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We show that}in some suitable sense}any induction theorem for the charac-
ter ring of a finite group can be lifted to an induction theorem for the Green ring.
Ž .A precise statement see Theorem A herein. This provides a uniform proof of
important induction theorems, as, for example, the ones of Conlon and Dress.
Moreover, we prove an analogue of Brauer’s induction theorem for the Green ring
Ž .cf. Theorem B herein . Q 1998 Academic Press

1. INTRODUCTION

Let us fix a complete discrete valuation ring OO of characteristic 0 with
quotient field K and residue field F of positive characteristic p. Unless
otherwise stated, all our modules will be free of finite rank over K, OO, or F,
respectively. Moreover, let G be a finite group, and assume K and F to be

Žsplitting fields for G and all of its subgroups and hence for all of its
. Ž < <subquotients . For instance, assume that K contains a primitive G th root

.of unity.
Ž . Ž .We denote by R G the ring of K-valued characters of G, and let

Ž . Ž .a OOG and a FG be the Green ring of OOG and FG, respectively; i.e., the
Grothendieck group of the abelian monoid the elements of which are

w x Ž .isomorphism classes M of OOG-modules FG-modules M, with addition
w x w x w x Ždefined by M q L [ M [ L which is even a ring, where multiplica-

.tion is given by the tensor product . Then, by the Krull]Schmidt theorem,
Ž .the isomorphism classes of indecomposable OOG-modules FG-modules

Ž . Ž Ž ..form a Z-basis of a OOG a FG .
For a subgroup H of G, a character x of H and an OOH-module

Ž . G GFH-module M, Ind x and Ind M denote the induced character andH H
G Ž . Ž .module, respectively. This yields additive maps ind : R H ª R G , x ¬H
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G G Ž . Ž . w x w G x ŽInd x , and ind : a OOH ª a OOG , M ¬ Ind M , respectively simi-H H H
.larly for the Green ring over F .

Ž .Let k be a commutative ring with 1. For simplicity, we write kR G ,
Ž . Ž . Ž . Ž . Ž .ka OOG , and ka FG instead of k m R G , k m a OOG , and k m a FG ,Z Z Z

respectively. Moreover, for c g k, a character x of G and an OOG-module
Ž . w x Ž .FG-module M, cx and c M are abbreviations of c m x g kR G and

w x Ž . Ž Ž .. G Žc m M g ka OOG ka FG , respectively. For simplicity, ind H a sub-H
. G Ž . Ž .group of G denotes also the induced map id m ind : kR H ª kR G ,k H

and analogously for the Green ring.
The main objective of this paper is to prove the following theorem:

THEOREM A. Let G be a finite group, let k be a commutatï e ring with 1,
Ž .and let M be an indecomposable OOG-module FG-module with ¨ertex P and

P-source N. Moreo¨er, for any subgroup Q of P, let CC be a set of subgroupsQ
Ž .of N Q rQ such thatG

1 g indNGŽQ.r Q kR HrQ .Ž .Ý Hr Q
HrQgCCQ

Ž .From M, P, and the sets CC construct the set CC of pairs H, U , whereQ

1. H is a subgroup of G with normal p-subgroup Q, which is contained
in P, such that HrQ g CC .Q

Ž .2. U is an indecomposable OOH-module FH-module such that, for
some g g G, some ¨ertex R of U is contained in Q l gP, and some R-source

Ž . gP gof U is a direct summand of the restricted OOR-module FR-module Res N.R

ŽŽ . .Then there are a g k H, U g CC such thatŽH , U .

w x G w xM s a ind UÝ ŽH , U . H
Ž .H , U gCC

Ž . Ž Ž ..in ka OOG ka FG .

Remark. 1. Choose k [ Q, and, for each p-subgroup Q of G, let CCQ
Ž .be the set of cyclic subgroups of N Q rQ. By Artin’s induction theoremG

w Ž .x5, 15.4 , the sets CC satisfy the hypotheses of Theorem A. Hence, usingQ
Theorem A, Artin’s induction theorem implies Conlon’s induction theorem
w Ž .x6, 80.51 .

2. Now take k [ Z, and, for a p-subgroup Q of G, denote by CCQ
Ž .the set of elementary subgroups of N Q rQ. Then, using Theorem A,G

w Ž .x wBrauer’s induction theorem 5, 15.8 implies Dress’s induction 2, Theo-
xrem 5.6.11 .

Ž .3. We will show that, for the Green ring a FG , Theorem A re-
Ž Ž . .mains valid if we replace R N Q rQ by the Brauer character ringG

Ž Ž . . Ž .R N Q rQ of N Q rQ for all Q.p9 G G



HUBERT FOTTNER246

Ž4. Theorem A is also valid for a complete discrete valuation ring of
.characteristic 0 with arbitrary quotient field K and arbitrary residue field

Ž Ž . .F of characteristic p, as long as we replace the character ring R N Q rQG
Ž w Ž . x.by the Grothendieck group G K N Q rQ of the group algebra0 G

w Ž . xK N Q rQ for all Q. Hence Theorem A can also be applied to theG
w xBermann]Witt induction theorem 2, Theorem 5.6.7 .

Of course, the most important applications of Theorem A are the
classical induction theorems for the Green ring mentioned in the above

w xremark. For a quite recent account cf. 12, Proposition 3.5 , which, as we
will do, uses a G-algebra approach. A proof of the well-known fact that the
minimal family of subgroups needed to write an indecomposable module
as a linear combination of modules induced from these subgroups depends

w Ž .x Žon a vertex of that module is also contained in 12 cf. Proposition 9.2 . It
might be new that these induction theorems can be improved if one takes

.also the source of an indecomposable module into account. However, we
emphasize that Theorem A shows that any induction theorem for the

Ž .character ring of N Q rQ for each p-subgroup Q of G ‘‘lifts’’ to anG

induction theorem for the Green ring of G. Moreover, our proof of
Theorem A will demonstrate that this ‘‘lifting process’’ is rather explicit. In
fact, the only thing which is not explicit in our proof of Theorem A is that
it relies on realizations of all the characters involved; so if we replace

Žthroughout character rings by the corresponding Grothendieck groups the
.proof of Theorem A really provides an explicit ‘‘lifting method.’’

Brauer’s induction theorem asserts that any character of G can be
written as an integral linear combination of monomial characters, i.e.,

Žcharacters which are induced from linear characters. This is a corollary of
.what we mean by Brauer’s induction theorem in the above remark.

Assume, in addition, that F is algebraically closed. We offer the following
modular analogue of this famous result for the Green ring:

THEOREM B. Let G be a finite group, and let M be an indecomposable
Ž .OOG-module FG-module with ¨ertex P and P-source L. Moreo¨er, denote by

Ž .CC the set of pairs H, U where

1. H is a subgroup of G with normal Sylow p-subgroup Q, which is
contained in P, such that HrQ is elementary;

Ž .2. U is an indecomposable OOH-module FH-module with ¨ertex Q and
Ž . Hthe restricted OOQ-module FQ-module Res U is an indecomposable directQ

summand of ResP L. In particular, ResH U is a Q-source of U.Q Q
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ŽŽ . .Then there are integers a H, U g CC such thatŽH , U .

w x G w xM s a ind UÝ ŽH , U . H
Ž .H , U gCC

Ž . Ž Ž ..in ka OOG ka FG .

Remark. Note that Theorem B can be regarded as a generalization of
Brauer’s induction theorem. To see this, choose OO in such a way that p

< <does not divide G . Then all the OOH-modules U above have rank 1. Maybe
a better way to see that Theorem B is an analogue of Brauer’s induc-
tion theorem is to say that the defect multiplicity modules of all the OOH-

Ž w x .modules U of 2 are one-dimensional. See 13 for details.
Moreover, Theorem B generalizes the well-known fact that trivial source

modules are virtually monomial, i.e., any trivial source module, regarded as
Ž .an element of a OOG , can be written as an integral linear combination of

Želements which correspond to monomial modules i.e., modules which are
. w x w xinduced from modules of rank 1 . This is a theorem of Dress 7 . Boltje 4

shows that this can be done explicitly and, in his sense, in a canonical way.

Ž .Note that these specific modules U of Theorem B 2 also play an
important role in Puig’s generalization of Brauer’s second main theorem

Ž w x.for the Green ring cf. 12, Theorem 8.4 and Section 9 .
In case of an algebraically closed residue field F, Theorem A can be

slightly improved.

THEOREM C. We adopt the notation of Theorem A. Assume, in addition,
that F is algebraically closed, and that, for any subgroup Q of P, all the

Ž .elements of CC are p-sol̈ able subgroups of N Q rQ. Denote by DD the setQ G
Ž .of pairs H, U where

Ž .1. H is a subgroup of G such that O H is contained in P, and suchp
Ž .that HrO H is a Hall p9-subgroup of an element of CC ;p O ŽH .p

Ž .2. U is an indecomposable OOH-module FH-module such that, for
Ž . gsome g g G, some ¨ertex R of U is contained in O H l P, and somep

R-source of U is a direct summand of Res
gP gN.R

ŽŽ . .Then there are a g k H, U g DD such thatŽH , U .

w x G w xM s a ind UÝ ŽH , U . H
Ž .H , U gDD

Ž . Ž Ž ..in ka OOG ka FG .

As a by-product, our methods provide the following G-algebra implica-
tion. Before we state the result, let us recall that, for a G-algebra A, AG

1
denotes the image of the trace map TrG: A ª AG, a ¬ Ý ga.1 g g G
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PROPOSITION D. Let G be a finite group, let A be a G-algebra o¨er OO,
and let e, f be idempotents in AG. Then e and f are conjugate by a unit in AG,1
if and only if , for each cyclic p9-subgroup C of G, e and f are conjugate by a
unit in AC.

The most important tool for our proof of Theorem A will be the
Grothendieck group of projective modules of a certain skew group algebra.
The following section will provide the required machinery. It might be
convenient to start reading in Section 3 and skip back whenever necessary.

2. SOME REMARKS ON SKEW GROUP ALGEBRAS

Throughout, we fix a finite group G, and let k be a commutative
Ž .ground ring with 1. Unless otherwise stated, all our modules are unitary
left modules, and all algebras are assumed to be k-algebras. For an algebra
A, A-Mod denotes the category of A-modules.

Let us recall the definition of the skew group algebra. Let A be a
G-algebra, i.e., a k-algebra on which G acts via algebra automorphisms. As
k-module, the skew group algebra A)G is isomorphic to A m kG. Thek

Ž .image of an element a m g a g A, g g G under this isomorphism is
denoted by a) g. Multiplication is defined as follows. For a, b g A and

Ž .Ž . Žx .x, y g G, define a) x b) y [ a b ) xy, and extend bilinearly. Then
A)G becomes an associative algebra.

For a g A, we identify a with a)1 g A)G, so we can regard A as a
unitary subalgebra of A)G. More generally, for a subgroup H of G,
A) H may be regarded as a unitary subalgebra of A)G in the canonical
way. This yields a restriction functor ResG : A)G-Mod ª A) H-ModH
with left adjoint induction functor IndG : A) H-Mod ª A)G-Mod.H
Moreover, for g g G, we obtain a conjugation functor g : A) H-Mod ª]
A) gH-Mod as restriction along the isomorphism A) gH ª A) H,

y1 gy1 Ž g y1 .a) ghg ¬ a) h. Where H denotes the conjugate subgroup gHg .
It is straightforward to check that we have Mackey decomposition:

2.1. LEMMA. Let H and K be subgroups of G, and let M be an A) H-
module. Then there is an isomorphism

ResG IndG M ( IndK
g Res

gH
g

gM[K H K l H K l H
HgKgK_GrH

of A) K-modules.

Also the group algebra kG may be regarded as a unitary subalgebra of
A)G. However, for g g G, we do not write g instead of 1 ) g g A)G, toA

Žavoid confusion in case A is interior. Although this reason is not apparent
.in this work.
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Let M and N be A)G-modules. In particular, M and N may be
Ž .regarded as kG-modules. Hence the k-module Hom M, N of k-homo-k

morphisms M ª N is a kG-module, as well, where

gw m [ 1 ) gw 1 ) gy1 mŽ .Ž . Ž .A A

Ž .for g g G, w g Hom M, N , and m g M. Then we havek

a) gw m s gw a) g m 1Ž . Ž . Ž .Ž .

Ž .for all a g A, g g G, w g Hom M, N , and m g M, as one easilyA
Ž . Ž .verifies. In particular, Hom M, N is a kG-submodule of Hom M, N .A k

Ž .Thus the algebra End M of A-endomorphisms of M is a G-algebra,A
Ž .H Ž . Žand, for a subgroup H of G, we have End M s End M . Where,A A) H

H � h 4for a G-algebra B, B [ b g B: b s b for all h g H denotes the
.subalgebra of fixed points of H on B.

The purpose of this section is to define certain functors, related to the
category of A)G-modules, which will be important for our proof of
Theorem A. The starting point of these definitions is the following gener-
alization of the notion of a bimodule.

2.2. DEFINITION. Let G be a finite group, and let A and B be
G-algebras. Moreover, let M be both a left A)G-module and a right

Ž .B-module, as well such that the induced k-module structures coincide .
Ž .Then M is called a twisted A, G -B-bimodule if

a) g mb s a) g m gbŽ . Ž .

for all a g A, g g G, m g M, and b g B.

2.3. EXAMPLE. 1. We may regard A as an A)G-module when we
Žg .define a) g b [ a b for a, b g A and g g G. But A is also a right

Ž . ŽgŽ .. Žg .Žg . Ž .gA-module, and we have a) g bc s a bc s a b c s a) g b c for
Ž .all a, b, c g A and g g G; so A is a twisted A, G -A-bimodule.

2. Let H be a subgroup of G and let B be a G-algebra. Trivially,
Ž . Ž .any twisted A, G -B-bimodule may be regarded as twisted A, H -B-

bimodule.
3. Let B be an algebra which we regard as G-algebra with trivial

Ž .G-action. Then a twisted A, G -B-bimodule is nothing but an A)G-B-
Ž .bimodule. In particular, any A)G-module is a twisted A, G -k-bimodule.

4. Let B be a G-algebra. Denote by Bo the opposite G-algebra, and
o Žregard A m B as a G-algebra with diagonal G-action. Then any A mk k

o.B )G-module M is an A)G-module via restriction along the canonical
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Ž o.homomorphism A)G ª A m B )G. On the other hand, M becomesk
o Ž .a B -module and hence a right B-module via restriction along the

o Ž o.canonical homomorphism B ª A m B )G. Moreover,k

a) g mb s a m 1 ) g 1 m b )1 m s a m gb ) g mŽ . Ž . Ž . Ž .Ž .Ž . Ž .B A

s 1 m gb )1 a m 1 ) g m s a) g m gb ,Ž . Ž .Ž .Ž .Ž .A B

Ž .so M is a twisted A, G -B-bimodule.

Ž .Conversely, let L be a twisted A, G -B-bimodule. Then L can be
Ž o. ŽŽ . .regarded as an A m B )G-module when we define a m b ) g m [k

Ž .a) g m b for a g A, b g B, g g G, and m g M. This is straightforward
to check.

2.4. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
Ž .M be a twisted A, G -B-bimodule.

1. Let N be a B)G-module. Then M m N is an A)G-module, whereB

a) g m m n [ a) g m m 1 ) g nŽ . Ž . Ž .B

for a g A, g g G, m g M, and n g N. This gï es rise to a k-additï e functor
M m : B)G-Mod ª A)G-Mod.B]

Ž .2. Let L be an A)G-module. Then Hom M, L is a B)G-moduleA
Ž .where, for b g B, g g G, and w g Hom M, L , b) g w is defined byA

b) g w m [ gw mbŽ . Ž . Ž .Ž .

Ž .for m g M. This yields a k-additï e functor Hom M, : A)G-Mod ªA ]
B)G-Mod.

Ž . � Ž . Ž .Proof. ad 1. Let g g G. Set E M [ w g End M : w mb sg , B k
Ž . Žg . 4 Ž . �w m b for all m g M and b g B , and similarly E N [ c gg , B

Ž . Ž . Žg . Ž . 4 Ž .End N : c bn s b c n for all b g B, n g N . Then E M andk g , B
Ž . Ž . Ž .E N are k-submodules of End M and End N , respectively.g , B k k

Ž . Ž .Let w g E M , and let c g E N . Then the universal property ofg , B g , B
the tensor product yields a k-endomorphism M m N ª M m N, m m nB B

Ž . Ž .¬ w m m c n , which we denote by w m c . It is plain that the corre-
Ž . Ž . Ž . Ž .sponding map E M = E N ª End M m N , w, c ¬ w m c ,g , B g , B k B

Ž .is k-bilinear inducing a homomorphism of k-modules E M mg , B k
Ž . Ž .E N ª End M m N .g , B k B
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� 4Set A) g [ a) g : a g A . By definition of a twisted bimodule, we
Ž . Ž .obtain a homomorphism A) g ª E M m E N , a) g ¬ w mg , B k g , B a) g

c , of k-modules, where w and c are given by left multiplication withg a) g g
a) g and 1 ) g, respectively. This yields a k-homomorphismB

G : A)G s A) g ª E M m E N ª End M m NŽ . Ž . Ž .[ @ g , B k g , B k B
ggG ggG

Ž Ž ..Ž . Ž . Ž .such that G a) g m m n s a) g m m 1 ) g n for all a g A, g g G,B
m g M, and n g N. Obviously, G is a homomorphism of algebras, proving
the first assertion. The additional statement is clear.

Ž .ad 2. For b, c g B, g, h g G, w g Hom M, L , and m g M, weA
have

b) g c) h w m s g c) h w mbŽ . Ž . Ž . Ž .Ž . Ž .
s 1 ) g c) h w 1 ) gy1 mbŽ . Ž .Ž .A A

s 1 ) g hw 1 ) gy1 mb cŽ .Ž .Ž . Ž .A A

s 1 ) g hw 1 ) gy1 mb gcŽ .Ž .Ž .Ž .A A

s g hw mb gc s b gc ) gh w mŽ . Ž . Ž .Ž . Ž .Ž .
s b) g c) h w m ,Ž . Ž . Ž .Ž .Ž .

so we are done, the additional assertion being obvious.

Similarly, there are also certain contravariant hom functors, which will
Ž w x .not be important for us here. We refer to 9, Section II.4 for details.

One might expect the following result:

2.5. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
Ž .M be a twisted A, G -B-bimodule. Then the functor M m : B)G-Mod ªB]

Ž .A)G-Mod is left adjoint to Hom M, : A)G-Mod ª B)G-Mod.A ]

Proof. Let N be a B)G-module, and let L be an A)G-module.
Disregarding the G-action for the moment, there is a well-known isomor-
phism

a : Hom M m N , L ª Hom N , Hom M , LŽ . Ž .Ž .A B B A

which is natural in N and L, where, for an A-homomorphism w : M m NB
Ž Ž ..Ž . ŽŽ Ž ..Ž ..Ž . Ž .ª L and n g N, a w n is defined by a w n m [ w m m n for

m g M.
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We claim that, here, a is even a homomorphism of kG-modules. In fact,
Ž .for g g G, w g Hom M m N, L , m g M, and n g N, we haveA B

a gw n m s gw m m n s 1 ) g w 1 ) gy1 m m nŽ . Ž . Ž . Ž .Ž . Ž .Ž .Ž . Ž .A A

s 1 ) gw 1 ) gy1 m m 1 ) gy1 nŽ . Ž .Ž .A A B

s 1 ) g a w 1 ) gy1 n 1 ) gy1 mŽ .Ž . Ž . Ž .Ž .A A A

s g a w 1 ) gy1 n mŽ . Ž .Ž . Ž .Ž .Ž .B

s 1 ) g a w 1 ) gy1 n mŽ . Ž .Ž . Ž .Ž .B B

s g a w n m ,Ž . Ž . Ž .Ž .Ž .Ž .

Žg . gŽ Ž ..so a w s a w , proving our claim.
Therefore, a yields a natural equivalence

Hom M m , ª Hom , Hom M ,Ž . Ž .Ž .A B] ] B ] A ]

Ž .oof functors B)G-Mod = A)G-Mod ª kG-Mod. Applying the fixed
point functor G: kG-Mod ª k-Mod to this equivalence, we obtain a]
natural equivalence

Hom M m , ª Hom , Hom M ,Ž . Ž .Ž .A) G B] ] B ) G ] A ]

Ž .oof functors B)G-Mod = A)G-Mod ª k-Mod. In particular, M mB]
Ž .is left adjoint to Hom M, .A ]

This immediately implies that the functor M m above commutes withB]
induction.

2.6. COROLLARY. Let H be a subgroup of a finite group G, let A and B be
Ž .G-algebras, and let M be a twisted A, G -B-bimodule. Then the diagram

MmB] 6

B)G-Mod A)G-Mod6 6
G GInd IndH H

MmB] 6

B) H-Mod A) H-Mod

of functors commutes up to natural equï alence.

Proof. Since IndG is left adjoint to ResG ,H H

IndG ( M m : B) H-Mod ª A)G-ModŽ .H B]
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Ž . Gis left adjoint to Hom M, (Res : A)G-Mod ª B) H-Mod, byA ] H
Lemma 2.5, and

M m (IndG : B) H-Mod ª A)G-ModŽ .B] H

G Ž . Ž .is left adjoint to Res (Hom M, . Now since Hom M, clearlyH A ] A ]
‘‘commutes with restriction,’’ the result follows by uniqueness of adjoints.

2.7. Remark. In the situation of Corollary 2.6, it is plain that the
functor M m ‘‘commutes with restriction,’’ as well.B]

The next result deals with conjugation.

2.8. LEMMA. Let H be a subgroup of a finite group G, let g g G, let A
Ž .and B be G-algebras, and let M be a twisted A, G -B-bimodule. Then the

following diagram of functors commutes up to natural equï alence:

MmB] 6

B) H-Mod A) H-Mod

6 6g g
] ]

MmB]g g6

B) H-Mod A) H-Mod.

gŽ . gProof. Let N be a B) H-module. Define b : M m N ª M m N,B B
Ž . Ž Ž ..m m n ¬ 1 ) g m m n. Note that b is well defined since 1 ) g mbA A

ŽŽ . g . Ž .m n s 1 ) g m b m n s 1 ) g m m bn for all m g M, b g B, andA A
Ž g g gn g N. Recall that B) H acts on N via restriction along B) H ª

y1 gy1
.B) H, b) ghg ª b) h.

ŽObviously, b is an isomorphism of k-modules an inverse being defined
.analogously which is natural in N. Moreover, for a g A, h g H, m g M

and n g N, we have

b ga) ghgy1 m m n s b a) h m m nŽ . Ž .Ž .Ž .
s b a) h m m 1 ) h nŽ . Ž .Ž .B

s ga) gh m m 1 ) h nŽ .Ž . B

s ga) ghgy1 1 ) g m m 1 ) h nŽ . Ž .Ž .Ž .A B

s ga) ghgy1 b m m n .Ž .

This completes the proof.

The following lemma introduces the second class of functors which will
be important for our proof of Theorem A.
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2.9. LEMMA. Let G be a finite group, let A be a G-algebra, let N be a
kG-module, and let M be an A)G-module.

Ž .1. Then M m N is an A)G-module when we define a) g m m n [k
Ž . Ž .a) g m m gn for a g A, g g G, m g M, and n g N. This yields a
k-additï e endofunctor m N: A)G-Mod ª A)G-Mod.] k

Ž .2. Also Hom N, M is an A)G-module where, for a g A, g g G,k
Ž .and w g Hom N, M , a) gw is defined byk

a) g w n [ a gw nŽ . Ž . Ž .Ž .

Ž .for n g N. Thus N gï es rise to a k-additï e endofunctor Hom N, :k ]
A)G-Mod ª A)G-Mod.

Ž . Ž .Proof. By Example 2.3 3 , N is a twisted A, G -k-bimodule. Thus the
first assertion of item 1 is a special case of Lemma 2.4; the second
assertion is then immediate.

Ž .Let a, b g A, g, h g G, and w g Hom N, M . First, a) g w, as definedk
in item 2, is clearly a well-defined k-homomorphism N ª M. Second, we
have

a) g b) h w n s a g b) h w n s a) g b) h w gy1 nŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

s a gb g hw n s a gb ) gh w nŽ . Ž . Ž . Ž .Ž .Ž .
s a) g b) h wŽ . Ž .Ž .Ž .

for all n g N, and we are done.

Again, we have an adjointness relation.

2.10. LEMMA. Let G be a finite group, let A be a G-algebra, and let N be
a kG-module. Then the functor m N: A)G-Mod ª A)G-Mod is left] k

Ž .adjoint to Hom N, : A)G-Mod ª A)G-Mod.k ]

Proof. Let M and L be A)G-modules. As in the proof of Lemma 2.5,
Ž .there is an isomorphism of k-modules b : Hom M m N, L ªA k

Ž Ž ..Hom M, Hom N, L , where, for an A-homomorphism w : M m N ªA k k
Ž . ŽŽ Ž ..Ž ..Ž . Ž .L, b w is defined by b w n m [ w m m n for m g M and n g N.

Moreover, this isomorphism is natural in M and L.
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We show that b behaves well with respect to the G-action. Let g g G
Ž .and w g Hom M m N, L . ThenA k

b gw n m s gw m m n s 1 ) gw 1 ) gy1 m m gy1 nŽ . Ž . Ž .Ž . Ž . Ž .Ž .Ž . Ž .Ž .A A

s 1 ) g b w 1 ) gy1 m gy1 nŽ .Ž . Ž .Ž .Ž .A A

s g b w 1 ) gy1 m nŽ . Ž .Ž . Ž .Ž .Ž .A

s 1 ) g b w 1 ) gy1 m nŽ . Ž .Ž . Ž .Ž .A A

s g b w m nŽ . Ž . Ž .Ž .Ž .Ž .

Žg . gŽ Ž ..for all m g M and n g N, so b w s b w . As in the proof of Lemma
2.5, this immediately implies the assertion of our lemma.

In particular, this implies that, with notation of Lemma 2.10, the functor
m N ‘‘commutes with induction’’; this fact will be important for us.] k

2.11. COROLLARY. Let H be a subgroup of a finite group G, let A be a
G-algebra, and let N be a kG-module. Then the following diagram of functors
commutes up to natural equï alence:

m Nk] 6

A)G-Mod A)G-Mod6 6
G GInd IndH H

m Nk] 6

A) H-Mod A) H-Mod.

Proof. Proceed as in the proof of Corollary 2.6 using Lemma 2.10.

2.12. Remark. In the situation of Corollary 2.11 the functor m N] k
trivially ‘‘commutes with restriction’’ also; and it is not at all surprising that
it behaves well with respect to conjugation, as well:

2.13. LEMMA. Let H be a subgroup of a finite group G, let g g G, let A
be a G-algebra, let M be an A)G-module, and let N be a kG-module. Then
the diagrams

m N Mmk k] ]6 6

A) H-Mod A) H-Mod kH-Mod A) H-Mod

6 6 6 6g g g g
] ] ] ]

g gm N Mmk k] ]g g g g6 6w xA) H-Mod A) H-Mod, k H -Mod A) H-Mod

of functors commute up to natural equï alence.
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g g gŽ .Proof. Obviously, w : M m N ª M m N , m m n ¬ m m n, is a k-k k
linear bijection which is natural in M and N. Moreover, for a g A, h g H,
m g M, and n g N, we have

w ga) ghgy1 m m n s w ga) ghgy1 m m ghgy1 nŽ . Ž . Ž .Ž . Ž .
s w a) h m m hnŽ . Ž .Ž .
s a) h m m hn s a) h m m nŽ . Ž . Ž .
s ga) ghgy1 w m m n .Ž .

gThus w is an isomorphism of A) H-modules, and we are done.

We also need a Higman criterion for modules of skew group algebras.
Let us recall the definition of the relative trace map. Let H and K be
subgroups of G such that K is contained in H. Then the relative trace
map Tr H: AK ª AH is defined by a ¬ Ý ga. The image of Tr H isK g K g Hr K K

H w x w xdenoted by A . We refer to 11 or 13 for basic properties of relativeK
trace maps.

Ž .2.14. PROPOSITION Higman’s criterion . Let H be a subgroup of a finite
group G, let A be a G-algebra, and let M be an A)G-module. Then the
following assertions are equï alent:

1. The module M is isomorphic to a direct summand of IndG ResG M.H H

2. There is an A) H-module N such that M is isomorphic to a direct
summand of IndG N.H

Ž . Ž Ž .H . GŽ .3. There is w g End M s End M such that Tr w sA) H A H
id .M

Sketch of the proof. It is straightforward to check that the well-known
Ž w Ž .xproof of this fact for ordinary group algebras cf. 13, Proposition 17.7 ,

.for instance carries over to this more general setup.

3. A MODULE FOR THE CHARACTER RING

In this section we will show that the Grothendieck groups of projective
Žmodules of certain skew group algebras can be regarded as Green

. Ž .functor modules of the character ring functor .
Throughout, we fix a finite group G; let OO be a complete discrete

valuation ring of characteristic 0 with residue field F of characteristic
p / 0. Moreover, we denote by K a quotient field of OO. From now on, all
our algebras and modules will be free of finite rank over either K, OO, or F.
For an algebra A, A-mod denotes the category of A-modules in this
sense.
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w xWe refer to 4 for the definition of Mackey functors, Green functors,
w xpairings, and so forth. Partly, these definitions can also be found in 13 .

w xLet A be an algebra. For an A-module M, we denote by M its
isomorphism class. The isomorphism classes of A-modules form an abelian

w x w xmonoid where, for A-modules M and N, addition is defined by M q N
w x Ž .s M [ N . We denote by a A the corresponding Grothendieck group.

Then the set of isomorphism classes of indecomposable A-modules is a
Ž .Z-basis of a A since the Krull]Schmidt theorem holds for A-modules, by

our specific choice of ground rings.
Ž . Ž .Denote by K A the subgroup of a A generated by isomorphism0

classes of projective A-modules. Then the isomorphism classes of inde-
Ž . Ž .composable projective A-modules form a finite Z-basis of K A .0

Ž . Ž .Apart from that, let ses A be the subgroup of a A generated by
w x w x w xelements of the form E y M y L , where E, M, and L are A-mod-

ules such that there is a short exact sequence 0 ª L ª E ª M ª 0 of
Ž . Ž . Ž .A-modules. The corresponding quotient group G A [ a A rses A is0

called the Grothendieck group of A.
w x Ž .For an A-module M, denote by @ M # the coset M q ses A . If A is an

� 4algebra over K or F, then the set @S# , where S runs through a complete
Ž .system of representatives of simple A-modules, is a Z-basis of G A , by0

the Jordan]Holder theorem. In the case A s OOG, the group algebra over¨
Ž .OO, the structure of G A is also known by a theorem of Swan:0

w Ž .x3.1. THEOREM 6, Theorem 39.10 . Let G be a finite group. Then the
Ž . Ž .map G OOG ª G KG , @ M # ¬ @ K m M #, is an isomorphism of groups0 0 OO

Ž .or rings .

In fact this is just a special case of Swan’s result adapted to our needs.
Ž Ž . OOŽ . w xNote that what we understand by G OOG is denoted by G OOG in 6 .0 0

w x Ž .Whereas, with notation of 6 , G OOG is a different but at least isomor-0
Ž w Ž .x .phic group cf. 6, Theorem 38.42 .

We now bring the group G into play. Let A be a G-algebra. Moreover,
let g g G, let H be a subgroup of G, and let K be a subgroup of H.
Then the additive and exact functors g : A) H-mod ª A) gH-mod,]
ResH: A) H-mod ª A) K-mod and IndH: A) K-mod ª A) H-mod in-K K

Ž . Ž g . w x wg x Hduce homomorphisms c : a A) H ª a A) H , M ¬ M , res :g , H K
Ž . Ž . w x w H x H Ž .a A) H ª a A) K , M ¬ Res M , and ind : a A) K ªK K
Ž . w x w H x Ža A) H , M ¬ Ind M , respectively. Note that A) H is free, andK

.hence flat, as a right A) K-module.
Ž . Ž g . HPlainly, the restrictions c : K A) H ª K A) H , res :g , H 0 0 K

Ž . Ž . H Ž . Ž .K A) H ª K A) K , and ind : K A) K ª K A) H of the0 0 K 0 0
Žabove homomorphisms are well defined. In case of restriction, one needs

that A) H is also a free left A) K-module, which is straightforward to
.check.
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Ž Ž .. Ž g . H Ž Ž ..Moreover, we have c ses A) H : ses A) H , res ses A) Hg , H K
Ž . H Ž Ž .. Ž .: ses A) K , and ind ses A) K : ses A) H since the underlyingK

functors are exact. Therefore, these homomorphisms induce homomor-
Ž . Ž g . g H Ž .phisms c : G A) H ª G A) H , @ M # ¬ @ M #, res : G A) Hg , H 0 0 K 0

Ž . H H Ž . Ž .ª G A) K , @ M # ¬ @Res M #, and ind : G A) K ª G A) H ,0 K K 0 0
@ M # ¬ @IndH M #.K

Ž Ž ..It is straightforward to check that the families a A) H ,H F G
Ž Ž .. Ž Ž ..K A) H , and G A) H of abelian groups, together with0 H F G 0 H F G

H H Žthe corresponding homomorphisms c , res , and ind g g G, K Fg , H K K
. Ž .H F G , form Mackey functors for G over Z . We denote these Mackey

Ž . Ž . Ž .functors by a A, G , K A, G , and G A, G , respectively.0 0
Ž .Also let B be a G-algebra, and let M be a twisted A, G -B-bimodule

Ž .cf. Definition 2.2 which is finitely generated and projective as a right
B-module. Then, for any subgroup H of G, there is an additive functor

Ž .M m : B) H-mod ª A) H-mod, by Lemma 2.4 1 , which induces a ho-B]
w x Ž . Ž . w x w x Žmomorphism M m : a B) H ª a A) H , L ¬ M m L . NoteB] H B

that, for a B) H-module L, M m L is finitely generated and free overB
the ground ring since this is the case for L, and M is projective as a right

.B-module. By Corollary 2.6, Remark 2.7, and Lemma 2.8, the family
w x Žw x .M m [ M m is a homomorphism of Mackey functorsB] B] H H F G
Ž . Ž .a B, G ª a A, G .

3.2. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
Ž .M be a twisted A, G -B-bimodule which is finitely generated and projectï e,

both as a left A-module and as a right B-module, as well. Then the restriction

w xM m : K B , G ª K A , GŽ . Ž .B] 0 0

w x Ž . Ž .of M m : a B, G ª a A, G is a well-defined homomorphism of MackeyB]
functors.

Proof. Let H be a subgroup of G. It suffices to show that the functor

M m : B) H-mod ª A) H-modB]

preserves projectives. But this follows from the fact that M m is leftB]
Ž .adjoint to Hom M, : A) H-mod ª B) H-mod, by Lemma 2.5, whichA ]

preserves epimorphisms since M is projective as an A-module, by assump-
tion.

We also have a similar homomorphism between the Grothendieck
groups.

3.3. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
Ž .M be a twisted A, G -B-bimodule which is finitely generated and projectï e as
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Ž .a right B-module. Then, for any subgroup H of G, @ M m # : G B) H ªB H 0
Ž .G A) H , @ L# ¬ @ M m L#, is a homomorphism of groups. Thus0 B

@ M m # [ @ M m # : G B , G ª G A , GŽ . Ž . Ž .B] B] H 0 0HFG

is a homomorphism of Mackey functors.

Proof. In view of the observations preceding Lemma 3.2, the only thing
w x Ž Ž ..we need to show is that, for any subgroup H of G, M m ses B) HB] H

Ž .: ses A) H , i.e., that the functor M m : B) H-mod ª A) H-mod isB]
exact. But this is certainly the case since M is a flat right B-module, by
assumption.

Let A be a G-algebra over OO, and let N be an OOG-module. Then, for
any subgroup H of G, the additive endofunctor m N: A) H-mod ª] OO

w xA) H-mod of Lemma 2.9 induces an endomorphism of groups m N :] OO H
Ž . Ž . w x w xa A) H ª a A) H , M ¬ M m N . By Corollary 2.11, Remark 2.12,OO

w x Žw x .and Lemma 2.13, the family m N [ m N is an endomor-] OO ] OO H H F G
Ž .phism of Mackey functors of a A, G .

3.4. LEMMA. Let G be a finite group, let A be a G-algebra o¨er OO, and let
N be an OOG-module. Then the restriction

w xm N : K A , G ª K A , GŽ . Ž .] OO 0 0

w x Ž . Ž .of m N : a A, G ª a A, G is a well-defined endomorphism of Mackey] OO

functors.

Proof. Proceed as in Lemma 3.2.

3.5. LEMMA. Let G be a finite group, let A be a G-algebra, and let N be
Ž .an OOG-module. Then, for any subgroup H of G, @ m N # : G A) H ª] OO H 0

Ž .G A) H , @ M # ¬ @ M m N #, is a well-defined homomorphism of groups.0 OO

Thus

@ m N # [ @ m N # : G A , G ª G A , GŽ . Ž . Ž .] OO ] OO H 0 0HFG

is an endomorphism of Mackey functors.

Proof. As in the proof of Lemma 3.3, the only thing one needs is that
N is flat as an OO-module. But this is certainly the case, by our general
assumption on modules in this section.

Let H be a subgroup of G. Then

w x w x w x w x w xM m N s M m N s m N MŽ . Ž .OO] OO ] OOH H
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for any A) H-module M and any OOG-module N. Thus

w xm : a A) H = a OOH ª a A) H ,Ž . Ž . Ž .] OO] H

w x w x w xM , N ¬ M m NŽ . OO

is a Z-bilinear map. Therefore, by Corollaries 2.6 and 2.11, Remarks 2.7
w x Žw x.and 2.12, and Lemma 2.13, the family m [ m is a pairing] OO] ] OO] H F G

of Mackey functors

a A , G = a OO , G ª a A , G .Ž . Ž . Ž .

Moreover,

w x w xM m OO s M and M m N m L s M m N m LŽ . Ž .OO OO OO OO OO

for all subgroups H of G, all A) H-modules M, and all OOG-modules N
and L, as one easily verifies. Choosing A s OO, the G-algebra with trivial
G-action, this shows on the one hand that, for any subgroup H of G,
Ž . w xa OOH is a ring with multiplicative identity OO , called the Green ring of H
Ž . Ž .which is clearly commutative . Thus a OO, G is a Green functor for G.

On the other hand, it demonstrates that, for any subgroup H of G,
Ž . Ž . Ž .a A) H is an a OOH -module. Therefore, the above pairing turns a A, G

Ž .into a right module for the Green functor a OO, G .
By Lemma 3.4, the restriction

w xm : K A , G = a OO , G ª K A , GŽ . Ž . Ž .] OO] 0 0

Ž . Ž .of the above pairing is well defined. Thus K A, G is a right a OO, G -0
module, as well.

Moreover, in view of Lemmata 3.3 and 3.5, it is clear that the above
pairing induces a pairing

G A , G = G OO , G ª G OO , G .Ž . Ž . Ž .0 0 0

Ž .We can take A s OO, and obtain that G OO, G is a Green functor for G.0
Ž . Ž .Besides, G A, G is a right G OO, G -module.0 0

m «
Let H be a subgroup of G, and let 0 ª N ª E ª L ª 0 be a short

exact sequence of OOH-modules and OOH-homomorphisms. Moreover, let P
be a projective A) H-module. Then, by Lemma 3.4, P m L is a projectiveOO

A) H-module, as well. Besides,

id mm id m«P P
j : 0 ª P m N ª P m E ª P m L ª 0OO OO OO
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is a short exact sequence of A) H-modules since P is flat as an OO-module
Ž .or because the original sequence splits as a sequence of OO-modules . Thus
j splits. Therefore,

w x w x w xP ? E s P m E s P m N [ P m LŽ . Ž .OO OO OO

w x w x w x w x w xs P m N q P m L s P N q L .Ž .OO OO

Ž . Ž .This shows that K A) H ses A) H s 0. Hence0

w xm : K A) H = G OOH ª K A) H ,Ž . Ž . Ž .] OO] 0 0 0H

w x w xP , @ N # ¬ P m NŽ . OO

w x Žw x .is a well-defined Z-bilinear map such that m [ m is a] OO] ] OO] H H F G
Ž . Ž . Ž .pairing of Mackey functors K A, G = G OO, G ª K A, G .0 0 0

We summarize:

3.6. PROPOSITION. Let G be a finite group, and let A be a G-algebra o¨er
Ž .OO. Then the Mackey functor K A, G is a right module of the Green functor0

Ž . w x w xG OO, G , where P ? @ M # [ P m M , for a subgroup H of G, a projec-0 OO

tï e A) H-module P, and an OOH-module M.

3.7. Remark. Of course, all the results above are equally valid if we
replace the ground ring OO by K or F, respectively. We will use this fact
without further comment.

Ž .Let H be a subgroup of G. By Swan’s theorem cf. Theorem 3.1 , we
Ž . Ž .have an isomorphism G OOH ª G K H of rings. Obviously, this yields0 0

Ž . Ž .an isomorphism of Green functors G OO, G ª G K, G .0 0
Assume that K is a splitting field for G and all of its subgroups. Then

Ž . Ž .there is a well-known isomorphism G K H ª R H which, for a K H-0
module M, maps @ M # to the character afforded by M. This gives rise to an

Ž . Ž . Ž .isomorphism of Green functors G K, G ª R G , where R G denotes0
the character ring functor of G. Therefore, in the situation of Proposition

Ž . Ž .3.6, we can regard K A, G also as a right R G -module via restriction0
along these isomorphisms.

Assume now that F is a splitting field for G and all of its subgroups.
Ž . Ž .Similarly, there is an isomorphism G FH ª R H which, for an FH-0 p9

module M, maps @ M # to the Brauer character afforded by M. Again, this
Ž . Ž . Ž .yields an isomorphism of Green functors G F, G ª R G , where R G0 p9 p9

denotes the Brauer character ring functor of G. Moreover, the decomposi-
Ž . Ž . Žtion map R H ª R H which is given by restricting characters top9

. Ž .p-regular elements gives rise to an epimorphism of Green functors R G
Ž . Ž .ª R G . So, in case A is a G-algebra over F, we may regard K A, Gp9 0

Ž . Ž .as a right R G -module and as a right R G -module, as well.p9
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4. LIFTING INDUCTION THEOREMS

In this section we will prove Theorem A.
Let us briefly recall the definition of vertices and sources of modules of

Ž w xskew group algebras. Details can be found in 3 in the more general setup
.of group-graded algebras. Let A be a G-algebra over OO or F, and let M

be an A)G-module. Then, for a subgroup H of G, M is called relatively
H-projective if M is isomorphic to a direct summand of IndG N for someH
A) H-module N.

Assume that M is indecomposable. Then a subgroup of G which is
minimal among the subgroups H of G such that M is relatively H-projec-

Žtive is called a vertex of M. In view of Higman’s criterion Proposition
.2.14 , it is clear that vertices of M are p-subgroups of G. Moreover, it is

straightforward to check that the vertices of M form a conjugacy class of
p-subgroups of G since the Krull]Schmidt theorem as well as Mackey
decomposition hold also in this more general setup.

Let P be a vertex of M. Then an indecomposable A) P-module N is
called a P-source of M if N is isomorphic to a direct summand of
ResG M, and M is isomorphic to a direct summand of IndG N. In thisP P
case, P is necessarily a vertex of N. Again, using the Krull]Schmidt
theorem and Mackey’s theorem, it is easy to see that P-sources of M are

Ž .uniquely determined up to isomorphism and N P -conjugacy. Moreover,G
any indecomposable A) P-module L such that M is isomorphic to a
direct summand of IndG L is a P-source of M.P

It is not surprising that we also have Green correspondence in this
situation.

Ž .4.1. THEOREM Green correspondence . Let P be a subgroup of a finite
Ž .group G, let H be a subgroup of G containing N P , and let A be aG

G-algebra o¨er OO or F. Then the following assertions hold:

1. Let M be an indecomposable A)G-module with ¨ertex P. Then, up
to isomorphism, there is a uniquely determined indecomposable direct sum-
mand L of ResG M with ¨ertex P. Moreo¨er, L has multiplicity 1 inH
ResG M.H

2. Let L be an indecomposable A) H-module with ¨ertex P. Then, up
to isomorphism, there is a uniquely determined direct summand M of IndG LH
with ¨ertex P. Moreo¨er, M has multiplicity 1 in IndG L, and any indecom-H
posable direct summand of IndG L not isomorphic to M has a ¨ertex strictlyH
contained in P.

3. Assertions 1 and 2 set up mutually in¨erse bijections between the
set of isomorphism classes of indecomposable A)G-modules with ¨ertex P
and the set of isomorphism classes of indecomposable A) H-modules with
¨ertex P.
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w xSketch of the proof. See 1, Theorem 11.1 , for example. It is straightfor-
w xward to check that the proof stated in 1 carries over to the skew group

algebra situation since the only things the proof requires are Mackey
decomposition and the Krull]Schmidt theorem.

4.2. Remark. With notation of Theorem 4.1, L is called the Green
correspondent of M, and M is called the Green correspondent of L. It is
clear that any P-source of L is a P-source of M, as well. Since P-sources

Ž . Ž .of M are uniquely determined up to N P -conjugacy and isomorphism ,G
this shows that, conversely, any P-source of M is also a P-source of L.

The following elementary construction for Mackey functors is an ana-
Ž . Nlogue or a generalization of the fixed point submodule M of a normal

subgroup N of G on an OOG-module M.

4.3. LEMMA. Let k be a commutatï e ring with 1, let N be a normal
subgroup of a finite group G, and let M be a Mackey functor for G o¨er k.

N Ž N .Then M s M , res, ind, c is a Mackey functor for GrN o¨er k, whereN N N

NŽ . Ž .1. M HrN [ M H for a subgroup HrN of GrN;

2. res Hr N [ res H and indHr N [ indH for subgroups HrN, KrNN K r N K N K r N K
of GrN such that KrN : HrN;

3. c [ c for gN g GrN and a subgroup HrN of GrN.N g N , Hr N g , H

Proof. This is straightforward to check. Note that definition 2 is inde-
pendent of the choice of representatives since c s id and c sn, H M ŽH . g n, H
c (c for all g g G, n g N, and all subgroups H of G, by definitiong , H n, H
of a Mackey functor. Moreover, for subgroups HrN and KrN of GrN, a

� 4transversal T of H _ GrK yields a transversal TN [ tN: t g T of
Ž . Ž . Ž .HrN _ GrN r KrN .

4.4. DEFINITION. Let G be a finite group, let A be a G-algebra, and let
Ž .M be a Mackey subfunctor of a A, G . We say that M is closed under

taking direct summands if, for any subgroup H of G and any A) H-module
w x Ž . w x Ž .N with N g M H , any direct summand L of N satisfies L g M H .

Ž .4.5. EXAMPLE. 1. Obviously, K A, G is a Mackey subfunctor of0
Ž .a A, G which is closed under taking direct summands.

Ž .2. Denote by a FG, triv the trivial source ring functor of G. Clearly,
Ž . Ž .a FG, triv is a Mackey subfunctor of a F, G which is closed under taking

direct summands.

3. Let A be a G-algebra over OO or F, and let M be an indecompos-
able A)G-module with vertex P and P-source N. For a subgroup H of

Ž . Ž . w xG, denote by M H the subgroup of a A) H generated by elements L ,
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where L is an indecomposable A) H-module such that some vertex Q of
L satisfies Q : gP for some g g G, and such that some Q-source of L is a
direct summand of Res

gP gN. It is straightforward to check that M [Q
Ž Ž .. Ž .M H is a Mackey subfunctor of a A, G . By construction, M isH F G
closed under taking direct summands.

Apart from Proposition 3.6, our proof of Theorem A will essentially be
based on the following result.

4.6. PROPOSITION. Let N be a normal subgroup of a finite group G, let A
be a G-algebra, and let L be a relatï ely N-projectï e A)G-module. More-

Ž .o¨er, let M be a Mackey subfunctor of a A, G , which is closed under taking
w x Ž .direct summands, such that L g M G . Then there are a GrN-algebra B

and a homomorphism of Mackey functors for GrN

w s w : K B , GrN ª M NŽ . Ž .Hr N 0HrNFGrN

w x Ž . Žw x. w xsuch that B g K B)GrN and w B s L . Moreo¨er, if , for a0 G r N
w xsubgroup HrN of GrN and an A) H-module U, U is contained in the

image of w , then U is relatï ely N-projectï e.H

Proof. Set G [ GrN, for g g G, set g [ gN, and, for a subgroup H
of G containing N, set H [ HrN. Consider the G-algebra

No o
B [ End L s End L ,Ž . Ž .Ž .A) N A

Ž .which can also be regarded as a G-algebra. By Example 2.3 1 , B is a
B)G-module. We have

G G
o1 s id s Tr a s Tr aŽ . Ž .B L N 1

Ž . o Ž .for some a g End L s B , by Higman’s criterion Proposition 2.14 ,A) N
since M is relatively N-projective, by assumption. It is straightforward to

o Ž . Ž .check that B ª End B , c ¬ c 1 is an isomorphism of G-algebras.B B
Thus B is a relatively 1-projective B)G-module, again by Higman’s
criterion. Therefore, B is a projective B)G-module since B is certainly

w x Ž .projective as a B-module. Hence B g K B)GrN .0
Ž .It is well known that L is a right B-module, where lb [ b l for l g L

and b g B. Moreover,

a) g lb s a) g b l s gb a) g l s a) g l gbŽ . Ž . Ž . Ž .Ž .

Ž .for all a g A, g g G, l g L, and b g B, by 1 . Thus L is a twisted
Ž .A, G -B-bimodule. This yields an additive functor L m : B)G-Mod ªB]

Ž .A)G-Mod, by Lemma 2.4 1 .
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For a G-algebra C, denote by C)G-pro the category of C)G-C
modules which are finitely generated and projective as C-modules. Then
the restriction L m : B)G-pro ª A)G-mod of the above functor isB] B

Žwell defined. Note that, for a finitely generated projective B-module N,
.L m N is finitely generated and free over the ground ring since L is.B

Let H be a subgroup of G containing N. There is an epimorphism of
Ž .algebras s : B) H ª B) H, b) h ¬ b) hN . Denote by Res : B) H-H sH

pro ª B) H-pro restriction along s , which is an additive functor.B B H
Ž .Note that s is the identity on B. In particular, this yields a homomor-H
phism of groups

w xw : K B) H ª a A) H , P ¬ L m Res P .Ž . Ž .Hr N 0 B sH

Žw x. w x w xMoreover, w B s L m Res B s L , as one easily verifies.G r N B sH
Ž .We claim that w [ w is a homomorphism of Mackey functorsU U F G

NK B , G ª a A , G .Ž . Ž .Ž .0

Let KrN be a subgroup of HrN, and let M be a B) K-module. Define

b : B) H m Res MB ) K sK

ª Res B) H m M , b) h m m ¬ b) hN m m.Ž .Ž .s B ) KH

It is straightforward to check that b is a well-defined isomorphism of
B) H-modules which is natural in M. Thus the following diagram of
functors commutes up to natural equivalence:

RessH 6

B) H-mod B) H-mod6 6
H HIndInd KK

RessK 6

B) K-mod B) K-mod.

Moreover, for g g G, it is obvious that the diagrams of functors

Res Ress sH H6 6

B) H-mod B) H-mod B) H-mod B) H-mod

6 6 6 6Hg g HResRes KK] ]

Res Ress sK Kg g6 6

B) H-mod B) H-mod, B) K-mod B) K-mod

commute up to natural equivalence. In view of Corollary 2.6, Remark 2.7,
and Lemma 2.8, this proves our claim.



HUBERT FOTTNER266

Ž .Next we show that the image of w is contained in M H . Let P be aH
projective B) H-module. Then there is a natural number n such that P is

n H nŽ . Ž .isomorphic to a direct summand of B) H ( Ind B . Therefore,1
L m Res P is isomorphic to a direct summand ofB sH

n nH H H G nL m Res Ind B ( Ind L m Res B ( Ind Res L . 2Ž .Ž .Ž .ž /B s 1 N B s N NH H

w x Ž . w H G n x H G w x Ž .Since L g M G , we have Ind Res L s n ind res L g M H ,N N N N
so

w xw P s L m Res P g M HŽ .Ž .H B sH

as well, by our assumption on M.
Ž .Finally, Eq. 2 also implies the additional assertion.

Let k be a commutative ground ring with 1, and let M be a Mackey
functor for G over Z. We denote by kM [ k m M the Mackey functorZ

for G over k which is given by extending scalars. In consistency with this
Ž . Ž .notation, we write kM H instead of k m M H for any subgroup H ofZ

Ž .G. Moreover, for c g k, a subgroup H of G, and m g M H , cm is an
Ž .abbreviation of c m m, and m stands for 1m g kM H . Note that one has

to be careful with this notation, for if k is of positive characteristic, then
w x w x Ž .an equation M s L in ka A)G does not necessarily imply that M

and L are isomorphic unless M and L are indecomposable.
Now we are in a position to prove Theorem A. Our proof will be based

on the following skew group algebra version of Theorem A.

4.7. THEOREM. Let G be a finite group, let A be a G-algebra o¨er OO or F,
and let M be an indecomposable A)G-module with ¨ertex P and P-source N.
Moreo¨er, let k be a commutatï e ring with 1, and, for any subgroup Q of P,

Ž .let CC be a set of subgroups of N Q rQ such thatQ G

NGŽQ.r Q w x1 g ind kG OO HrQŽ .Ý Hr Q 0
HrQgCCQ

Ž w Ž . x. Žin kG OO N Q rQ . In case A is a G-algebra o¨er F, it suffices to ha¨e an0 G
Ž w Ž . x. .analogous equation in kG F N Q rQ . From M, P, and the sets CC0 G Q
Ž .construct the set CC of pairs H, U where

1. H is a subgroup of G with normal p-subgroup Q, which is contained
in P, such that HrQ g CC ;Q

2. U is an indecomposable A) H-module such that, for some g g G,
some ¨ertex R of U is contained in Q l gP, and some R-source of U is a direct
summand of Res

gP gN.R
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ŽŽ . .Then there are a g k H, U g CC such thatŽH , U .

w x G w xM s a ind UÝ ŽH , U . H
Ž .H , U gCC

Ž .in a A)G .

Ž .Proof. Let M be the Mackey subfunctor of a A, G defined in Example
Ž . Ž . w x Ž .4.5 3 with respect to M , so M g M G , and M is closed under taking

direct summands. Note that, for a subgroup H of G as in item 1 with
normal p-subgroup Q contained in P, an indecomposable A) H-module
U satisfies the assertions of item 2, if and only if U is relatively Q-projec-

w x Ž .tive and U g M H , by definition of M.
Ž .Let L be an indecomposable A)N P -module which is the GreenG

correspondent of M. By Theorem 4.1,

IndG L ( M [ M [ ??? [ M ,N ŽP . 0 nG

where M , . . . , M are indecomposable A)G-modules having a vertex0 n
properly contained in P. Since M is closed under taking direct summands,

w x Ž Ž .. w x w x Ž .we have L g M N P , and thus M , . . . , M g M G . This yields anG 0 n
equation

w x G w x w x w xM s ind L y M y ??? y MN ŽP . 0 nG

Ž .in M G . Arguing inductively on the order of P, this demonstrates that
there are integers c , . . . , c , subgroups P , . . . , P of P, and, for i s0 r 0 r

Ž . w x0, . . . , r, there is an indecomposable A)N P -module L with L gG i i i
Ž Ž ..M N P such thatG i

r
Gw x w xM s c ind L 3Ž .Ý i N ŽP . iG i

is0

Ž .in M G .
� 4 Ž .Fix i g 0, . . . , r . By Proposition 4.6, there are an N P rP -algebra BG i i

Ž .and a homomorphism of Mackey functors for N P rPG i i

w s w : kK B , N P rP ª kM Pi N PŽ . Ž . Ž .Ž . Ž .Hr P 0 G i i G iŽ .HrP FN P rPi i G i i

Ž . Žw x. w x Ždepending on i, of course such that w B s L . Where in theN ŽP .r P iG i i
Ž .equation above M is regarded as Mackey functor for N P by restriction,G i

Ž Ž ..which is a Mackey subfunctor of a A, N P , and which is closed underG i
. Ž Ž . .taking direct summands, as well. Moreover, kK B, N P rP is a right0 G i i

Ž Ž . . Ž Ž Ž . . .kG OO, N P rP -module kG F, N P rP -module , by Proposition0 G i i 0 G i i
Ž .3.6. See also Remark 3.7. By assumption, there are b g k andHr Pi
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w x Ž w x . Ž .OO HrP -modules F HrP -modules N HrP g CC such thati i Hr P i Pi i

1 s b indNGŽPi.r Pi @ N #Ý Hr P Hr P Hr Pi i i
HrP gCCi Pi

Ž w Ž . x. Ž Ž w Ž . x..in kG OO N P rP resp. kG F N P rP . Thus, in kK0 G i i 0 G i i 0
Ž Ž . .B)N P rP , we have an equationG i i

w x w x w x NGŽPi.r PiB s B ? 1 s b B ? ind @ N #Ý Ž .Hr P Hr P Hr Pi i i
HrP gCCi Pi

NGŽPi.r Pi NGŽPi.r Pi w xs b ind res B ? @ N #Ý Ž .ž /Hr P Hr P Hr P Hr Pi i i i
HrP gCCi Pi

N ŽP .r PG i is b ind B m N .Ž .Ý Hr P Hr P OO Hr Pi i i
HrP gCCi Pi

Applying w to this equation and using that w is a homomorphismN ŽP .r PG i i

of Mackey functors, we obtain an equation

N ŽP . Ž i.G iw xL s c ind LÝi H H H
HrP gCCi Pi

Ž Ž .. Ž i.in M N P , where, for HrP g CC , c g k and L is a relativelyG i i P H Hiw Ž i.x Ž .P -projective A) H-module such that L g M H , by Proposition 4.6.i H
Ž .Since i was arbitrary, this equation together with Eq. 3 and the observa-

tion of the first paragraph of this proof yields an equation of the desired
form.

We adopt the notation of Theorem 4.7 and its proof. Note that the
above proof demonstrates that it would suffice to assume that 1 g

Ž w Ž . x.kG OO N Q rQ can be written as a k-linear combination of modules0 G
� 4induced from modules of groups contained in CC for all Q g P , . . . , P ,Q 0 r

rather than for all subgroups Q of P. Apart from that, the above proof
shows that the assertion of Theorem 4.7 can be improved if one replaces
throughout the Green correspondents with respect to the normalizer of a
vertex by the Green correspondents with respect to the inertia group of a

Ž w Ž . Ž .Ž .xsource in this normalizer cf. 13, Proposition 20.8 and Exercise 20.4 c ,
.for instance . In this case, one does not necessarily need induction theo-
Ž w Ž . x. Ž .rems for kG OO N Q rQ where Q runs through the subgroups of P ,0 G

but only for the Grothendieck group of the group algebra of certain
Ž . Ž .possibly strict subgroups of N Q rQ.G

We can now easily finish our proof of Theorem A.
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Proof of Theorem A. Assume that K and F are splitting fields for G and
all of its subgroups. For each subgroup Q of P, there is an isomorphism of
Mackey functors

R N Q rQ ª G OO , N Q rQ ,Ž . Ž .Ž . Ž .G 0 G

Ž Ž . .and there is an epimorphism of Mackey functors R N Q rQ ªG
Ž Ž . .G F, N Q rQ , by Remark 3.7; thus the assumption gives rise to an0 G

Ž w Ž . x. Ž Ž w Ž . x..equation in G OO N Q rQ G F N Q rQ as in the hypotheses of0 G 0 G
Ž .Theorem 4.7. Now, apply Theorem 4.7 to the G-algebra A [ OO A [ F

with trivial G-action, and the result follows.
To prove the assertion of item 3 of the remark succeeding Theorem A

Ž Ž . .use the canonical isomorphism of Mackey functors R N Q rQ ªG p9

Ž Ž . .G F, N Q rQ mentioned in Remark 3.7 for all Q.0 G

5. AN ANALOGUE OF BRAUER’S
INDUCTION THEOREM

From now on, let the residue field F be algebraically closed, and assume
that K is a splitting field for G and all of its subgroups.

In this section we will prove the following result:

5.1. THEOREM. Let G be a finite group, let A be a G-algebra, and let M
be an indecomposable A)G-module with ¨ertex P and P-source L. Moreo¨er,

Ž .denote by CC the set of pairs H, U where

1. H is a subgroup of G with normal Sylow p-subgroup Q, which is
contained in P, such that HrQ is elementary;

2. U is an indecomposable A) H-module with ¨ertex Q, and ResH U isQ
an indecomposable direct summand of ResP L. In particular, ResH U is aQ Q
Q-source of U.

ŽŽ . .Then there are integers a H, U g CC such thatŽH , U .

w x G w xM s a ind UÝ ŽH , U . H
Ž .H , U gCC

Ž .in a A)G .

Apart from Theorem 4.7, our proof of Theorem 5.1 will be based on the
following modular analogue of the well-known fact that supersolvable
groups are M-groups.

Before we state the result, let us briefly recall the notion of defect
Ž .groups of points of G-algebras. Let A be a G-algebra, and let e be a

primitive idempotent in AG. Then a subgroup D of G is called a defect
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group of e if e g AG but e f AG for any proper subgroup Q of D. ItD Q
is well known that the defect groups of e form a conjugacy class of p-
subgroups of G. Moreover, any idempotent which is conjugate to e by a

G Ž G.unit of A has the same defect groups as e. A U A -conjugacy class of
Ž Ž G.primitive idempotents is called a point of G on A where U A denotes

G.the group of units of A . Hence we may speak of defect groups of points
w x w xalso. We refer to 11 or 13 for details.

For the purpose of this section a module theoretic viewpoint will be
Ž .convenient. By Example 2.3 1 , A may be regarded as an A)G-module,

and it is clear that Ae is a direct summand of this module. Moreover, it is
Ž . o Ž .straightforward to check that End Ae ª eA e, c ¬ c e , is an isomor-A

G Ž G .phism of G-algebras. Since e is primitive in A and hence in eA e , this
shows that Ae is an indecomposable A)G-module. Besides, for all

Ž G . Ž .G Gsubgroups H of G, e A e s eAe , so e g A , if and only if e gH H H
Ž .G Ž .eAe . Therefore, by Higman’s criterion Proposition 2.14 , the defectH
groups of e are precisely the vertices of Ae.

w xThe following result was proved in 10 :

w x5.2. PROPOSITION 10, Proposition 3.3 . Let P be a normal Sylow p-
subgroup of a finite group G such that GrP is supersol̈ able, let A be a G-
algebra, and let e be a primitï e idempotent in AG with defect group D. Then
there are a subgroup H of G with Sylow p-subgroup D and an idempotent

H D GŽ . Žg .f g A such that f is primitï e in A , Tr f s e, and f f s 0 for allH
g g G _ H.

Proof of Theorem 5.1. For any subgroup Q of P, let CC be the set ofQ
Ž . Ž .elementary subgroups of N Q rQ. Denote by EE the set of pairs H, UG

where

1. H is a subgroup of G with normal p-subgroup Q, which is
Ž .contained in P, such that HrQ g CC i.e., HrQ is elementary ;Q

2. U is an indecomposable A) H-module such that, for some g g G,
some vertex R of U is contained in Q l gP, and some R-source of U is a
direct summand of Res

gP gL.R

By Theorem 4.7, applied to Brauer’s induction theorem, there are integers
ŽŽ . .b H, U g EE such thatŽH , U .

w x G w xM s b ind U 4Ž .Ý ŽH , U . H
Ž .H , U gEE

Ž .in a A)G .
Ž . Ž .Let H, U g EE. Then HrO H is an elementary p9-group. In particu-p
Ž . Ž .lar, O H is a normal Sylow p-subgroup of H such that HrO H isp p

supersolvable. Moreover, for x g G, we have

IndG U ( x IndG U ( IndG
x

xU,Ž .H H H
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G w x G wx x Ž .xi.e., ind U s ind U . Replacing H and U in 4 by suitable conju-H H
gates, we obtain

w x G w xM s b ind UÝ ŽH , U . H
˜Ž .H , U gEE

˜Ž . Ž .in a A)G , where EE denotes the set of pairs H, U consisting of:

Ž .1. a subgroup H of G with normal Sylow p-subgroup O H suchp
Ž .that HrO H is elementary,p

2. an indecomposable A) H-module U such that some vertex R of
U is contained in P, and some R-source of U is a direct summand of
ResP L.R

˜Ž . Ž .Now let H, U g EE. Consider the H-algebra B [ End U . Since U isA
an indecomposable A) H-module with vertex R, 1 is a primitive idempo-B

H Ž .tent in B s End U with defect group R, by Higman’s criterion.A) H
Ž .By Proposition 5.2, there is a subgroup K of H with normal Sylow p-

subgroup R, and there is an idempotent f g B K such that f is primitive in
R Žh . H Ž .B , f f s 0 for all h g H _ K, and Tr f s 1 .K B

Ž . HThen V [ f U is a direct summand of Res U, and we haveK

U s 1 ) hV ( IndH V ,[ A K
hKgHrK

K Žas one easily verifies. Moreover, Res V is indecomposable. Note thatR
Ž . R . KEnd V is isomorphic to fB f. Thus R is a vertex of V, and Res VA) R R

is an R-source of V. Hence ResK V is an R-source of U, as well.R
K Ž .Therefore, Res V is isomorphic to an indecomposable direct summandR

x P x Ž . xy1 xy1

of Res L for some x g N R . Replacing K and V by K and V,R H
respectively, we may assume that x s 1. Then

G G H Gw x w xind U s ind Ind V s ind V ,H H K K

and K and V have the desired properties, so the proof is complete.

Proof of Theorem B. Apply Theorem 5.1 to the G-algebra A [ OO with
trivial G-action.

We prove a skew group algebra version of Theorem C.

5.3. THEOREM. We adopt the notation of Theorem 4.7. Assume, in
addition, that F is algebraically closed, and that, for any subgroup Q of P, all

Ž .the elements of CC are p-sol̈ able subgroups of N Q rQ. Denote by DD theQ G
Ž .set of pairs H, U where

Ž .1. H is a subgroup of P such that O H is contained in P, and suchp
Ž .that HrO H is a Hall p9-subgroup of an element of CC ;p O ŽH .P



HUBERT FOTTNER272

2. U is an indecomposable A) H-module such that, for some g g G,
Ž . gsome ¨ertex R of U is contained in O H l P, and some R-source of U is ap

direct summand of Res
gP gN.R

ŽŽ . .Then there are a g k H, U g DD such thatŽH , U .

w x G w xM s a ind UÝ ŽH , U . H
Ž .H , U gDD

Ž .in ka A)G .

Theorem 5.3 is a corollary of Theorem 4.7 and the following result
w xof 10 :

w x5.4. THEOREM 10, Theorem 3.1 . Let H be a Hall p9-subgroup of a finite
p-sol̈ able group G, let A be a G-algebra, and let e be an idempotent in AG .H

H Žg .Then there is an idempotent f g A such that f f s 0 for all g g G _ H
GŽ .and Tr f s e.H

w xTheorem 5.4 serves as a basis for the proof of Proposition 5.2 in 10 . We
need a module version of this result:

5.5. COROLLARY. Let N be a normal subgroup of a finite group G such
GrN is p-sol̈ able, let HrN be a Hall p9-subgroup of G, and let A be a
G-algebra. Then any relatï ely N-projectï e A)G-module M is induced from
H, i.e., M ( IndG L for some A) H-module L.H

In particular, any projective OOG-module, for some finite p-solvable
group G, is induced from a Hall p9-subgroup of G. This is a classical

w xresult of Fong 8 . On the other hand, Theorem 5.4 can also be regarded as
a generalization of Green’s indecomposability theorem.

Proof of Corollary 5.5. Set G [ GrN and set H [ HrN. Consider the
Ž .G-algebra B [ End M . Since P is relatively N-projective, we haveA) N

G G1 s id s Tr b s Tr bŽ . Ž .B M N 1

GŽ .for some b g End M s B, by Higman’s criterion, i.e., 1 g B .A) N B 1
gH Ž .Thus, by Theorem 5.4, there is an idempotent in B such that f f s 0

G GŽ . Ž . Ž .for all g g G _ H and id s 1 s Tr f s Tr f . Thus f M is aM B H H
direct summand of ResG M, and we haveH

M ( 1 ) g f M , IndG f M ,Ž . Ž .[ A H
gHgGrH

so we are done.

Proof of Theorem 5.3. In view of Theorem 4.7, it suffices to consider
the case that P is contained in some normal p-subgroup Q of G, and that
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GrQ g CC . In particular, G is p-solvable. Moreover, M is relativelyQ
Q-projective. By Corollary 5.5, M ( IndG L for some A) H-module L,H

w x G w xwhere HrQ is a Hall p9-subgroup of GrQ. Thus M s ind L inH
Ž .ka A)G , and Q is a normal Sylow p-subgroup of H. Conjugating if

necessary, we may assume that P is also a vertex of L, and N is a
P-source of L. This completes the proof.

Theorem C now follows immediately by choosing A [ OO in Theo-
rem 5.3.

Our proof of Proposition D will essentially be based on Proposition 3.6.
Before we embark on the proof, let us recall a simple fact about idempo-
tents. Let A be a G-algebra, and let e and f be idempotents in AG. As
mentioned in the paragraph preceding Proposition 5.2, Ae and Af are

Ž . Ž .A)G-direct summands of A, where A 1 y e and A 1 y f are com-A A
plements of Ae and Af in A, respectively. It is easy to see that Ae and Af
are isomorphic A)G-modules, if and only if there are elements a g eAG f
and b g fAGe such that e s ab and f s ba. The latter assertion in turn is
equivalent to saying that e and f are conjugate by a unit in AG, as one
easily shows using the Krull]Schmidt theorem.

Ž .Proof of Proposition D. « The implication ‘‘« ’’ is trivial.

Ž .¥ First of all, assume that A is a G-algebra over F. Denote by CC

the set of cyclic p9-subgroups of G. By assumption and the above remarks,
ResG Ae and ResG Af are isomorphic A)C-modules for each C g CC.C C
Moreover, Ae and Af are relatively 1-projective A)G-modules since
e, f g AG. Hence Ae and Af are projective A)G-modules since these1

Gw x Gw xmodules are plainly projective as A-modules. Thus res Ae s res AfC C
Ž .in K A)C for all C g CC.0

By Artin’s induction theorem for the Brauer character ring, there are a
rational number a and an FC-module L for C g CC such thatC C

1 s a indG @ L #Ý C C H
CgCC

Ž .in QG FG . Therefore, by Proposition 4.6, we have0

w x w x w x GAe s Ae ? 1 s a Ae ? ind @ L #Ž .Ý C C H
CgCC

G G w xs a ind res Ae ? @ L #Ž .Ž .Ý C C C H
CgCC

G G w x w xs a ind res Af ? @ L # s ??? s AfŽ .Ž .Ý C C C H
CgCC
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Ž . Ž .in QK A)G . Since K A)G is a free abelian group, the canonical0 0
map

K A)G ª QK A)GŽ . Ž .0 0

w x w x Ž .is injective. Thus Ae s Af in K A)G . Hence Ae and Af are0
isomorphic A)G-modules, so e and f are conjugate by a unit in AG.

Now, if A is a G-algebra over OO the result follows from the above
Ž .and the well-known fact that the canonical map K A)G ª0

ŽŽ Ž . . .K ArJ OO A )G is an isomorphism of groups.0
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