until vascular structures are
linked and the architecture of the liver is disrupted significantly. Fur-
thermore, areas of hepatocyte regeneration form spheres which further
distort the structure and angiogenesis may occur in dense areas of scar-
ring [19,22].

Studies have demonstrated a 4- to 7-fold increase in the content of
collagen and glycosaminoglycans in the cirrhotic liver compared with
normal liver. There is a disproportionate increase in the fibrillar colla-
gen, collagen type I, and there are also increases in laminin and pro-
teoglycans [19], with cross-linking of matrix also documented [22].
End-stage cirrhosis is associated with swathes of dense extracellular
matrix rich in elastin in addition to the fibrillar collagens described
above. Indeed, elastin is used as a pathological benchmark for chronicity
of fibrotic change. The accumulation of matrix is associated with an im-
pairment of hepatic function and predisposition to the development of
hepatocellular cancer, although the mechanisms governing neoplastic
change in the fibrotic liver are still incompletely understood [23]. This
profound architectural disruption of liver anatomy results in the
well-known complications of liver cirrhosis, particularly the develop-
ment of portal hypertension, which is amajor cause of death in patients
with cirrhosis.

This review is necessarily brief, and therefore we will focus on the
changes that occur to the cellular and extracellular matrix components
in progressive fibrosis, fibrosis resolution and irreversible end-stage
cirrhosis, with particular emphasis on collagens I and III and elastin as
critical determinants of disease outcome.

4. Sources of extracellular matrix within the liver

With respect to the fibrillar collagens and elastin, the major source
of these matrix components is the hepatic myofibroblast. In turn, this
cell type has typically been described as representing an activated phe-
notype of the hepatic stellate cell [24–26]. Hepatic stellate cells aremes-
enchymal cells which lie in the space of Disse between the specialised
hepatic sinusoidal endothelium and the palisades of hepatocytes. Rich
in vitamin A in health, which is stored in the form of retinol esters with-
in cytoplasmic droplets, these cells lie in close proximity to the normal
basementmembranematrix consisting of type IV collagen, laminin and
heparin sulphate proteoglycans. During liver injury stellate cells prolif-
erate, become activated to a myofibroblast-like phenotype expressing
alpha smooth muscle actin, and secrete fibrillar collagens, elastin and
matrix proteins [24–27]. Recent interest has focused on the specific or-
igins of these cells. Whilst there is evidence that portal myofibroblasts,
circulating fibrocytes andmesenchymal stem cells in addition to perito-
neal mesoepithelial cells may all give rise to a myofibroblast population
[28–33], the relative contribution of each lineage is currently moot. In-
deed, the relative contributions of individual cell lineages likely depend
on the site and duration of injury and current evidence still supports he-
patic stellate cells as being the predominant source of liver myofibro-
blasts. Of note, recent interest in epithelial–mesenchymal transition
(EMT) as amajor process derivingmyofibroblasts from hepatocytes ap-
pears to have beenmisplaced [34–36]. Certainly, in geneticallymodified
animal models in which robust lineage tracing can be undertaken no
clear cut evidence of EMT has been demonstrated in in vivo models of
hepatic fibrogenesis, or recently in models of renal fibrosis. We have
recently demonstrated in unpublished data that the PDGFRβ gene
(platelet derived growth factor receptor beta) can be used to effectively
drive both marker proteins and gene deletion strategies identifying a
commonality between hepatic stellate cells and pericytes seen else-
where in the body, including the kidney, lung and heart. The mecha-
nisms underpinning stellate cell activation have been studied in
enormous detail using genetically modified mice in addition to tissue
culture models and these studies have recently been reviewed exten-
sively by Friedman [37]. A detailed discussion is beyond the scope of
this article, but critical activating stimuli include TGFβ1 to promote a
fibrogenic collagen-secreting phenotype and PDGF stimulation which
promotes a proliferative phenotype [38,39]. Additionally stellate cells
appear exquisitely sensitive to the extracellular components that they
are in direct contact with, demonstrating profound changes in their be-
haviour in response to the physical environment provided by thematrix
[40].

5. Extracellular matrix degradation during liver fibrosis

Even during progressive liver fibrosis there is evidence of a
potential for matrix degradation. Matrix may be degraded by a num-
ber of enzymatic families, but foremost are the matrix degrading
metalloproteinases (MMPs). These are a family of zinc and calcium
dependent endopeptidases which are produced by connective tissue
cells and inflammatory cells and have a range of activity against the
major constituents of ECM including fibrillar and non-fibrillar colla-
gens and elastin [41]. Individual MMPs are more or less promiscuous
with respect to their direct substrate specificity with certain en-
zymes demonstrating a wide range of substrate specificity. Expres-
sion of MMPs has been demonstrated in a spectrum of liver cells
which includes hepatocytes, hepatic stellate cells, kupffer cells and
neutrophils and recruited hepatic macrophages [41]. Interestingly,
for both HSC and macrophages the repertoire of MMPs expressed
by the cells appears to alter with specific changes in phenotype
that accompany fibrogenesis in vivo.

MMPs can be grouped according to enzymatic substrate; collage-
nases are central to the process of remodelling fibrotic tissue because
they cleave the native helix of fibrillar collagens rendering the product
(a gelatin) susceptible to degradation by otherMMPs. Neutrophil colla-
genase, MMP-8, is expressed by both neutrophils and macrophages
(both populations are well represented in the inflammatory stages of
liver injury) [42]. Interstitial collagenase or MMP-1 has been described,
particularly in inflammatory cells in human liver [15], and its counter-
part in rodents MMP-13 has been shown to be expressed by stellate
cells and macrophages [14,43]. Whereas in stellate cells MMP-13 is a
feature of early activation and the fully activated fibrogenic stellate
cell phenotype downregulatesMMP-13, expression inmacrophages ap-
pears to be relatively constant regardless of the stage or stimulus for ac-
tivation in models of liver injury. It is always considered axiomatic that
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interstitial collagenases only possess activity against fibrillar collagen,
but there are reports that gelatinase A (MMP-2) may demonstrate a
similar function [44,45]. The stromelysins have a promiscuous substrate
profile and activity against collagens, laminin and fibronectin [44,45]. In
the context of liver fibrosis, stromelysins are expressed by inflammatory
cells [46] but in HSC (just asMMP-13 is down regulated) the expression
of stromelysin (MMP-3) appears to have a distinct regulation as it rises
and then falls during activation [47]. Thus stromelysin expression is a
transient feature of the HSC activation process. This has led to the hy-
pothesis that stromelysin expression may be responsible for basement
membrane degradation in early fibrogenesis. The gelatinases have a rel-
ativelywide range of substrate specificity. GelatinaseA (MMP-2) has ac-
tivity against gelatins, collagens IV, V, VI, and VII, X and XI and some
elastase activity and has been reported to have some collagenase activ-
ity. Gelatinase B (MMP-9) shares a similar substrate profile but there is
no reported collagenase activity. Both may act as sheddases and regu-
late cytokine and soluble signal activation and deactivation. Gelatinase
B (MMP-9) has been shown to be expressed by kupffer cells and inflam-
matory macrophages [48] and gelatinase A (MMP-2) has been docu-
mented to be expressed by activated stellate cells [49,50]. Functionally
this enzymehas been linkedwith the pro-proliferative phenotype of ac-
tivated stellate cells also [51]. Metalloelastase (MMP-12) is an MMP
with potent elastin degrading activity. We have recently described its
expression by hepatic macrophages and shown the degradation of elas-
tin inmodels of hepatic fibrosis is dependent on this enzyme using gene
knockout mice [27] (Fig. 1).

Exuberant matrix synthesis by myofibroblasts unquestionably con-
tributes to the development of fibrosis. However, evidence for the pro-
gression of fibrosis resulting in part from a change in the pattern of
matrix degradation is now compelling.Moreover, there is increasing ev-
idence for awide range ofMMPswith a broad combined substrate spec-
ificity being present in the fibrotic liver [14,15]. The range is such that
one might anticipate matrix turnover during fibrogenesis of not only
the fibrillar collagens but elastins, gelatins and non-collagenous matrix
components also. For example, MMP-12 knockout mice accumulate
elastin more rapidly than their wild-type counterparts in progressive
? 
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Fig. 1. The development of fibrosis within the liver is a dynamic process. This figure illustra
resolution. Damage to the normal liver (in this case using carbon tetrachloride in a rat mod
damage is protracted or iterative it leads to cirrhosis (b) in which the liver architecture is di
dense fibrotic septae. Following cessation of injury significant remodelling occurs from eve
the context of cirrhosis (d). It is not entirely clear whether it is possible for cirrhosis to rem
there is an accumulation of elastin in the hepatic scars (e) and with selective macrophage d
phages in fibrosis remodelling, this data can be linked with expression of specific ma
metalloelastase (MMP-12). MMP-12 is abundantly expressed by macrophages associated
expressing cells within the liver, identifying these cells as a critical source of matrix degrad
murine fibrosismodels [27], establishing thatMMP-12mediated elastin
degradation is occurring even in progressive fibrogenesis.

Evidence suggesting that there are changes in the pattern of ECM
degradation as well as synthesis in progressive fibrosis was first postu-
lated in the 1970s [52,53]. In these studies collagenase activity was de-
tectable in rat fibrotic liver and decreased with duration of fibrotic
injury (in this case CCl4 administration). Whilst these studies have
been criticised because the precise assay conditions used may have
resulted in gelatinase rather than collagenase activity being measured,
current evidence suggests that the detected activity may indeed have
reflected overall liver collagenase activity and in any case can be consid-
ered a barometer for changes in overallmatrix remodellingmediated by
metalloproteinases. Similar results were obtained in studies of primate
alcohol mediated injury [54,55]. More compelling evidence for the po-
tential of matrix degradation in hepatic fibrosis comes from models of
spontaneous recovery of liver fibrosis. We and others have used carbon
tetrachloride induced liver injury with a period of fibrosis induction
followed by spontaneous recovery and bile duct ligation followed by
bilio-jejunal anastomosis in the rat and mouse to characterise and con-
trast the cell lineage and secreted products active in progressive fibrosis
with those present in spontaneously resolving fibrosis (see below and
Fig. 1) [56,57].

The extracellular activity of each MMP is regulated in a series of
stages as onemight expect for such a powerful and potentially destruc-
tive family of proteases. All are regulated to a greater or lesser extent at
the level of the gene, the result of stimulation by a range of cell signals
which include growth factors and cytokines such as TNFα, PDGF, EGF,
BFGF and IL-1 [41]. Critically, pro-fibrogenic cytokines such as TGFβ1
may differentially affectMMP expression by downregulating interstitial
collagenase expression whilst upregulating expression of gelatinase A,
TIMP-1 and collagen-I [41]. MMP activity is further regulated through
the cleavage of the pro-piece from the inactive zymogen. Finally active
MMPs are susceptible to inhibition by the key extracellular inhibitors,
the tissue inhibitors of metalloproteinases (TIMPs), a family of soluble
proteinswhich bindnonconvalently to activeMMPs to inhibit enzymat-
ic activity [41].
Control 
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tes the approaches in which animal models can be used to dissect fibrosis and fibrosis
el) is associated with the development of fibrotic septae (a) as described in the text. If
srupted, there is nodular hepatic regeneration and linking of the vascular structures by
n well established fibrosis (c). Some remodelling is possible with cessation of injury in
odel completely with a return to absolute histological normality. Following liver injury
epletion the accumulation of elastin is enhanced (f). Having defined a role for macro-
trix degrading metalloproteinases. Panel (g) illustrates a fibrotic liver stained for
with the scar. Macrophage depletion (h) is associated with a diminution in MMP-12
ing metalloproteinases during fibrosis and fibrosis resolution.
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6. TIMP and changes in the pattern of matrix degradation during
fibrogenesis

Members of the TIMP family function as important inhibitors of the
extracellular activity of MMPs by stabilising the proenzyme and most
importantly by inhibition of the active species. TIMP-1 and TIMP-2 are
both expressed by activated stellate cells; indeed the expression of
TIMP-1 is closely linked to activation and parallels the development of
other markers of HSC activation such as alpha smooth muscle actin
and collagen-I expression. This close correlation of TIMP-1 with activat-
ed stellate cells, and indeed activated HSC numbers [14], means that
serum levels of TIMP-1 correlate relatively closely with fibrosis activity
and serum levels of TIMP-1 are now a component of non-invasive
serum markers of fibrosis [15,58–60]. TIMP-2 is also expressed by stel-
late cells in the fibrogenic phenotype, but is induced to a lesser extent as
it is also expressed in the quiescent phenotype observed in the normal
liver. TIMP-1 and - 2 share common structural features. There is a 40%
amino acid sequence homology and both have a 3-looped structure
linked by a series of six disulphide bonds [41]. Both TIMP-1 and -2 are
secreted into the extracellular milieu (in contrast a further member of
the family, TIMP-3, appears to be closely associated with extracellular
matrix). Although non-covalent, the binding of TIMPs to active MMPs
appears to be effectively irreversible, or at least irreversible in functional
terms, under physiological conditions. Separation of MMP from TIMP
though results in both retaining activity. Both TIMP-1 and TIMP-2
have a wide spectrum of MMP inhibitory activity and if present would
be anticipated to be highly effective in altering the extent and pattern
ofmatrix degradation in any fibrogenic process [41]. TIMPs are also reg-
ulated by cytokines and growth factors. Interestingly, TGFβ1 which as
noted above downregulates collagenase activity, will upregulate
TIMP-1 and gelatinase A thus reinforcing a highly fibrogenic pericellular
milieu [41].

As noted above, TIMP-1 expression is strongly linked to HSC activa-
tion, although myofibroblasts derived from other sources also express
this metalloproteinase inhibitor and there is probably some expression
by kupffer cells and macrophages [14]. The expression of TIMP-1 has
been extensively characterised in cell culture models of stellate cell ac-
tivationwherein low or undetectable levels of TIMP-1mRNA character-
ise quiescent cells and these rise significantly upon activation. The
presence of active TIMP-1 secreted by myofibroblast-like stellate cells
can be demonstrated in the extracellular media and it has been
shown, by analysis of gelatinase A activity before and after chromatog-
raphy (to separate TIMP-gelatinase complexes), that TIMP-1 in this
model exerts an approximately 20-fold inhibitory activity on concur-
rently secreted gelatinase A [61]. Descriptive studies in rodent models,
utilising carbon tetrachloride, thioacetamide or bile duct ligation to in-
duce fibrosis all demonstrate HSC derived TIMP-1 risingwith activation
of stellate cells and development of fibrosis, and the expression and se-
cretion of TIMP-1 remaining at high levels during progressive fibrosis
[14]. In contrast expression of interstitial collagenase in humans
(MMP-1) and rodents (MMP-13) fibrosis models remains relatively
unaltered comparedwith uninjured control liver [14,15]. Taken togeth-
er these data suggest that the balance between TIMP andMMPs infibro-
sis may, through fine changes in the relative levels of each mediator,
alter the rate and pattern of matrix degradation. Moreover they provide
a mechanism throughwhichmatrix degradation can be tightly regulat-
ed in a fibrogenic milieu. Finally, the data suggest that even in progres-
sive fibrosis MMPs are present within the liver of both rodent models
and human pathological samples, but are inhibited by the concurrent
expression of TIMP-1 by activated myofibroblast/HSCs.

These observations led us and others to posit the hypothesis that the
development and progression of fibrosis results not only from exuber-
ant matrix synthesis but changes in the pattern of matrix degradation.
More compelling evidence for this hypothesis is provided by studies
of spontaneous resolution of liver fibrosis. In both rats andmice, carbon
tetrachloride can be used in a regular dosing regime to induce dense
fibrosis of the liver (4–8 weeks of exposure) and cirrhosis (12–
16 weeks of exposure) [22,56,57]. If exposure to carbon tetrachloride
is abruptly halted after 8 weeks of treatment, over the succeeding
28 days there is progressive remodelling of the fibrotic septa and the
loss of myofibroblasts through apoptosis and return of architecture to
normality or near normality (Fig. 1). Additionally hepatic function ap-
pears to be maintained/restored. Detailed studies of this process indi-
cate that there is a progressive decrease in hepatic levels of TIMP-1
(and TIMP-2) which parallel closely the reduction in myofibroblast
numbersmediated by apoptosis [56,57]. As this occurs, although the ex-
pression of collagenase (MMP-13), gelatinase-A and B (MMP-2 and 9)
and elastase (MMP-12) does not change dramatically, there is a net in-
crease in hepaticMMP activity which coincides with the remodelling of
thefibroticmatrix [56]. Exhaustivemechanistic evidence for a change in
the pattern of matrix degradation during both progressive fibrosis and
spontaneous resolution came from elegant work undertaken by Yoshigi
and colleagueswho created a TIMP-1 over expressingmouse [62,63]. In
the presence of excess TIMP-1 fibrosis progresses more rapidly than
that seen in a wild-type mouse during carbon tetrachloride mediated
injury (suggesting that as outlined above modest matrix turnover and
remodelling does occur during fibrogenesis and is regulated by the
TIMP-MMP balance) but importantly TIMP-1 over-expressing animals
fail to show evidence ofmatrix remodelling during spontaneous resolu-
tion of fibrosis. Interestingly the persistent fibrosis was associated with
a persistence of activatedmyofibroblast-like hepatic stellate cells (HSC)
within the hepatic scar [63]. The link between the persistence of acti-
vated myofibroblasts and the persistence of scar has been further
highlighted by studies of the rr collagenmousewhich expresses mutat-
ed collagen-I not susceptible to the initial collagenase cleavage neces-
sary for interstitial collagen degradation [64]. During spontaneous
resolution of fibrosis in these animals there is persistence of the
scar and an associated persistence of activated myofibroblasts also
suggesting that a failure of matrix degradation is sufficient to support
persistence of activated hepatic stellate cells [64], likely mediated by
critical integrin-matrix interactions (see article by Henderson and
Sheppard). Other mechanistic approaches to regulating the TIMP-
MMP balance have all demonstrated results compatible with the
Yoshigi data and supporting the hypothesis that changes in the pattern
of matrix degradation contribute significantly to the development of
fibrosis. These include adenovirus mediated over expression of
MMP-8 (neutrophil collagenase) in rodent models which was associat-
ed with a decreased fibrosis during experimental liver injury [42] and
the deployment of a neutralising TIMP-1 specific antibody which
decreased the collagen content in CCl4 induced fibrosis [65]. An ingenious
approach to exploiting the biochemistry of the TIMP-MMP rela-
tionship was employed by Roeb and colleagues who engineered a
non-functional form of MMP-9 that would nevertheless actively
bind TIMPs and sequester MMP inhibitory activity [66,67]. This
represents a particularly sophisticated approach in that by reduc-
ing the TIMP activity globally in an organ in vivo the totality and
range of the ECM degrading potential present in any tissue can
be unleashed – theoretically in advanced scarring non-collagen
matrix components such as elastin may be significantly represent-
ed, whereas a collagenase-only based approach might prove less
effective. This TIMP scavenging approach was used effectively in
CCl4 induced fibrosis resulting in the decrease in collagen levels
in treated animals and enhanced HSC/myofibroblast apoptosis.

7. ECM degradation and evidence from human disease

The most compelling evidence that spontaneous resolution of fibro-
sis is possible in humans comes from the large scale trials of antiviral
treatments for hepatitis B and C (although evidence that human liver fi-
brosis is at least partially reversible following thewithdrawal of chronic
hepatic insults is extant for a range of other disorders reviewed in
[5–9,68,69]). These large scale trials in which biopsies were undertaken
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provided clear evidence forfibrosis remodellingwith resolution offibro-
sis and at least a partial return to normal hepatic architecture. Intrigu-
ingly, these and other pathological studies have also highlighted the
possibility that there may be discernible matrix remodelling and archi-
tectural restitution even in cases of advanced cirrhosis, although it
seems unlikely that all such advanced pathologies are entirely reversible
and this area remains controversial [7,9,68,69]. A detailed and exhaus-
tive summary of current therapeutic targets and active antifibrotic trials
is presented in [70].

8. Reversibility and advanced cirrhosis

Cirrhosis represents not only advanced fibrosis, but an extensive
scarring characterised by architectural disruption, aberrant and nodular
hepatocyte regeneration, and vascular changes with angiogenesis, par-
ticularly in dense fibrotic septae, and the presence of old and relatively
pauci-cellular areas of fibrosis. Using rats, we have demonstrated that
an advanced cirrhotic lesion satisfying the pathological description
above will undergo some remodelling during spontaneous resolution
but that this is incomplete, leaving an attenuated macronodular cirrho-
sis [22]. The pattern of limited change seen mirrors closely that ob-
served by Wanless and colleagues in their detailed study of human
explants which suggests that matrix degradation in advanced fibrosis
favours the loss of themost recently formed sub septae and that the ex-
tensive elderly septae linking vascular structures are relatively inert and
resistant to degradation [69]. Using this model wewere able to identify
septal features which resisted matrix degradation compared to their
remodelled counterparts. These included angiogenesis and the devel-
opment of new vessels within the septum, evidence of cross-linking
mediated by tissue transglutaminase, the presence of elastin and a rel-
atively pauci-cellular scar containing comparatively fewmyofibroblasts
or inflammatory cells [22]. Interestingly, the elastin rich scars might be
expected to be more cross linked partly by virtue of the substrate avail-
able for lysyl oxidase and tissue transglutaminase mediated cross-
linking and in part because they represented the oldest scars present
RESOLU
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Fig. 2. Summary of the processes mediating progression or recovery from liver fibrosis. Liver
secretion of extracellular matrix proteins, including fibrillar collagens. Iterative liver injury re
end-stage liver disease. During resolution of liver fibrosis HSC can undergo programmed cell d
in the organs. Our understanding of the irreversible components of fi-
brosis is still significantly limited. A key study by Popov and colleagues
using the tissue transglutaminase knockout suggested that tissue
transglutaminase mediated cross linking alone was insufficient to
renderfibrosis irreversible [71]. Interestingly, the expressionof lysyl ox-
idase itself may have pro-inflammatory effects in addition to enhancing
matrix stability and enzymatic resistance [72]. Furthermore, anymatrix
cross-linking may stiffen the matrix and result in the concealment of
epitopes important for integrin-mediated hepatocellular regeneration
and stabilisation of the physical properties of the matrix which in turn
may promote a persistent activated state of the hepatic myofibroblast.

Because of the potential importance of elastin to the content and sta-
bility of the hepatic scar, this has recently been the subject of investiga-
tion. Studies using carbon tetrachloride and thioacetamide-induced
fibrosis models have demonstrated that a metalloelastase (MMP-12)
derived from macrophages represents a key elastase associated with
turnover in progressive fibrosis [27]. Moreover, in the absence of
MMP-12 there is not only a prominence of elastin during fibrogenesis
but interestingly other collagenousmatrix proteins (as defined by Sirius
red staining) also [27].

9. Functional contribution of individual cell lineages to fibrosis
resolution

Whilst gene array and molecular studies can be used to document
expression of MMPs by a wide range of liver cells, it is only possible to
define functional contributions by using genetically modifiedmice per-
mitting tracking or deletion of specific cell lineages or proteins. One of
the key defining features of spontaneous resolution of liver fibrosis
is apoptosis of myofibroblast-like hepatic stellate cells [5], although
there are recent studies which have demonstrated evidence for some
phenotypic reversion to quiescence in these cells also [73–75] (Fig. 2).
Either process though would be expected to be associated with a dimi-
nution in hepatic TIMP levels. Indeed, in detailed recovery models this
has been quite clearly documented. Crucially, it is difficult to postulate
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logically that a cell population declining through apoptosis is the major
source of the metalloproteinases critical for matrix degradation. Al-
though detailed studies of MMP expression during phenotypic re-
version may identify expression of critical MMPs, studies in which
activated HSC/myofibroblasts have been deleted through induced apo-
ptosis have demonstrated enhanced fibrosis remodelling suggesting
that HSC are not necessary for resolution [57]. These observations
have led to a focus on macrophages [17,27,43], and latterly dendritic
cells [76] as potential sources of MMPs critical to fibrosis resolution.

Using a CCl4-induced spontaneous resolution model, we have
shown that whilst CD11b+ macrophages are critical to fibrosis devel-
opment, their deletion at the onset of spontaneous resolution is associ-
ated with a failure of fibrosis remodelling. Moreover, we have gone on
to show that macrophage derived MMP-13 (collagenase) is essential
for remodelling the critical matrix substrates collagen-I and III, and
that macrophages are a major source of liver metalloelastase, MMP-12
[17,27,43]. Recently we have shown that the adoptive transfer of mac-
rophages is sufficient to enhance resolution of fibrosis even in continu-
ing progressive injury both by direct effect and potentially through
recruitment of other inflammatory cells producing MMPs such as neu-
trophils [77]. Intriguingly, parallel studies manipulating dendritic cells
(described in detail by Aloman) demonstrate an important role for
CD11c+ cells potentially mediated via gelatinase B (MMP-9) [76].

There is accumulating evidence that a specific Ly6c intermediate and
low phenotypic macrophage present in the liver during the resolution
of fibrosis represents not only the most numerous macrophage at any
time in the whole experimental fibrosis/fibrosis resolution continuum,
but that these cells are also the major source of MMPs crucial to
resolution. In turn specific MMPs, and particularly MMP-12, appear to
be upregulated in these Ly6cint/lo macrophages as a response to inges-
tion of apoptotic hepatocyte debris. Most intriguingly, this ingestion of
apoptotic debris appears to also result in macrophage expression of
the mitogen TWEAK [77] and keyWnt signalling molecules which pro-
mote, respectively, proliferation and hepatocellular differentiation of
the bipotential hepatic progenitor cell, which is a major contributor to
the hepatocyte repopulation that occurs during fibrosis remodelling
and resolution [78]. A diagram summarizing the key role of macro-
phages in hepatic fibrogenesis and fibrosis resolution is shown in Fig. 3.

10. Evidence of bidirectional fibrosis in other key human models

For reasons of clarity, this review has been largely limited to rodent
and humanmodels of liver fibrosis. Nevertheless, there is increasing ev-
idence of similar patterns of matrix remodelling occurring in other
organ systems. Experimental renal fibrosis models in rodents demon-
strate reversibility [79–81]. In particular, recent evidence from studies
of human kidney fibrosis suggests that significant ECM remodelling is
possible [82,83] and evidence from the heart has shown beneficial
effects of angiotensin receptor inhibitors and angiotensin receptor
blockers in promoting the remodelling of fibrosis in the cardiac scar, en-
hancing myocardial contractility and function [84].

11. Conclusions

The detailed studies of hepatic matrix synthesis and degradation
that have occurred over the last 30 years have identified a model that
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is dynamic with respect to ECM synthesis, modification, turnover and
degradation. By the effective analysis of complimentary approaches
encompassing cell culture, human disease and experimental animal
modelswe have arrived at an appreciation of the highly dynamic nature
of liver wound healing and fibrosis. It is anticipated that the devel-
opment of effective and targeted antifibrotic therapy is now a real pos-
sibility. Studies in other human organ systems suggest a commonality
of mechanism and importantly early evidence that in both the heart
and kidney, fibrosis is bidirectional and the capacity for matrix re-
modelling and architectural restoration is at least partly preserved
even in chronic injury. Two key areas of the ECM and its degradation
which remain incompletely investigated include defining those features
of the irreversible components of the fibrotic response whichmay then
need a specialised approach and ensuring organ specificity of any clini-
cal approach based on matrix degradation, to limit potentially signifi-
cant off target effects.
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