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ABSTRACT

Let f be meromorphic in the plane and analytic at 0. Then its diagonal sequence {[n/n]},°. | of Padé
approximants need not converge pointwise. We ask whether by reducing the order of contact (or
correspondence) of [n/n] with f at 0, namely 2n + 1,we can ensure locally uniform convergence. In
particular, we show that there exist rational functions R, of type (n,n),n > 1, and a sequence of
positive integers {£,}5- ; with limit oo, depending on f, such that R, has contact of order n + £, + 1
with f at 0, and which converge locally uniformly to /. Moreover, for any given sequence {£,}; ;,
there exists an entire f for which order of contact higher than n + ¢, is incompatible with con-
vergence.

1. INTRODUCTION AND RESULTS

Let
f@) =% a7,
j=0

be a formal power series. A rational function of type (n, n) is a rational function
whose numerator and denominator degrees are at most » (and of course the
denominator polynomial should not be identically 0). For r > 0, the (n, n) Padé
approximant to f is a rational function [n/n] = P/Q of type (n,n) with

(f@ - P)(z) = O(z*"*).
We say that [n/n] has order of contact 2n + 1 with f at 0. More generally, a ra-
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tional function R = P/Q of type (n,n) is said to have order of contact m with f
at 0, if

(/@ - P)(2) = O(z").

Note that in some cases R may have several different orders of contact m, as we
may multiply both P and Q by a common power of z, provided, of course, we
don’t exceed the permitted degrees of P and Q.

The convergence theory of {[n/n]},2_, is complicated. It is known [1], [5] that
if f is meromorphic in C, then {[n/n]};°_ ; converges in measure (and in capa-
city) in bounded subsets of C. On the other hand, there need not be pointwise
convergence: H. Wallin [7] constructed an entire function with

limsup |[n/n](z)| = oo, Vz € C\{0}.
n— oo
In this paper, we investigate the following:

Question
To what extent must we weaken the order of contact of [n/n] with f at 0 in order to
guarantee pointwise convergence?

We believe that this question is new, relevant and interesting. It has connec-
tions with the convergence theory of continued fractions and Padé and Padé-
type approximants. The (perhaps disappointing) conclusion is that we must

weaken 2n + 1ton+ £, + 1, where {£,}, , may grow arbitrarily slowly to oc:

Theorem 1.
(a) Let f be meromorphic in C and analytic at 0. There exists a sequence of
positive integers {€,},_ | with

(1.1) lim £, = oo,
n-—oo

and for n > 1, rational functions R, of type (n,n), having order of contact
n+ £, + 1 withf, and satisfying

(12)  lim Ry(z) =/(2)

uniformly in compact subsets of C omitting poles of f.

(b) Let {£,},> | be a sequence of positive integers satisfying (1.1). There exists
an entire function f with the following property: given for n > 1, rational functions
R, of type (n,n) having order of contact n+ £, + 1 with f at 0, then {R,};°. | has
every point in the plane as a limit point of its poles, and moreover,

(1.3) limsup |R,(z)| = o0, Vz € A,
n—oo
where A is a set denseinC.
We note that when applied to functions with finite radius of meromorphy,

our methods of proof give the following assertions: let f be meromorphic in the
unit ball.
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(I) There exists for n > 1, rational functions R, of type (n,n), having order
of contact n + 2 with f at 0, and satisfying

(14)  lim R,=f

uniformly in compact subsets of {z : |z| < 1} omitting poles of f.

(IT) Let £ > 2. Then 30 < p; < 1 (independent of /) and for n > 1, rational
functions R, of type (n,n) having order of contact n+ £+ 1 with f at 0 and
satisfying (1.4) uniformly in compact subsets of {z: |z] < p;}.

The proofs of (I) and (II) involve de Montessus de Ballore’s theorem [1], a
theorem of Buslaev, Goncar and Suetin [3], and of Beardon {2], much as in the
proof of Theorem 1. We pose one question in connection with (I) and (II):

Problem

Does there exist a function f analytic in {z : |z| < 1} with the following property?
Given a rational function R, of type (n,n), n > 1, such that R, has order of contact
n+ 3 withf at 0, it is not possible that (1.4) holds uniformly in compact subsets of
{z: |z} < 1}

We shall prove the theorem in the next section.

2. PROOF OF THEOREM 1

Proof of (2) of Theorem 1
We distinguish two cases:
(1) f has infinitely many poles in C
In this case, we apply de Montessus de Ballore’s theorem: for £ > 1, let p, be
the largest circle centre 0, inside which f has at most £ poles, counted according
to order. By de Montessus de Ballore’s theorem [1, p. 282 ff],

lim [m/£)(z) = £(a),

uniformly in compact subsets of {z:|z| < p;} omitting poles of f. Then by
choosing m; to grow to oo sufficiently rapidly with j, we obtain

Q1) lim /i) =1(),

uniformly in compact subsets of C omitting poles of f. We may obviously as-
sume that m; > j for each j and that m; = 1.

Let us elaborate on the choice of {m;}7Z . For j > 2, let K; denote the closed

ball centre 0 and radius p;/2, but with open balls of radius 1/ centred on the
poles of f inside that ball deleted. By de Montessus de Ballore,

tim [m/j)(z) =(2)

uniformly in ;. Then if m; is large enough,
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— [m;/j]I(z) < 277.
max |f — [m;/J]|(z) <2
We may clearly also ensure inductively that m; > m;_; and m; > j.

Next, given n > 1, we let
(22)  j(n):=max{j:m; <n},

and if {m;()/j(n)] = p/q, where p, g have degree at most my,), j(n) respectively,
we define

(2.3)  P(z) :=z2"""0p(2); Q(z) := 2" " q(z); Ry := P/ Q.
Then as j(n) < m;), R, is a rational function of type (n,n) with
(fQ— P)(z) = 2"~ (fq — p)(z)
(2.4) = " M) O(me(") +j(m) + 1)
— 0(zn+j(n)+1).

Here the requisite convergence of {R,},. ; follows from (2.1). If we set
by :=j(n),n>1
we have completed the proof of Theorem 1 in this case.

(I1) f has finitely many poles in C

In this case, we observe first that it suffices to prove the following apparently
weaker assertion: let £ be a positive integer exceeding the total order of poles of
S in C. Then there exist for n > 1, rational functions R, of type (n,n), having
order of contact n+ £+ 1 with f at 0, and that converge to f uniformly in
compact subsets of C omitting poles of f. (Indeed we may then choose £, to
grow sufficiently slowly to oo, much as in Case (I)). To prove this weaker asser-
tion, we use a theorem of Buslaev, Goncar and Suetin [3]: for each such £, we
can find an infinite subsequence {m;};Z , such that

@5)  Jim[m/6)2) =1(2),

uniformly in compact subsets of C omitting poles of /. We may assume that
m; = £ and set R, = [n/£] for n < £. For n > ¢, we define j(n) by (2.2) and if
[m;s/€] = p/q, we define R, by (2.3). Observe that instead of (2.4), we obtain

(f2 - P)(z) = O(z"**+1).

The convergence of {R,},- , follows from (2.5). O
In proving (b), we shall use the following simple lemma:

Lemma 2.1.
Suppose that f is a formal power series and n,f > 1. Write [(/1] = p/q where
deg(p) < £,deg(q) < 1 and suppose that
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(26)  (fa-p)(z) = O0("+*1).

Let R be a rational function of type (n,n) having order of contact n + £ + 1 with f.
We then have

@7) R=[1].

Proof.
Write R = P/Q, where P, Q have deg < n. By hypothesis,

(f@-P)(z) = O(z"***1).
Multiplying (2.6) by Q and substracting q times this last relation gives

(=PQ +¢P)(2) = Oz"+**1).
But the left-hand side is a polynomial of degree < n + £, and (2.7) follows. []
Proof of Theorem 1(b)
We use a construction that goes back to Perron [6] and that has been widely
used in Padé approximation. Let {£,},°; have limit co. Let {z};2, be a se-

quence of non-zero complex numbers, dense in C, such that each point in the
sequence appears infinitely often in the sequence, and let

A:={z1,23,23,...}.

We shall construct an entire function
0 N
f&)=3% @,
j=

and a subsequence {£,, };~; of {£»}.—, such that
(D) [£,/1] has pole z¢, k > 1;
an

(f = e/ 1)(2) = O™+ 1) k2 1.

This last relation of course implies (2.6) with £ = £, . From the lemma, given
rational functions R, of type (n, n) with order of contact n + £, + 1 with f at 0,
n > 1, we then have

Ry = [bn /1],

so that {R,, };- , has every point in C as a limit point of its poles, and also then,
if A:={z1,22,23,...},

limsup |R,, ()] = 00,z € A.
k— oo

We now turn to establishing (I) and (II).

We set £ := 1 and ng := 1 and choose {£,, };>, to grow so rapidly that
28) bypzm_1+by_+1,k>1
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We set a; := 1,0 <j < {,. Now fix k > 1 and define a;, s, <j < 4y, as fol-
lows: set

N = 2_2"2k+| (mln{l’ |zkl})£"k+l_£nk;
and
bny —J .
aj = nkzk 1enk S] <€,,k+1.

Note that givenr > 1,

bnpy—t -

2 |aj|r" <nkeﬂk+1 t"nl(mln{l |Zk|})e“ L

i,
2
Z‘ZMHE’”‘H;-[MH .

Then since £,, > k + 1, we deduce that

2 laj|r < E 2” e"knl,, rinvn < oo.

Hence f is entire.

Next, given k > 1, we use a well known formula for [¢,, /1] :

£y, -1 ag, 2%
2. /1 Jyp— T
[ nk/ ](Z) Z a;z + 1-—- Zae,.,+1/at,‘
l'lk_l ag zfnk
= Z a;z’ +—————l Y.
s0 [£,, /1] has a pole at z, and
£n _1 e"k+l

e /1](2) = Z ajz’ + 2 TIkZl"" i 4 O(ztmer)

ng

=f (2)+ O(Z’"*“)
=f(z) + O™+,

by (2.8). O
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