Indag. Mathem., N.S., 12 (1), 213-219

June 18, 2001

Convergence versus correspondence for sequences of rational functions

by L. Lorentzen and D.S. Lubinsky

Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway e-mail: lisa@math.ntnu.no The John Knopfmacher Centre for Applicable Analysis and Number Theory, Department of Mathematics, Witwatersrand University, Wits 2050, South Africa, e-mail: 036dsl@cosmos.wits.ac.za

Communicated by Prof. L.A. Pelletier at the meeting of May 28, 2001

ABSTRACT

Let f be meromorphic in the plane and analytic at 0. Then its diagonal sequence $\{[n/n]\}_{n=1}^{\infty}$ of Padé approximants need not converge pointwise. We ask whether by reducing the order of contact (or correspondence) of [n/n] with f at 0, namely 2n + 1, we can ensure locally uniform convergence. In particular, we show that there exist rational functions R_n of type $(n, n), n \ge 1$, and a sequence of positive integers $\{\ell_n\}_{n=1}^{\infty}$ with limit ∞ , depending on f, such that R_n has contact of order $n + \ell_n + 1$ with f at 0, and which converge locally uniformly to f. Moreover, for any given sequence $\{\ell_n\}_{n=1}^{\infty}$, there exists an entire f for which order of contact higher than $n + \ell_n$ is incompatible with convergence.

1. INTRODUCTION AND RESULTS

Let

$$f(z)=\sum_{j=0}^{\infty}a_{j}z^{j},$$

be a formal power series. A rational function of type (n, n) is a rational function whose numerator and denominator degrees are at most n (and of course the denominator polynomial should not be identically 0). For $n \ge 0$, the (n, n) Padé approximant to f is a rational function [n/n] = P/Q of type (n, n) with

$$(fQ-P)(z)=O(z^{2n+1}).$$

We say that $\left[\frac{n}{n}\right]$ has order of contact 2n + 1 with f at 0. More generally, a ra-

tional function R = P/Q of type (n, n) is said to have order of contact m with f at 0, if

$$(fQ-P)(z)=O(z^m).$$

Note that in some cases R may have several different orders of contact m, as we may multiply both P and Q by a common power of z, provided, of course, we don't exceed the permitted degrees of P and Q.

The convergence theory of $\{[n/n]\}_{n=1}^{\infty}$ is complicated. It is known [1], [5] that if f is meromorphic in \mathbb{C} , then $\{[n/n]\}_{n=1}^{\infty}$ converges in measure (and in capacity) in bounded subsets of \mathbb{C} . On the other hand, there need not be pointwise convergence: H. Wallin [7] constructed an entire function with

$$\limsup_{n\to\infty} |[n/n](z)| = \infty, \ \forall z \in \mathbb{C} \setminus \{0\}.$$

In this paper, we investigate the following:

Question

To what extent must we weaken the order of contact of [n/n] with f at 0 in order to guarantee pointwise convergence?

We believe that this question is new, relevant and interesting. It has connections with the convergence theory of continued fractions and Padé and Padé-type approximants. The (perhaps disappointing) conclusion is that we must weaken 2n + 1 to $n + \ell_n + 1$, where $\{\ell_n\}_{n=1}^{\infty}$ may grow arbitrarily slowly to ∞ :

Theorem 1.

(a) Let f be meromorphic in \mathbb{C} and analytic at 0. There exists a sequence of positive integers $\{\ell_n\}_{n=1}^{\infty}$ with

(1.1) $\lim_{n\to\infty}\ell_n=\infty,$

and for $n \ge 1$, rational functions R_n of type (n, n), having order of contact $n + \ell_n + 1$ with f, and satisfying

(1.2)
$$\lim_{n\to\infty}R_n(z)=f(z)$$

uniformly in compact subsets of \mathbb{C} omitting poles of f.

(b) Let $\{\ell_n\}_{n=1}^{\infty}$ be a sequence of positive integers satisfying (1.1). There exists an entire function f with the following property: given for $n \ge 1$, rational functions R_n of type (n, n) having order of contact $n + \ell_n + 1$ with f at 0, then $\{R_n\}_{n=1}^{\infty}$ has every point in the plane as a limit point of its poles, and moreover,

(1.3)
$$\limsup_{n\to\infty} |R_n(z)| = \infty, \ \forall z \in \mathcal{A},$$

where A is a set dense in \mathbb{C} .

We note that when applied to functions with finite radius of meromorphy, our methods of proof give the following assertions: let f be meromorphic in the unit ball.

(I) There exists for $n \ge 1$, rational functions R_n of type (n, n), having order of contact n + 2 with f at 0, and satisfying

$$(1.4) \qquad \lim_{n \to \infty} R_n = f$$

uniformly in compact subsets of $\{z : |z| < 1\}$ omitting poles of f.

(II) Let $\ell \ge 2$. Then $\exists 0 < \rho_{\ell} < 1$ (independent of f) and for $n \ge 1$, rational functions R_n of type (n, n) having order of contact $n + \ell + 1$ with f at 0 and satisfying (1.4) uniformly in compact subsets of $\{z : |z| < \rho_{\ell}\}$.

The proofs of (I) and (II) involve de Montessus de Ballore's theorem [1], a theorem of Buslaev, Goncar and Suetin [3], and of Beardon [2], much as in the proof of Theorem 1. We pose one question in connection with (I) and (II):

Problem

Does there exist a function f analytic in $\{z : |z| < 1\}$ with the following property? Given a rational function R_n of type (n, n), $n \ge 1$, such that R_n has order of contact n + 3 with f at 0, it is not possible that (1.4) holds uniformly in compact subsets of $\{z : |z| < 1\}$.

We shall prove the theorem in the next section.

2. PROOF OF THEOREM 1

Proof of (a) of Theorem 1

We distinguish two cases:

(I) f has infinitely many poles in \mathbb{C}

In this case, we apply de Montessus de Ballore's theorem: for $\ell \ge 1$, let ρ_{ℓ} be the largest circle centre 0, inside which f has at most ℓ poles, counted according to order. By de Montessus de Ballore's theorem [1, p. 282 ff.],

$$\lim_{m\to\infty} [m/\ell](z) = f(z),$$

uniformly in compact subsets of $\{z : |z| < \rho_{\ell}\}$ omitting poles of f. Then by choosing m_j to grow to ∞ sufficiently rapidly with j, we obtain

(2.1)
$$\lim_{j\to\infty} [m_j/j](z) = f(z),$$

uniformly in compact subsets of \mathbb{C} omitting poles of f. We may obviously assume that $m_j \ge j$ for each j and that $m_1 = 1$.

Let us elaborate on the choice of $\{m_j\}_{j=1}^{\infty}$. For $j \ge 2$, let \mathcal{K}_j denote the closed ball centre 0 and radius $\rho_j/2$, but with open balls of radius 1/j centred on the poles of f inside that ball deleted. By de Montessus de Ballore,

$$\lim_{m\to\infty} [m/j](z) = f(z)$$

uniformly in \mathcal{K}_j . Then if m_j is large enough,

$$\max_{z \in \mathcal{K}_j} |f - [m_j/j]|(z) \leq 2^{-j}.$$

We may clearly also ensure inductively that $m_j > m_{j-1}$ and $m_j \ge j$.

Next, given $n \ge 1$, we let

(2.2) $j(n) := \max\{j : m_j \le n\},\$

and if $[m_{j(n)}/j(n)] = p/q$, where p, q have degree at most $m_{j(n)}, j(n)$ respectively, we define

$$(2.3) P(z) := z^{n-m_{j(n)}} p(z); Q(z) := z^{n-m_{j(n)}} q(z); R_n := P/Q.$$

Then as $j(n) \leq m_{j(n)}$, R_n is a rational function of type (n, n) with

(12.4)

$$(fQ - P)(z) = z^{n - m_{j(n)}} (fq - p)(z)$$

$$= z^{n - m_{j(n)}} O(z^{m_{j(n)} + j(n) + 1})$$

$$= O(z^{n + j(n) + 1}).$$

Here the requisite convergence of $\{R_n\}_{n=1}^{\infty}$ follows from (2.1). If we set

 $\ell_n:=j(n), n\geq 1$

we have completed the proof of Theorem 1 in this case.

(II) f has finitely many poles in \mathbb{C}

In this case, we observe first that it suffices to prove the following apparently weaker assertion: let ℓ be a positive integer exceeding the total order of poles of f in \mathbb{C} . Then there exist for $n \ge 1$, rational functions R_n of type (n, n), having order of contact $n + \ell + 1$ with f at 0, and that converge to f uniformly in compact subsets of \mathbb{C} omitting poles of f. (Indeed we may then choose ℓ_n to grow sufficiently slowly to ∞ , much as in Case (I)). To prove this weaker assertion, we use a theorem of Buslaev, Goncar and Suetin [3]: for each such ℓ , we can find an infinite subsequence $\{m_j\}_{j=1}^{\infty}$ such that

(2.5)
$$\lim_{j\to\infty} [m_j/\ell](z) = f(z),$$

uniformly in compact subsets of \mathbb{C} omitting poles of f. We may assume that $m_1 = \ell$ and set $R_n = [n/\ell]$ for $n < \ell$. For $n \ge \ell$, we define j(n) by (2.2) and if $[m_{j(n)}/\ell] = p/q$, we define R_n by (2.3). Observe that instead of (2.4), we obtain

$$(fQ - P)(z) = O(z^{n+\ell+1}).$$

The convergence of $\{R_n\}_{n=1}^{\infty}$ follows from (2.5). \Box

In proving (b), we shall use the following simple lemma:

Lemma 2.1.

Suppose that f is a formal power series and $n, \ell \ge 1$. Write $\lfloor \ell/1 \rfloor = p/q$ where $\deg(p) \le \ell, \deg(q) \le 1$ and suppose that

(2.6) $(fq-p)(z) = O(z^{n+\ell+1}).$

Let R be a rational function of type (n, n) having order of contact n + l + 1 with f. We then have

(2.7) $R = [\ell/1].$

Proof.

Write R = P/Q, where P, Q have deg $\leq n$. By hypothesis,

$$(fQ-P)(z) = O(z^{n+\ell+1}).$$

Multiplying (2.6) by Q and substracting q times this last relation gives

$$(-pQ+qP)(z)=O(z^{n+\ell+1}).$$

But the left-hand side is a polynomial of degree $\leq n + \ell$, and (2.7) follows. \Box

Proof of Theorem 1(b)

We use a construction that goes back to Perron [6] and that has been widely used in Padé approximation. Let $\{\ell_n\}_{n=1}^{\infty}$ have limit ∞ . Let $\{z_j\}_{j=1}^{\infty}$ be a sequence of non-zero complex numbers, dense in C, such that each point in the sequence appears infinitely often in the sequence, and let

$$\mathcal{A} := \{z_1, z_2, z_3, ...\}.$$

We shall construct an entire function

$$f(z)=\sum_{j=0}^{\infty}a_{j}z^{j},$$

and a subsequence $\{\ell_{n_k}\}_{k=1}^{\infty}$ of $\{\ell_n\}_{n=1}^{\infty}$ such that

(I) $[\ell_{n_k}/1]$ has pole $z_k, k \ge 1$;

(II)

$$(f - [\ell_{n_k}/1])(z) = O(z^{n_k + \ell_{n_k} + 1}), k \ge 1.$$

This last relation of course implies (2.6) with $\ell = \ell_{n_k}$. From the lemma, given rational functions R_n of type (n, n) with order of contact $n + \ell_n + 1$ with f at 0, $n \ge 1$, we then have

$$R_{n_k}=[\ell_{n_k}/1],$$

so that $\{R_{n_k}\}_{k=1}^{\infty}$ has every point in C as a limit point of its poles, and also then, if $\mathcal{A} := \{z_1, z_2, z_3, ...\},\$

$$\limsup_{k\to\infty}|R_{n_k}(z)|=\infty, z\in\mathcal{A}.$$

We now turn to establishing (I) and (II).

We set $\ell_0 := 1$ and $n_0 := 1$ and choose $\{\ell_{n_k}\}_{k=1}^{\infty}$ to grow so rapidly that

$$(2.8) \qquad \ell_{n_k} \ge n_{k-1} + \ell_{n_{k-1}} + 1, \, k \ge 1.$$

We set $a_j := 1, 0 \le j < \ell_{n_1}$. Now fix $k \ge 1$ and define $a_j, \ell_{n_k} \le j < \ell_{n_{k+1}}$ as follows: set

$$\eta_k := 2^{-\ell_{n_{k+1}}^2} (\min\{1, |z_k|\})^{\ell_{n_{k+1}} - \ell_{n_k}};$$

and

.

$$a_j:=\eta_k z_k^{\ell_{n_k}-j}, \ell_{n_k}\leq j<\ell_{n_{k+1}}.$$

Note that given r > 1,

$$\sum_{j=\ell_{n_{k}}}^{\ell_{n_{k+1}}-1} |a_{j}| r^{j} \leq \eta_{k} \ell_{n_{k+1}} r^{\ell_{n_{k+1}}} (\min\{1, |z_{k}|\})^{\ell_{n_{k}}-\ell_{n_{k+1}}} \leq 2^{-\ell_{n_{k+1}}^{2}} \ell_{n_{k+1}} r^{\ell_{n_{k+1}}}.$$

Then since $\ell_{n_k} > k + 1$, we deduce that

$$\sum_{j=\ell_{n_1}}^{\infty} |a_j| r^j \leq \sum_{k=1}^{\infty} 2^{-\ell_{n_{k+1}}^2} \ell_{n_{k+1}} r^{\ell_{n_{k+1}}} < \infty.$$

Hence f is entire.

Next, given $k \ge 1$, we use a well known formula for $[\ell_{n_k}/1]$:

$$[\ell_{n_k}/1](z) = \sum_{j=0}^{\ell_{n_k}-1} a_j z^j + \frac{a_{\ell_{n_k}} z^{\ell_{n_k}}}{1 - z a_{\ell_{n_k}+1}/a_{\ell_{n_k}}}$$
$$= \sum_{j=0}^{\ell_{n_k}-1} a_j z^j + \frac{a_{\ell_{n_k}} z^{\ell_{n_k}}}{1 - z/z_k},$$

so $[\ell_{n_k}/1]$ has a pole at z_k , and

$$\begin{split} [\ell_{n_k}/1](z) &= \sum_{j=0}^{\ell_{n_k}-1} a_j z^j + \sum_{j=\ell_{n_k}}^{\ell_{n_{k+1}}-1} \eta_k z_k^{\ell_{n_k}-j} z^j + O(z^{\ell_{n_{k+1}}}) \\ &= f(z) + O(z^{\ell_{n_{k+1}}}) \\ &= f(z) + O(z^{n_k+\ell_{n_k}+1}), \end{split}$$

by (2.8).

REFERENCES

- Baker, G.A. and P.R. Graves-Morris Padé Approximants, 2nd edn., Encyclopaedia of Mathematics and its Applications. Vol. 59, Cambridge University Press (1996).
- Beardon, A.F. On the Location of Poles of Padé Approximants. J. Math. Anal. Appl., 21, 469-474 (1968).
- Buslaev, V.I., A.A. Goncar and S.P. Suetin On the Convergence of Subsequences of the mth Row of the Padé Table. Math. USSR. Sbornik, 48, 535-540 (1983).
- Lorentzen, L. and H. Waadeland Continued Fractions with Applications. North Holland, Amsterdam (1992).

- Lubinsky, D.S. Will Ramanujan kill Baker-Gammel-Wills? (A Selective Survey of Padé Approximation). (In) Proceedings of IDOMAT98, International Series in Numerical Mathematics, Vol. 132, Birkhauser, Basel, 159-174 (1999).
- 6. Perron, O. Die Lehre von den Kettenbrüchen II. Teubner, Stuttgart (1957).
- Wallin, H. The Convergence of Padé Approximants and the Size of the Power Series Coefficients. Applicable Analysis, 4, 235-251 (1974).

(Received December 2000)