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We show that—in some suitable sense—any induction theorem for the charac-
ter ring of a finite group can be lifted to an induction theorem for the Green ring.
(A precise statement see Theorem A herein.) This provides a uniform proof of
important induction theorems, as, for example, the ones of Conlon and Dress.
Moreover, we prove an analogue of Brauer’s induction theorem for the Green ring
(cf. Theorem B herein).  © 1998 Academic Press

1. INTRODUCTION

Let us fix a complete discrete valuation ring @ of characteristic 0 with
quotient field KK and residue field F of positive characteristic p. Unless
otherwise stated, all our modules will be free of finite rank over I, @, or F,
respectively. Moreover, let G be a finite group, and assume K and F to be
splitting fields for G and all of its subgroups (and hence for all of its
subguotients). (For instance, assume that K contains a primitive |Glth root
of unity.)

We denote by R(G) the ring of (IK-valued) characters of G, and let
a(@G) and a(FG) be the Green ring of #G and FG, respectively; i.e., the
Grothendieck group of the abelian monoid the elements of which are
isomorphism classes [M] of #G-modules (FG-modules) M, with addition
defined by [M] + [L] := [M & L] (which is even a ring, where multiplica-
tion is given by the tensor product). Then, by the Krull-Schmidt theorem,
the isomorphism classes of indecomposable @G-modules (FG-modules)
form a Z-basis of a(¢G) (a(FG)).

For a subgroup H of G, a character y of H and an #H-module
(FH-module) M, Ind% x and Ind% M denote the induced character and
module, respectively. This yields additive maps ind%: R(H) — R(G), x —
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Ind% x, and ind$: a(@H) — a(@G), [M] — [IndY, M], respectively (simi-
larly for the Green ring over F).

Let k be a commutative ring with 1. For simplicity, we write kR(G),
ka(@G), and ka(FG) instead of k ®, R(G), k ®, a(@¢G),and k ®, a(FG),
respectively. Moreover, for ¢ € k, a character y of G and an #G-module
(FG-module) M, cx and c[M] are abbreviations of ¢ ® y € kR(G) and
c ® [M] € ka(@G) (ka(FG)), respectively. For simplicity, ind$, (H a sub-
group of G) denotes also the induced map id, ® ind%: kR(H) — kR(G),
and analogously for the Green ring.

The main objective of this paper is to prove the following theorem:

THEOREM A. Let G be a finite group, let k be a commutative ring with 1,
and let M be an indecomposable & G-module (F G-module) with vertex P and
P-source N. Moreover, for any subgroup Q of P, let %, be a set of subgroups
of N;(Q)/Q such that

le Y indN9/2kR(H/Q).
H/QE€%,

From M, P, and the sets %, construct the set & of pairs (H,U), where

1. His a subgroup of G with normal p-subgroup Q, which is contained
in P, such that H/Q & &o-
2. U is an indecomposable @H-module (FH-module) such that, for

some g € G, some vertex R of U is contained in Q N8P, and some R-source
of U is a direct summand of the restricted &@R-module (FR-module) RestéN.

Then there are a .y ;) € k (H,U) € €) such that

[M]= X A, vy ind[U]
(H,U)e?®

in ka(@G) (ka(FG)).

Remark. 1. Choose k = @, and, for each p-subgroup Q of G, let &,
be the set of cyclic subgroups of N;(Q)/Q. By Artin’s induction theorem
[5, (15.4)], the sets &, satisfy the hypotheses of Theorem A. Hence, using
Theorem A, Artin’s induction theorem implies Conlon’s induction theorem
[6, (80.51)].

2. Now take k == Z, and, for a p-subgroup Q of G, denote by %,
the set of elementary subgroups of N;(Q)/Q. Then, using Theorem A,
Brauer’s induction theorem [5, (15.8)] implies Dress’s induction [2, Theo-
rem 5.6.11].

3. We will show that, for the Green ring a(FG), Theorem A re-
mains valid if we replace R(N;(Q)/Q) by the Brauer character ring
R, (Ns(Q)/Q) of N5(Q)/Q for all Q.
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4. Theorem A is also valid for a complete discrete valuation ring (of
characteristic 0) with arbitrary quotient field [< and arbitrary residue field
F of characteristic p, as long as we replace the character ring RIN;(Q)/Q)
by the Grothendieck group G, (KIN;(Q)/QD of the group algebra
IKIN;(Q)/Q] for all Q. Hence Theorem A can also be applied to the
Bermann—-Witt induction theorem [2, Theorem 5.6.7].

Of course, the most important applications of Theorem A are the
classical induction theorems for the Green ring mentioned in the above
remark. For a quite recent account cf. [12, Proposition 3.5], which, as we
will do, uses a G-algebra approach. A proof of the well-known fact that the
minimal family of subgroups needed to write an indecomposable module
as a linear combination of modules induced from these subgroups depends
on a vertex of that module is also contained in [12 (cf. Proposition 9.2)]. (It
might be new that these induction theorems can be improved if one takes
also the source of an indecomposable module into account.) However, we
emphasize that Theorem A shows that any induction theorem for the
character ring of N;(Q)/Q for each p-subgroup Q of G “lifts” to an
induction theorem for the Green ring of G. Moreover, our proof of
Theorem A will demonstrate that this “lifting process” is rather explicit. In
fact, the only thing which is not explicit in our proof of Theorem A is that
it relies on realizations of all the characters involved; so if we replace
throughout character rings by the corresponding Grothendieck groups (the
proof of) Theorem A really provides an explicit “lifting method.”

Brauer’s induction theorem asserts that any character of G can be
written as an integral linear combination of monomial characters, i.e.,
characters which are induced from linear characters. (This is a corollary of
what we mean by Brauer’s induction theorem in the above remark.)
Assume, in addition, that [ is algebraically closed. We offer the following
modular analogue of this famous result for the Green ring:

THEOREM B. Let G be a finite group, and let M be an indecomposable
@ G-module (F G-module) with vertex P and P-source L. Moreover, denote by
& the set of pairs (H,U) where

1. His a subgroup of G with normal Sylow p-subgroup Q, which is
contained in P, such that H/Q is elementary;

2. Uis an indecomposable @H-module (F H-module) with vertex Q and
the restricted @Q-module (FQ-module) Resg U is an indecomposable direct
summand of Resy, L. In particular, Res(, U is a Q-source of U.
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Then there are integers a g 7, ((H,U) € %) such that

[M]= X Ay, vy ind5[U]
(H,U)e¥?®

in ka(@G) (ka(FG)).

Remark. Note that Theorem B can be regarded as a generalization of
Brauer’s induction theorem. To see this, choose # in such a way that p
does not divide |G|. Then all the #H-modules U above have rank 1. Maybe
a better way to see that Theorem B is an analogue of Brauer’s induc-
tion theorem is to say that the defect multiplicity modules of all the #H-
modules U of 2 are one-dimensional. (See [13] for details.)

Moreover, Theorem B generalizes the well-known fact that trivial source
modules are virtually monomial, i.e., any trivial source module, regarded as
an element of a(#G), can be written as an integral linear combination of
elements which correspond to monomial modules (i.e., modules which are
induced from modules of rank 1). This is a theorem of Dress [7]. Boltje [4]
shows that this can be done explicitly and, in his sense, in a canonical way.

Note that these specific modules U of Theorem B(2) also play an
important role in Puig’s generalization of Brauer’s second main theorem
for the Green ring (cf. [12, Theorem 8.4 and Section 9]).

In case of an algebraically closed residue field F, Theorem A can be
slightly improved.

THEOREM C. We adopt the notation of Theorem A. Assume, in addition,
that F is algebraically closed, and that, for any subgroup Q of P, all the
elements of &, are p-solvable subgroups of N;(Q)/Q. Denote by & the set
of pairs (H,U) where

1. H is a subgroup of G such that O,(H) is contained in P, and such
that H/O,(H) is a Hall p'-subgroup of an element of Zo,

2. U is an indecomposable @H-module (F H-module) such that, for
some g € G, some vertex R of U is contained in OP(H ) NEP, and some
R-source of U is a direct summand of Resk*N.

Then there are a . ;) € k (H,U) €9) such that

[M]= X A, vy indG[U]
(H,U)eg

in ka(@G) (ka(FG)).

As a by-product, our methods provide the following G-algebra implica-
tion. Before we state the result, let us recall that, for a G-algebra 4, A¢
denotes the image of the trace map Tr¢: 4 > A% a — ZgEGga.
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ProrosITION D. Let G be a finite group, let A be a G-algebra over @,
and let e, f be idempotents in AS. Then e and f are conjugate by a unit in A°,
if and only if, for each cyclic p'-subgroup C of G, e and f are conjugate by a
unit in A€.

The most important tool for our proof of Theorem A will be the
Grothendieck group of projective modules of a certain skew group algebra.
The following section will provide the required machinery. It might be
convenient to start reading in Section 3 and skip back whenever necessary.

2. SOME REMARKS ON SKEW GROUP ALGEBRAS

Throughout, we fix a finite group G, and let k be a commutative
(ground) ring with 1. Unless otherwise stated, all our modules are unitary
left modules, and all algebras are assumed to be k-algebras. For an algebra
A, A-Mod denotes the category of 4-modules.

Let us recall the definition of the skew group algebra. Let A4 be a
G-algebra, i.e., a k-algebra on which G acts via algebra automorphisms. As
k-module, the skew group algebra A4 * G is isomorphic to 4 ®, kG. The
image of an element a ® g (a € A, g € G) under this isomorphism is
denoted by a * g. Multiplication is defined as follows. For a,b € A and
x,y € G, define (a= x)(b=*y):=aCb)*xy, and extend bilinearly. Then
A = G becomes an associative algebra.

For a € A, we identify a with a1 € A+ G, so we can regard 4 as a
unitary subalgebra of A+ G. More generally, for a subgroup H of G,
A= H may be regarded as a unitary subalgebra of A4 * G in the canonical
way. This yields a restriction functor Res%: 4 G-Mod — A4 = H-Mod
with left adjoint induction functor Ind%: A4* H-Mod — A4 * G-Mod.
Moreover, for g € G, we obtain a conjugation functor é_: A * H-Mod —
A=%H-Mod as restriction along the isomorphism A= H — A= H,
a#ghg™' — & a+h. (Where *H denotes the conjugate subgroup gHg ')
It is straightforward to check that we have Mackey decomposition:

2.1. LemMA. Let H and K be subgroups of G, and let M be an A + H-
module. Then there is an isomorphism

Res¢ Ind M = - ?\G/H IndX .., ResH ..M
gKE

of A = K-modules.

Also the group algebra kG may be regarded as a unitary subalgebra of
A *G. However, for g € G, we do not write g instead of 1, * g € A = G, to
avoid confusion in case A is interior. (Although this reason is not apparent
in this work.)
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Let M and N be A=xG-modules. In particular, M and N may be
regarded as kG-modules. Hence the k-module Hom, (M, N) of k-homo-
morphisms M — N is a kG-module, as well, where

(‘o) (m) =1, ge(1,xg" m)
for g € G, ¢ € Hom (M, N), and m € M. Then we have

axge(m) = (®¢)(axgm) (1)

for all a €4, g G, ¢ € Hom (M, N), and m € M, as one easily
verifies. In particular, Hom (M, N) is a kG-submodule of Hom (M, N).
Thus the algebra End (M) of A-endomorphisms of M is a G-algebra,
and, for a subgroup H of G, we have End ,(M)" = End,, ,(M). (Where,
for a G-algebra B, B" = {b € B: "b =b for all h € H} denotes the
subalgebra of fixed points of H on B.)

The purpose of this section is to define certain functors, related to the
category of A * G-modules, which will be important for our proof of
Theorem A. The starting point of these definitions is the following gener-
alization of the notion of a bimodule.

2.2. DEFINITION. Let G be a finite group, and let 4 and B be
G-algebras. Moreover, let M be both a left 4 *G-module and a right
B-module, as well (such that the induced k-module structures coincide).
Then M is called a twisted (A, G)-B-bimodule if

axg(mb) = (axgm)'b

foralla € A, g€ G,m € M,and b € B.

2.3. ExampLE. 1. We may regard A4 as an A * G-module when we
define a*gb = alb) for a,b €A and g G. But A4 is also a right
A-module, and we have a = g (bc) = aC(bc)) = aCb)Cc) = (a* gb¥c for
all a,b,c e Aand g € G; so A is a twisted (A, G)-4-bimodule.

2. Let H be a subgroup of G and let B be a G-algebra. Trivially,
any twisted (A4, G)-B-bimodule may be regarded as twisted (A, H)-B-
bimodule.

3. Let B be an algebra which we regard as G-algebra with trivial
G-action. Then a twisted (A4, G)-B-bimodule is nothing but an A4 * G-B-
bimodule. In particular, any 4 = G-module is a twisted (A, G)-k-bimodule.

4. Let B be a G-algebra. Denote by B° the opposite G-algebra, and
regard 4 ®, B° as a G-algebra with diagonal G-action. Then any (4 ®,
B°):x G-module M is an A4 * G-module via restriction along the canonical
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homomorphism 4G — (A ®, B°)*G. On the other hand, M becomes
a B°module (and hence a right B-module) via restriction along the
canonical homomorphism B° — (4 ®, B°)* G. Moreover,

axg(mb) = ((a®1lg)*g)((1,®b)*1)ym = ((a ® *b) * g)m
= (L, ®°b)*1)((a ® 15) = g)m = (a* gm)°b,

so M is a twisted (A4, G)-B-bimodule.

Conversely, let L be a twisted (A4, G)-B-bimodule. Then L can be
regarded as an (A4 ®, B°)* G-module when we define ((a ® b)* g)m =
(axgm)b forac A, b B, g€ G,and m € M. This is straightforward
to check.

2.4. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
M be a twisted (A, G)-B-bimodule.

1. Let N be a B * G-module. Then M ®g N is an A * G-module, where
axg(m®n) = (axgm) ® (ly*gn)

forae A, g € G,m € M, and n € N. This gives rise to a k-additive functor
M ®,_: B+ G-Mod — A4 * G-Mod.

2. Let L be an A * G-module. Then Hom (M, L) is a B * G-module
where, forb € B, g € G, and ¢ € Hom ,(M, L), b = g ¢ is defined by

(bxge)(m) = (‘) (mb)

for m € M. This yields a k-additive functor Hom (M, _): A+ G-Mod —
B = G-Mod.

Proof. ad 1. Let g€ G. Set E, ,(M) = {¢ € End,(M): p(mb) =
e(m)Cb) for all m € M and b € B}, and similarly E, z(N) = {y €
End,(N): ¢(bn) = Cb) y(n) for all b € B, n € N}. Then E, z,(M) and
E, »(N) are k-submodules of End, (M) and End,(N), respectively.

Let ¢ € E, (M), and let ¢y € E, z,(N). Then the universal property of
the tensor product yields a k-endomorphism M ® ; N > M ®; N, m ® n
— o(m) ® ¢(n), which we denote by ¢ ® . It is plain that the corre-
sponding map E, ,(M) X E, z(N) = End, (M ®5 N), (¢, ) = ¢ ® i,
is k-bilinear inducing a homomorphism of k-modules E, ,(M) ®,
E, 5(N) > End, (M ®; N).
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Set A+ g:=={axg:a < A}. By definition of a twisted bimodule, we
obtain a homomorphism A xg — E, (M) ®, E, s(N), ax g~ ¢,,, ®
i, of k-modules, where ¢,, . and i, are given by left multiplication with
ax* g and 1, = g, respectively. This yields a k-homomorphism

[ A+xG= @ Axg—> [1E, (M) ® E, ;(N) > End,(M & N)
gEG gEG

such that (T(a* g)(m @ n) = (axgm) @ (1 +gn)forall a € 4, g € G,
m € M, and n € N. Obviously, I" is a homomorphism of algebras, proving
the first assertion. The additional statement is clear.

ad 2. For b,c €B, g,h €G, ¢ € Hom (M, L), and m € M, we
have

(brg(cxhe))(m) = (*(cxh ¢))(mb)
=1,%g(cxhe)(Ly+g * (mb))
— 1,08 (o) (i g (mb))e)
=1, g ("e)(Lyx g 7" (mb(*c)))
= (M) (mb(c)) = (b(*c) * gh ¢)(m)
= (((bxg)(cxh))e)(m),

so we are done, the additional assertion being obvious. |

Similarly, there are also certain contravariant hom functors, which will
not be important for us here. (We refer to [9, Section 11.4] for details.)
One might expect the following result:

2.5. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
M be a wisted (A, G)-B-bimodule. Then the functor M ®,_: B * G-Mod —
A+ G-Mod is left adjoint to Hom (M, _): A * G-Mod — B * G-Mod.

Proof. Let N be a B=*G-module, and let L be an A= G-module.
Disregarding the G-action for the moment, there is a well-known isomor-
phism

a: Hom, (M ®z; N, L) — Homyz(N,Hom, (M, L))
which is natural in N and L, where, for an 4A-homomorphism ¢: M ®,; N

— L and n € N, (a(@))n) is defined by ((a(o))(n))m) = ¢(m ® n) for
m e M.
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We claim that, here, « is even a homomorphism of kG-modules. In fact,
for g € G, ¢ € Hom (M ®; N, L), m € M, and n € N, we have

((«(®))(n))(m) = (*¢)(m & n) =1, g (1, g *(m ®n))
=1,+8¢((Lixg ' m) ® (1548 " n))

Lixg((a(e))(Lixg 't n))(1yxg 't m)

(“((a(e)) (15 gt n)))(m)

(15 g(a(e))(1p*g " n))(m)

(C(a(e)))(n))(m),

s0 aCp) =5(a(e)), proving our claim.
Therefore, « yields a natural equivalence

Hom ,(M ®;_, ) — Homg(—, Hom (M, -))

of functors B G-Mod X (A = G-Mod)° —» kG-Mod. Applying the fixed
point functor _¢: kG-Mod — k-Mod to this equivalence, we obtain a
natural equivalence

Hom,, (M ®,—, ) = Homy, ;(~, Hom (M, -))

of functors B * G-Mod X (A * G-Mod)° — k-Mod. In particular, M ®,_
is left adjoint to Hom (M, ). 1

This immediately implies that the functor M ®,_ above commutes with
induction.

2.6. COROLLARY. Let H be a subgroup of a finite group G, let A and B be
G-algebras, and let M be a twisted (A, G)-B-bimodule. Then the diagram

Mo,
B * G-Mod —— A * G-Mod

Ind?IT Tlnd?,

Me,_
B+« H-Mod —— A « H-Mod

of functors commutes up to natural equivalence.

Proof.  Since Ind¢, is left adjoint to Res,

Ind; o (M ®_): B+ H-Mod — A * G-Mod
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is left adjoint to Hom (M, _)oRes%: 4+G-Mod — B * H-Mod, by
Lemma 2.5, and

(M ®3_)°Ind%: B+ H-Mod — A4 * G-Mod

is left adjoint to Res$ oHom (M, _). Now since Hom (M, _) clearly
“‘commutes with restriction,” the result follows by uniqueness of adjoints.

2.7. Remark. In the situation of Corollary 2.6, it is plain that the
functor M ®,_ “commutes with restriction,” as well.

The next result deals with conjugation.

2.8. LEMMA. Let H be a subgroup of a finite group G, let g € G, let A
and B be G-algebras, and let M be a twisted (A, G)-B-bimodule. Then the
following diagram of functors commutes up to natural equivalence:

Moy
B+ H-Mod —— A = H-Mod
g_l lg_

Me,_
B« H-Mod —— A4 * *H-Mod.

Proof. Let N be a B H-module. Define B: (M ®,; N) - M ®,°N,
m®n— (1,*gm)®n. Note that 8 is well defined since (1, * g (mb))
en=((1,+*gm)¥b)®n=1,+%*gm)®bn for all m e M, b € B, and
n € N. (Recall that B =“H acts on *N via restriction along B **H —
BxH,bxghg* >% bxh)

Obviously, 8 is an isomorphism of k-modules (an inverse being defined
analogously) which is natural in N. Moreover, fora € A, h€e H me M
and n € N, we have

B(axghg™ (m ® n)) = B(axh(m ®n))
= B((axhm) ® (1,hn))
— (axghm) ® (1,+hn)
= ((ga*ghg_l)(lA *gm)) ® (1 hn)
=%axghg™! B(m ® n).
This completes the proof. |

The following lemma introduces the second class of functors which will
be important for our proof of Theorem A.
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2.9. LEMMA. Let G be a finite group, let A be a G-algebra, let N be a
kG-module, and let M be an A = G-module.

1. Then M ®, N is an A * G-module when we define a * g(m ® n) =
(axg m)®(gn) foracA, g€ G, meM, and n € N. This yields a
k-additive endofunctor —®, N: A+ G-Mod — A4 * G-Mod.

2. Ailso Hom (N, M) is an A+ G-module where, for a € A, g € G,
and ¢ € Hom, (N, M), a = go is defined by

(axge)(n) =a(®e)(n)

for n € N. Thus N gives rise to a k-additive endofunctor Hom, (N, ):
A+ G-Mod — A * G-Mod.

Proof. By Example 2.3(3), N is a twisted (A4, G)-k-bimodule. Thus the
first assertion of item 1 is a special case of Lemma 2.4; the second
assertion is then immediate.

Leta,b € A4, g, h € G,and ¢ € Hom (N, M). First, a * g ¢, as defined
in item 2, is clearly a well-defined k-homomorphism N — M. Second, we
have

a(bxhe))(n) =axg(bxhe)(g 'n)
a(*b)(*'e)(n) = (a(*b) * gh ¢)(n)
(((axg)(b*h)) ¢)

((axg)(b*he))(n)

for all » € N, and we are done. |
Again, we have an adjointness relation.

2.10. LeEMMA. Let G be a finite group, let A be a G-algebra, and let N be
a kG-module. Then the functor _®, N: Ax G-Mod — A * G-Mod is left
adjoint to Hom (N, -): A * G-Mod — A4 * G-Mod.

Proof. Let M and L be A * G-modules. As in the proof of Lemma 2.5,
there is an isomorphism of k-modules B: Hom (M ®, N, L) —
Hom ,(M,Hom (N, L)), where, for an A-homomorphism ¢: M ®, N —
L, B(e) is defined by (( B(p))X(n))(m) == o(m ® n) form € M and n € N.
Moreover, this isomorphism is natural in M and L.
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We show that B behaves well with respect to the G-action. Let g € G
and ¢ € Hom (M ®, N, L). Then

((BCe))(n)(m) = (fe)(m @ n) =1,+ge((1,xg ' m) ® (g 'n))
=1, g((B(9))(Lixg " m))(g 'n)
= (“((B(@)(Lixg " m)))(n)
= (Li#8(B(¢))(Lixg "t m))(n)
= ((*(B(¢)))(m))(n)

forall m € M and n € N, so BC¢p) =°4(B(¢)). As in the proof of Lemma
2.5, this immediately implies the assertion of our lemma. ||

In particular, this implies that, with notation of Lemma 2.10, the functor
—®, N “commutes with induction’; this fact will be important for us.

2.11. CoroLLARY. Let H be a subgroup of a finite group G, let A be a
G-algebra, and let N be a kG-module. Then the following diagram of functors
commutes up to natural equivalence:

_ N
A+ G-Mod —5 4 % G-Mod

IndZT Tlndﬁ

_&N
A* H-Mod —— A * H-Mod.

Proof. Proceed as in the proof of Corollary 2.6 using Lemma 2.10. |

2.12. Remark. In the situation of Corollary 2.11 the functor —®, N
trivially “commutes with restriction” also; and it is not at all surprising that
it behaves well with respect to conjugation, as well;

2.13. LEMMA. Let H be a subgroup of a finite group G, let g € G, let A
be a G-algebra, let M be an A * G-module, and let N be a kG-module. Then

the diagrams

A+ H-Mod —, 4+ H-Mod kH-Mod 225 A+ H-Mod
. A I

_®5N M®,_
A+ H-Mod —5 4% H-Mod,  k[*H]-Mod ——= 4 +¢H-Mod

of functors commute up to natural equivalence.
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Proof. Obviously, ¢: *M ®,*N =*(M ®, N), m ® n = m ® n, is a k-
linear bijection which is natural in M and N. Moreover,fora € A, h € H,
m € M, and n € N, we have

e(axghg™'(m ®n)) = cp((ga* ghg™*m) ® (ghg‘ln))
o((axhm) ® (hn))
(axhm) ® (hn) =a*h(m ® n)

=8axghg™! o(m ® n).
Thus ¢ is an isomorphism of A = #H-modules, and we are done. |

We also need a Higman criterion for modules of skew group algebras.
Let us recall the definition of the relative trace map. Let H and K be
subgroups of G such that K is contained in H. Then the relative trace
map Trg': AX — A" is defined by a — L, *a. The image of Trg is
denoted by A4%. We refer to [11] or [13] for basic properties of relative
trace maps.

2.14. ProrosITION (Higman’s criterion). Let H be a subgroup of a finite
group G, let A be a G-algebra, and let M be an A * G-module. Then the
following assertions are equivalent:

1. The module M is isomorphic to a direct summand of Ind$, Res% M.

2. There is an A * H-module N such that M is isomorphic to a direct
summand of Ind$ N.

3. There is ¢ € End,, ;,(M) (= End ,(M)") such that Tr5(¢) =
id,,.
Sketch of the proof. It is straightforward to check that the well-known

proof of this fact for ordinary group algebras (cf. [13, Proposition (17.7)],
for instance) carries over to this more general setup. |

3. A MODULE FOR THE CHARACTER RING

In this section we will show that the Grothendieck groups of projective
modules of certain skew group algebras can be regarded as (Green
functor) modules of the character ring (functor).

Throughout, we fix a finite group G; let @ be a complete discrete
valuation ring of characteristic 0 with residue field F of characteristic
p # 0. Moreover, we denote by K a quotient field of #. From now on, all
our algebras and modules will be free of finite rank over either [, #, or F.
For an algebra A4, A-mod denotes the category of A-modules in this
sense.
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We refer to [4] for the definition of Mackey functors, Green functors,
pairings, and so forth. Partly, these definitions can also be found in [13].

Let A be an algebra. For an A-module M, we denote by [M] its
isomorphism class. The isomorphism classes of A-modules form an abelian
monoid where, for A-modules M and N, addition is defined by [M] + [N]
=[M @ N]. We denote by a(A4) the corresponding Grothendieck group.
Then the set of isomorphism classes of indecomposable A-modules is a
Z-basis of a(A4) since the Krull-Schmidt theorem holds for 4-modules, by
our specific choice of ground rings.

Denote by K,(A4) the subgroup of a(A4) generated by isomorphism
classes of projective A-modules. Then the isomorphism classes of inde-
composable projective 4-modules form a (finite) Z-basis of K,(A4).

Apart from that, let ses(4) be the subgroup of a(A4) generated by
elements of the form [E] — [M] — [L], where E, M, and L are A-mod-
ules such that there is a short exact sequence 0 - L - E - M — 0 of
A-modules. The corresponding quotient group Gy(A) == a(A4)/ses(A4) is
called the Grothendieck group of A.

For an A-module M, denote by [ M ] the coset [M] + ses(A). If A is an
algebra over K or F, then the set {[S]}, where S runs through a complete
system of representatives of simple A-modules, is a Z-basis of G,(A4), by
the Jordan—H®dlder theorem. In the case A = @G, the group algebra over
@, the structure of G,(A4) is also known by a theorem of Swan:

3.1. THEOREM [6, Theorem (39.10)]. Let G be a finite group. Then the
map Gy(@G) - Gy(KG), [M] - [K ®, M], is an isomorphism of groups
(or rings).

In fact this is just a special case of Swan’s result adapted to our needs.
(Note that what we understand by G,(@#G) is denoted by G{'(#G) in [6].
Whereas, with notation of [6], G,(#G) is a different but at least isomor-
phic group (cf. [6, Theorem (38.42)].)

We now bring the group G into play. Let A4 be a G-algebra. Moreover,
let g € G, let H be a subgroup of G, and let K be a subgroup of H.
Then the additive and exact functors é_: A H-mod — A * *H-mod,
Res¥: A% H-mod — A * K-mod and Ind¥: A4 K-mod — A * H-mod in-
duce homomorphisms ¢, ,;: a(A+ H) — a(A**H), [M]~ [FM], res:
a(A+*H) > a(A*K), [M] — [Res?! M], and ind¥: a(4*K) —
a(A = H), [M]~ [Ind¥ M], respectively. (Note that 4= H is free, and
hence flat, as a right 4 = K-module.)

Plainly, the restrictions c, ,: Ky(A4* H) — Ky (A* *H), resg:
Ko(4#+ H) - Ky(A*K), and ind¥: Ky(A*K) - Ky(A*H) of the
above homomorphisms are well defined. (In case of restriction, one needs
that 4 = H is also a free left 4 * K-module, which is straightforward to
check.)
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Moreover, we have c, y(ses(A * H)) C ses(A * *H), resi(ses(A = H))
cses(A = K), and ind¥(ses(A4 = K)) C ses(A4 = H) since the underlying
functors are exact. Therefore, these homomorphisms induce homomor-
phisms ¢, ,: Go(A* H) = Go(A=*H), [M] — [*M], resi: Go(A+ H)
- Gy(A*K), [M] — [ResfiM], and ind¥: Gy(A*K) - Gy(A4 = H),
[M] — [Ind M].

It is straightforward to check that the families (a(A4* H))y,_,
(Ko(A* H))y ., and (Gy(A4 = H)), _; of abelian groups, together with
the corresponding homomorphisms ¢, , res?, and ind¥ (g€ G, K <
H < G), form Mackey functors for G (over Z). We denote these Mackey
functors by a(A4, G), K,(A4, G), and G,(A4, G), respectively.

Also let B be a G-algebra, and let M be a twisted (A4, G)-B-bimodule
(cf. Definition 2.2) which is finitely generated and projective as a right
B-module. Then, for any subgroup H of G, there is an additive functor
M ®;_: B+ H-mod — A * H-mod, by Lemma 2.4(1), which induces a ho-
momorphism [M ®,_],: a(B* H) - a(A* H), [L] = [M ®, L]. (Note
that, for a B * H-module L, M ®, L is finitely generated and free over
the ground ring since this is the case for L, and M is projective as a right
B-module.) By Corollary 2.6, Remark 2.7, and Lemma 2.8, the family
(M ®z_]=(M®_1;)y . is a homomorphism of Mackey functors
a(B,G) — a(A4,G).

3.2. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
M be a twisted (A, G)-B-bimodule which is finitely generated and projective,
both as a left A-module and as a right B-module, as well. Then the restriction

[M®y_]: Ko(B,G) - Ky(4,G)
of [M ®z_]: a(B,G) — a( A4, G) is a well-defined homomorphism of Mackey

functors.

Proof. Let H be a subgroup of G. It suffices to show that the functor
M ®g_: B+ H-mod — A * H-mod

preserves projectives. But this follows from the fact that M ®;,_ is left
adjoint to Hom (M, ): A = H-mod — B * H-mod, by Lemma 2.5, which
preserves epimorphisms since M is projective as an 4-module, by assump-
tion. |

We also have a similar homomorphism between the Grothendieck
groups.

3.3. LEMMA. Let G be a finite group, let A and B be G-algebras, and let
M be a twisted (A, G)-B-bimodule which is finitely generated and projective as
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a right B-module. Then, for any subgroup H of G, [M ®gl,: Gy(B* H) —
Gy(A=xH),[L] = [M ®g L], is a homomorphism of groups. Thus

[M @] = ([M&;_]y)yc: Go(B,G) = Go(4,G)

is a homomorphism of Mackey functors.

Proof. In view of the observations preceding Lemma 3.2, the only thing
we need to show is that, for any subgroup H of G, [M ®;,_],(ses(B = H))
cses(A4 = H), i.e., that the functor M ®,_: B * H-mod — A = H-mod is
exact. But this is certainly the case since M is a flat right B-module, by
assumption. |

Let 4 be a G-algebra over @, and let N be an #G-module. Then, for
any subgroup H of G, the additive endofunctor _®, N: A * H-mod —
A = H-mod of Lemma 2.9 induces an endomorphism of groups [-®, N1:
a(A+H) > a(A+H),[M] - [M ®, N]. By Corollary 2.11, Remark 2.12,
and Lemma 2.13, the family [-®, N]:= (-®, N1,), - s is an endomor-
phism of Mackey functors of a(A4, G).

3.4. LEMMA. Let G be a finite group, let A be a G-algebra over &, and let
N be an @G-module. Then the restriction
[-®, N1: Ko(4.G) = Ko(A,G)
of [-®, NI a(A,G) = a( A, G) is a well-defined endomorphism of Mackey
functors.
Proof. Proceed as in Lemma 3.2. |

3.5. LEMMA. Let G be a finite group, let A be a G-algebra, and let N be
an @G-module. Then, for any subgroup H of G,[-®, N],: Gy(A+ H) —
Gy(A*H),[M]—[M®, NJ, is a well-defined homomorphism of groups.
Thus

[-®, N1 =([-®; N]y)py<g: Go(A,G) = Go(A4,G)

is an endomorphism of Mackey functors.

Proof.  As in the proof of Lemma 3.3, the only thing one needs is that
N is flat as an @-module. But this is certainly the case, by our general
assumption on modules in this section. ||

Let H be a subgroup of G. Then

[M®9‘—]H([N]) = [M®zﬁN] = [—®(?N]H([M])
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for any A = H-module M and any #G-module N. Thus

[-®.—]y:a(A+H) Xxa(¢H) - a(A+H),
([M]IN]) » [M &, N]

is a Z-bilinear map. Therefore, by Corollaries 2.6 and 2.11, Remarks 2.7
and 2.12, and Lemma 2.13, the family [ ®,_] := ((-®,_]), _ is a pairing
of Mackey functors

a(A4,G) xa(@,G) —» a(4,G).
Moreover,
[Me,c]=[M] and [(M®,N)®,L]=[M®&,(N®,L)]

for all subgroups H of G, all 4+ H-modules M, and all #G-modules N
and L, as one easily verifies. Choosing A = @, the G-algebra with trivial
G-action, this shows on the one hand that, for any subgroup H of G,
a(@H) is a ring with multiplicative identity [¢], called the Green ring of H
(which is clearly commutative). Thus a(#, G) is a Green functor for G.

On the other hand, it demonstrates that, for any subgroup H of G,
a(A4 = H) is an a(¢H )-module. Therefore, the above pairing turns a(A4, G)
into a right module for the Green functor a(#, G).

By Lemma 3.4, the restriction

[-®,-]: Ko(A4,G) X a(@,G) = Ky(A,G)

of the above pairing is well defined. Thus K,(A4,G) is a right a(@, G)-
module, as well.

Moreover, in view of Lemmata 3.3 and 3.5, it is clear that the above
pairing induces a pairing

Go(A,G) X Go(@,G) = Gy(@,G).

We can take 4 = &, and obtain that G,(#, G) is a Green functor for G.
Besides, G,(A, G) is a right Gy (&, G)-module.

Let H be a subgroup of G, and let 0 - N 5 E 5 L — 0 be a short
exact sequence of #H-modules and @H-homomorphisms. Moreover, let P
be a projective A * H-module. Then, by Lemma 3.4, P ® , L is a projective
A = H-module, as well. Besides,

idp® e

idp® pu
&E0->P®, N > P®,E —» P®,L—~0
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is a short exact sequence of A4 = H-modules since P is flat as an #-module
(or because the original sequence splits as a sequence of @#-modules). Thus
& splits. Therefore,

[P]-[E]=[P®, E] = [(P®, N)® (P& L)
=[Pe, N]+[Po, L] =[PI([N]+[L]).

This shows that K (A * H)ses(A = H) = 0. Hence

[-®—]u: Ko(A*x H) X Go(FH) = Ko(AxH),
([P].IN]) » [P ®, N]

is a well-defined Z-bilinear map such that [-®,_] = (-®,_],)y . IS a
pairing of Mackey functors K (A, G) X G,(@,G) = K (A4, G).
We summarize:

3.6. PRoOPOSITION.  Let G be a finite group, and let A be a G-algebra over
@. Then the Mackey functor K (A, G) is a right module of the Green functor
Go(@,G), where [P]-[M] =[P ®, M1, for a subgroup H of G, a projec-
tive A = H-module P, and an @H-module M.

3.7. Remark. Of course, all the results above are equally valid if we
replace the ground ring @ by K or F, respectively. We will use this fact
without further comment.

Let H be a subgroup of G. By Swan’s theorem (cf. Theorem 3.1), we
have an isomorphism G,(@#H) — G,(KH) of rings. Obviously, this yields
an isomorphism of Green functors G (&, G) — G(KK, G).

Assume that K is a splitting field for G and all of its subgroups. Then
there is a well-known isomorphism G,(IKH) — R(H) which, for a KH-
module M, maps [ M] to the character afforded by M. This gives rise to an
isomorphism of Green functors G,(IK, G) = R(G), where R(G) denotes
the character ring functor of G. Therefore, in the situation of Proposition
3.6, we can regard K,(A4, G) also as a right R(G)-module via restriction
along these isomorphisms.

Assume now that [F is a splitting field for G and all of its subgroups.
Similarly, there is an isomorphism G,(FH) — R, (H) which, for an FH-
module M, maps [M] to the Brauer character afforded by M. Again, this
yields an isomorphism of Green functors G(F, G) - R ,(G), where R ,.(G)
denotes the Brauer character ring functor of G. Moreover, the decomposi-
tion map R(H) — R, (H) (which is given by restricting characters to
p-regular elements) gives rise to an epimorphism of Green functors R(G)
— R,(G). So, in case A is a G-algebra over [, we may regard K,(A4, G)
as a right R ,(G)-module and as a right R(G)-module, as well.
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4. LIFTING INDUCTION THEOREMS

In this section we will prove Theorem A.

Let us briefly recall the definition of vertices and sources of modules of
skew group algebras. (Details can be found in [3] in the more general setup
of group-graded algebras.) Let A be a G-algebra over # or F, and let M
be an A4 * G-module. Then, for a subgroup H of G, M is called relatively
H-projective if M is isomorphic to a direct summand of Ind% N for some
A+ H-module N.

Assume that M is indecomposable. Then a subgroup of G which is
minimal among the subgroups H of G such that M is relatively H-projec-
tive is called a vertex of M. In view of Higman’s criterion (Proposition
2.14), it is clear that vertices of M are p-subgroups of G. Moreover, it is
straightforward to check that the vertices of M form a conjugacy class of
p-subgroups of G since the Krull-Schmidt theorem as well as Mackey
decomposition hold also in this more general setup.

Let P be a vertex of M. Then an indecomposable A4 * P-module N is
called a P-source of M if N is isomorphic to a direct summand of
Res% M, and M is isomorphic to a direct summand of Ind% N. In this
case, P is necessarily a vertex of N. Again, using the Krull-Schmidt
theorem and Mackey’s theorem, it is easy to see that P-sources of M are
uniquely determined up to isomorphism and N(P)-conjugacy. Moreover,
any indecomposable A * P-module L such that M is isomorphic to a
direct summand of Ind§ L is a P-source of M.

It is not surprising that we also have Green correspondence in this
situation.

4.1. THEOREM (Green correspondence). Let P be a subgroup of a finite
group G, let H be a subgroup of G containing Ng(P), and let A be a
G-algebra over @ or F. Then the following assertions hold.:

1. Let M be an indecomposable A * G-module with vertex P. Then, up
to isomorphism, there is a uniquely determined indecomposable direct sum-
mand L of Res$, M with vertex P. Moreover, L has multiplicity 1 in
Res% M.

2. Let L be an indecomposable A + H-module with vertex P. Then, up
to isomorphism, there is a uniquely determined direct summand M of Ind9, L
with vertex P. Moreover, M has multiplicity 1 in Ind$, L, and any indecom-
posable direct summand of I\nd$, L not isomorphic to M has a vertex strictly
contained in P.

3. Assertions 1 and 2 set up mutually inverse bijections between the
set of isomorphism classes of indecomposable A + G-modules with vertex P
and the set of isomorphism classes of indecomposable A + H-modules with
vertex P.
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Sketch of the proof. See [1, Theorem 11.1], for example. It is straightfor-
ward to check that the proof stated in [1] carries over to the skew group
algebra situation since the only things the proof requires are Mackey
decomposition and the Krull-Schmidt theorem. |

4.2. Remark. With notation of Theorem 4.1, L is called the Green
correspondent of M, and M is called the Green correspondent of L. It is
clear that any P-source of L is a P-source of M, as well. Since P-sources
of M are uniquely determined up to N;(P)-conjugacy (and isomorphism),
this shows that, conversely, any P-source of M is also a P-source of L.

The following elementary construction for Mackey functors is an ana-
logue (or a generalization) of the fixed point submodule M”" of a normal
subgroup N of G on an #G-module M.

4.3. LEMMA. Let k be a commutative ring with 1, let N be a normal
subgroup of a ﬁnite group G, and let M be a Mackey functor for G over k.
Then MV = (MY, , res, yind, y¢) is a Mackey functor for G /N over k, where

1. MN(H/N) = M(H) for a subgroup H/N of G /N,

2. yresg/y = resy and yind{/y == ind{ for subgroups H/N, K/N
of G/N such that K/N € H/N,

3. NCen /N = Cqn for gN € G/N and a subgroup H/N of G/N.

Proof. This is straightforward to check. Note that definition 2 is inde-
pendent of the choice of representatives since ¢, , = id ., and c,, , =
ComoC,y forall g€ G, neN, andall subgroups H of G, by deflnltlon
of a Mackey functor. Moreover, for subgroups H/N and K/N of G/N, a
transversal T of H\ G/K vyields a transversal TN := {tN:t e T} of
(H/N)\(G/N)/(K/N). 1

4.4. DEFINITION. Let G be a finite group, let 4 be a G-algebra, and let
M be a Mackey subfunctor of a(A4,G). We say that M is closed under
taking direct summands if, for any subgroup H of G and any A * H-module
N with [N] € M(H), any direct summand L of N satisfies [L] € M(H).

45. ExampLE. 1. Obviously, K,(A4,G) is a Mackey subfunctor of
a(A4, G) which is closed under taking direct summands.

2. Denote by a(FG, triv) the trivial source ring functor of G. Clearly,
a(FG, triv) is a Mackey subfunctor of a(F, G) which is closed under taking
direct summands.

3. Let A be a G-algebra over # or [F, and let M be an indecompos-
able A = G-module with vertex P and P-source N. For a subgroup H of
G, denote by M(H) the subgroup of a(A4 = H) generated by elements [L],
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where L is an indecomposable A * H-module such that some vertex Q of
L satisfies QO c ®P for some g € G, and such that some Q-source of L is a
direct summand of Res”'ggN. It is straightforward to check that M =
(M(H)), . is a Mackey subfunctor of a(A4,G). By construction, M is
closed under taking direct summands.

Apart from Proposition 3.6, our proof of Theorem A will essentially be
based on the following result.

4.6. PROPOSITION. Let N be a normal subgroup of a finite group G, let A
be a G-algebra, and let L be a relatively N-projective A * G-module. More-
over, let M be a Mackey subfunctor of a( A, G), which is closed under taking
direct summands, such that [L] € M(G). Then there are a G /N-algebra B
and a homomorphism of Mackey functors for G /N

¢ = (GDH/N)H/NS(;/N: KO(B’G/N) - MY

such that [B] € K((B*G/N) and ¢; ,y(B]) = [L]. Moreover, if, for a
subgroup H/N of G/N and an A * H-module U, [U] is contained in the
image of ¢y, then U is relatively N-projective.

Proof. Set G = G/N, for g € G, set g :==gN, and, for a subgroup H
of G containing N, set H := H/N. Consider the G-algebra
B=End,.(L)° = (End,(L)°)",

which can also be regarded as a G-algebra. By Example 2.3(1), B is a
B G-module. We have

1o =id, = Tr(a) = Tro(a)

for some « € End, y(L) = B°, by Higman’s criterion (Proposition 2.14),
since M is relatively N-projective, by assumption. It is straightforward to
check that B°® — End4(B), ¢ — #(1,) is an isomorphism of G-algebras.
Thus B is a relatively 1-projective B * G-module, again by Higman’s
criterion. Therefore, B is a projective B * G-module since B is certainly
projective as a B-module. Hence [B] € K (B # G/N).

It is well known that L is a right B-module, where I8 := g(I) for l € L
and B € B. Moreover,

axg(IB) =axgp(l) =(°B)(axgl) = (axgl)’p

forall aeAd, geG,l<L, and Be B, by (1). Thus L is a twisted
(A, G)-B-bimodule. This yields an additive functor L ®,_: B * G-Mod —
A * G-Mod, by Lemma 2.4(1).
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For a G-algebra C, denote by C *G-pro. the category of C G-
modules which are finitely generated and projective as C-modules. Then
the restriction L ®;_: B * G-proz — A * G-mod of the above functor is
well defined. (Note that, for a finitely generated projective B-module N,
L ®p N is finitely generated and free over the ground ring since L is.)

Let H be a subgroup of G containing N. There is an epimorphism of
algebras o,;: B+ H — B+ H, b+ h — b+(hN). Denote by Res, : B H-
prop — B x H-prog restriction along o}, which is an additive functor.
(Note that oy, is the identity on B.) In particular, this yields a homomor-
phism of groups

¢u/n: Ko(B*H) > a(A*H), [P]~ [L ®; Res, P].

Moreover, ¢; ,y([B]) = [L ®5 Res, B]=[L], as one easily verifies.
We claim that ¢ = (¢,), .z is @ homomorphism of Mackey functors

Ko(B,G) = (a(4,G))".
Let K/N be a subgroup of H/N, and let M be a B = K-module. Define
B: BxH®g, g Res(,KM
—>Res(,H(B*ﬁ®B*,?M), bxh®m—bx(hN) ® m.
It is straightforward to check that B is a well-defined isomorphism of

B = H-modules which is natural in M. Thus the following diagram of
functors commutes up to natural equivalence:

— Res,,
B+ H-mod —— B * H-mod

|nd§T TInd,’}’
— Res,
B x K-mod —— B = K-mod.
Moreover, for g € G, it is obvious that the diagrams of functors

— Res, — Res,,
B+ H-mod —— B * H-mod B« H-mod —— B * H-mod
g,l lg, Resgl lResg

S Res, _ Res,
B+ *H-mod —— B * *H-mod, B * K-mod —— B * K-mod

commute up to natural equivalence. In view of Corollary 2.6, Remark 2.7,
and Lemma 2.8, this proves our claim.
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Next we show that the image of ¢ is contained in M(H). Let P be a
projective B * H-module. Then there is a natural number » such that P is
isomorphic to a direct summand of (B H)" = (Ind¥ B)". Therefore,
L ®g Res, P is isomorphic to a direct summand of

L @, (Res, (Ind? B)") = Ind!{ (L @, Res, B)" = Ind Res§ L". (2)

Since [L] € M(G), we have [Ind¥ Res§ L] = nind¥ res§G[L] € M(H),
)

en([P]) = [L ®p ResUHP] € M(H)

as well, by our assumption on M.
Finally, Eq. (2) also implies the additional assertion. ||

Let k£ be a commutative ground ring with 1, and let M be a Mackey
functor for G over Z. We denote by kM = k ®, M the Mackey functor
for G over k which is given by extending scalars. In consistency with this
notation, we write kM(H) instead of &k ®, M(H) for any subgroup H of
G. Moreover, for ¢ € k, a subgroup H of G, and m € M(H), cm is an
abbreviation of ¢ ® m, and m stands for 1m € kM(H ). Note that one has
to be careful with this notation, for if k is of positive characteristic, then
an equation [M] =[L] in ka(A = G) does not necessarily imply that M
and L are isomorphic unless M and L are indecomposable.

Now we are in a position to prove Theorem A. Our proof will be based
on the following skew group algebra version of Theorem A.

4.7. THEOREM. Let G be a finite group, let A be a G-algebra over @ or F,
and let M be an indecomposable A + G-module with vertex P and P-source N.
Moreover, let k be a commutative ring with 1, and, for any subgroup Q of P,
let &, be a set of subgroups of N;(Q)/Q such that

le Y ind¥9/2kGy(e[H/Q])
H/QE€%,

in kGy(@IN;(Q)/Q). (In case A is a G-algebra over T, it suffices to have an
analogous equation in kGy(FIN;(Q)/QD.) From M, P, and the sets %y
construct the set € of pairs (H,U) where

1. His a subgroup of G with normal p-subgroup Q, which is contained
in P, such that H/Q € %o,

2. U is an indecomposable A + H-module such that, for some g € G,
some vertex R of U is contained in Q N 8P, and some R-source of U is a direct
summand of Resk*N.
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Then there are a.y y € k ((H,U) € %) such that

[M]= X A, vy indG[U]
(H,U)e?

in a(A * G).

Proof. Let M be the Mackey subfunctor of a( 4, G) defined in Example
4.5(3) (with respect to M), so [M] € M(G), and M is closed under taking
direct summands. Note that, for a subgroup H of G as in item 1 with
normal p-subgroup Q contained in P, an indecomposable A4 = H-module
U satisfies the assertions of item 2, if and only if U is relatively Q-projec-
tive and [U] € M(H), by definition of M.

Let L be an indecomposable A xN;(P)-module which is the Green
correspondent of M. By Theorem 4.1,

Ind{ pL=MeM;® - &M,

where M,,..., M, are indecomposable A * G-modules having a vertex
properly contained in P. Since M is closed under taking direct summands,
we have [L] € M(N;(P)), and thus [M,],...,[M,] € M(G). This yields an
equation

[M] =ind¥ p[L] = [M,] = = [M,]

in M(G). Arguing inductively on the order of P, this demonstrates that
there are integers c,,...,c,, subgroups P,,...,P. of P, and, for i =
0,...,r, there is an indecomposable A *N;(P,)-module L; with [L;] €
M(N4;(P,)) such that

[M]= ) ¢ indﬁG(Pi)[Li] (3)
i=0
in M(G).
Fix i €{0,..., r}. By Proposition 4.6, there are an N;(P,)/P--algebra B
and a homomorphism of Mackey functors for N;(P,) /P,

¢ = (Pu/p) spengirnr, KKo(BNG(P)/P) = kMT(Ng(P;))

(depending on i, of course) such that ¢y _p,, p((BD = [L;]. (Where in the
equation above M is regarded as Mackey functor for N;(P,) by restriction,
which is a Mackey subfunctor of a( A4, N;(P,)), and which is closed under
taking direct summands, as well.) Moreover, kK,(B,Ns(P,)/P;) is a right
kG (@, N;(P)/P)-module (kG,(F,Ns;(P,)/P;)-module), by Proposition
3.6. (See also Remark 3.7.) By assumption, there are b, ,, €k and
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@[ H/P,]-modules (F[ H/P;}-modules) N ,, (H/P; € &) such that

1= Y by, indigE "INy, p ]
H/P,®,

in kGy(@IN(P)/P,D (resp. kGy(FIN;(P)/P;D). Thus, in kK,
(B #*Ng(P,)/P,), we have an equation

[B]=[B]-1= X bH/Pi[B] ('ndNC(P)/P [Nu,»p, ])

H/P,€®)p

Y. by ,p indNoEo/m ((resg(}(g,v)/Pi[B]) . [NH/p,])
H/P,e&)p,

Y by indisE P ([B ®, Ny yp,])-
H/P,€@p,

Applying ey p,, p, to this equation and using that ¢ is a homomorphism
of Mackey functors, we obtain an equation

[L]1= X cyindje®[Lf]
H/P,e%,,

in M(NG(P)), where, for H/P, € &,, ¢, €k and L) is a relatively
P-projective A = H-module such that [L{)] € M(H), by Proposition 4.6.
Since i was arbitrary, this equation together with Eq. (3) and the observa-
tion of the first paragraph of this proof yields an equation of the desired
form. |

We adopt the notation of Theorem 4.7 and its proof. Note that the
above proof demonstrates that it would suffice to assume that 1
kGy(@INs(Q)/QD can be written as a k-linear combination of modules
induced from modules of groups contained in &, for all Q € {P,,..., P},
rather than for all subgroups Q of P. Apart from that, the above proof
shows that the assertion of Theorem 4.7 can be improved if one replaces
throughout the Green correspondents with respect to the normalizer of a
vertex by the Green correspondents with respect to the inertia group of a
source in this normalizer (cf. [13, Proposition (20.8) and Exercise (20.4)(c)],
for instance). In this case, one does not necessarily need induction theo-
rems for kG,(ZIN;(Q)/QD (where Q runs through the subgroups of P),
but only for the Grothendieck group of the group algebra of certain
(possibly strict) subgroups of N;(Q)/Q.

We can now easily finish our proof of Theorem A.
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Proof of Theorem A. Assume that K and [F are splitting fields for G and
all of its subgroups. For each subgroup Q of P, there is an isomorphism of
Mackey functors

R(Ng(Q)/Q) = Go(@,Ns(Q)/0Q),

and there is an epimorphism of Mackey functors R(Ns(Q)/Q) —
Go(F,N;(Q)/Q), by Remark 3.7; thus the assumption gives rise to an
equation in G,(@IN;(Q)/0D (G,(FIN;(Q)/Q)) as in the hypotheses of
Theorem 4.7. Now, apply Theorem 4.7 to the G-algebra A =@ (4 =F)
with trivial G-action, and the result follows.

To prove the assertion of item 3 of the remark succeeding Theorem A
use the canonical isomorphism of Mackey functors R(N;(Q)/Q), —
Go(F,N;(Q)/Q) mentioned in Remark 3.7 for all Q. |

5. AN ANALOGUE OF BRAUER’S
INDUCTION THEOREM

From now on, let the residue field [F be algebraically closed, and assume
that K is a splitting field for G and all of its subgroups.
In this section we will prove the following result:

5.1. THEOREM. Let G be a finite group, let A be a G-algebra, and let M
be an indecomposable A *+ G-module with vertex P and P-source L. Moreover,
denote by % the set of pairs (H,U) where

1. H is a subgroup of G with normal Sylow p-subgroup Q, which is
contained in P, such that H/Q is elementary;,

2. Uis an indecomposable A + H-module with vertex Q, and Resg Uis
an indecomposable direct summand of Resg, L. In particular, Resg U is a
Q-source of U.

Then there are integers a . ;) (H,U) € &) such that

[M]= X A, vy indj[U]
(H,U)e¥?®

in a(A * G).

Apart from Theorem 4.7, our proof of Theorem 5.1 will be based on the
following modular analogue of the well-known fact that supersolvable
groups are M-groups.

Before we state the result, let us briefly recall the notion of defect
groups of (points of) G-algebras. Let 4 be a G-algebra, and let ¢ be a
primitive idempotent in 4%. Then a subgroup D of G is called a defect
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group of e if e € A7 but e & AY for any proper subgroup Q of D. It
is well known that the defect groups of e form a conjugacy class of p-
subgroups of G. Moreover, any idempotent which is conjugate to ¢ by a
unit of A“ has the same defect groups as e. A U(A%)-conjugacy class of
primitive idempotents is called a point of G on A (where U(A“) denotes
the group of units of 4“). Hence we may speak of defect groups of points
also. We refer to [11] or [13] for details.

For the purpose of this section a module theoretic viewpoint will be
convenient. By Example 2.3(1), 4 may be regarded as an A * G-module,
and it is clear that Ae is a direct summand of this module. Moreover, it is
straightforward to check that End ,(Ae) — eA%, i — #(e), is an isomor-
phism of G-algebras. Since e is primitive in A (and hence in e4%), this
shows that Ae is an indecomposable A = G-module. Besides, for all
subgroups H of G, e(A%)e = (ede)s;, so e € A%, if and only if e €
(ede)§. Therefore, by Higman’s criterion (Proposition 2.14), the defect
groups of e are precisely the vertices of Ae.

The following result was proved in [10]:

5.2. ProrosiITION [10, Proposition 3.3l Let P be a normal Sylow p-
subgroup of a finite group G such that G /P is supersolvable, let A be a G-
algebra, and let e be a primitive idempotent in A with defect group D. Then
there are a subgroup H of G with Sylow p-subgroup D and an idempotent
f€ A" such that f is primitive in AP, Tr5(f) =e, and fCf) =0 for all
g€ G\ H.

Proof of Theorem 5.1. For any subgroup Q of P, let #, be the set of

elementary subgroups of N;(Q)/Q. Denote by & the set of pairs (H,U)
where

1. H is a subgroup of G with normal p-subgroup Q, which is
contained in P, such that H/Q € &, (i.e., H/Q is elementary);

2. U is an indecomposable A4 + H-module such that, for some g € G,
some vertex R of U is pontained in O N 2P, and some R-source of U is a
direct summand of Res% L.

By Theorem 4.7, applied to Brauer’s induction theorem, there are integers
b, vy ((H,U) € &) such that
(M]= X by v ind;[U] (4)
(H,U)e&

ina(A = G).

Let (H,U) € & Then H/O,(H) is an elementary p'-group. In particu-
lar, O,(H) is a normal Sylow p-subgroup of H such that H/O,(H) is
supersolvable. Moreover, for x € G, we have

Ind; U = *(Ind; U) = Ind¥,"U,
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i.e., ind%[U] = ind¥,['U]. Replacing H and U in (4) by suitable conju-
gates, we obtain

(M]= X b, vy ind%[U]
(HU)e&

in a(A4 = G), where & denotes the set of pairs (H, U) consisting of:

1. asubgroup H of G with normal Sylow p-subgroup O,(H) such
that H/O,(H) is elementary,

2. an indecomposable A x H-module U such that some vertex R of
U is contained in P, and some R-source of U is a direct summand of
Resh L.

Now let (H,U) € &. Consider the H-algebra B := End ,(U). Since U is
an indecomposable A4 = H-module with vertex R, 1, is a primitive idempo-
tent in B = End,, ,(U) with defect group R, by Higman’s criterion.
By Proposition 5.2, there is a subgroup K of H with (normal) Sylow p-
subgroup R, and there is an idempotent f € BX such that f is primitive in
BR, f("fy=0forall h € H\ K, and Tr(f) = 1,.

Then V := f(U) is a direct summand of Res¥ U, and we have

U= @ 1,+hV=Ind?V
hKeH/K

as one easily verifies. Moreover, Resk 1 is indecomposable. (Note that
End ., x(V) is isomorphic to fB®f.) Thus R is a vertex of V, and Resk I
is an R-source of V. Hence ResX IV is an R-source of U, as well.
Therefore, ResX 1 is (isomorphic to) an indecomposable dlrect summe}nd
of Res/*L for some x € N,,(R). Replacing K and V' by * 'K and ¥ 'V,
respectlvely, we may assume that x = 1. Then

ind§[U] = ind§[Ind¥ V] = ind¢[V],
and K and IV have the desired properties, so the proof is complete. |

Proof of Theorem B. Apply Theorem 5.1 to the G-algebra A = & with
trivial G-action. 1

We prove a skew group algebra version of Theorem C.

5.3. THEOREM. We adopt the notation of Theorem 4.7. Assume, in
addition, that T is algebraically closed, and that, for any subgroup Q of P, all
the elements of &, are p-solvable subgroups of N;(Q)/Q. Denote by I the
set of pairs (H,U) where

1. H is a subgroup of P such that O,(H) is contained in P, and such
that H/O,(H) is a Hall p'-subgroup of an element of &gy
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2. U is an indecomposable A + H-module such that, for some g € G,
some vertex R of U is contained in OP(H ) N 8P, and some R-source of U is a

direct summand of RespEN.

Then there are a.y ;) € k (H,U) €9) such that

[M]= X A, vy ind[U]
(H,U)eo

in ka(A = G).

Theorem 5.3 is a corollary of Theorem 4.7 and the following result
of [10]:

5.4. THEOREM [10, Theorem 3.1]. Let H be a Hall p'-subgroup of a finite
p-solvable group G, let A be a G-algebra, and let e be an idempotent in AY,.
Then there is an idempotent f € A" such that fCf) =0 for all g € G\ H
and Tri(f) =e.

Theorem 5.4 serves as a basis for the proof of Proposition 5.2 in [10]. We
need a module version of this result:

5.5. CorOLLARY. Let N be a normal subgroup of a finite group G such
G /N is p-solvable, let H/N be a Hall p'-subgroup of G, and let A be a
G-algebra. Then any relatively N-projective A * G-module M is induced from
H,i.e., M = Ind¥ L for some A * H-module L.

In particular, any projective #G-module, for some finite p-solvable
group G, is induced from a Hall p’-subgroup of G. This is a classical
result of Fong [8]. On the other hand, Theorem 5.4 can also be regarded as
a generalization of Green’s indecomposability theorem.

_ Proof of Corollary 55. Set G == G /N and set H == H/N. Consider the
G-algebra B :== End ,, ,(M). Since P is relatively N-projective, we have
1, =id, = Trg(B) = Tri(B)
for some B e End,, y(M) =B, by Higman's criterion, i.e., 1, € B.
Thus, by Theorem 5.4, there is an idempotent in B such that f¢f) =0
for all g€ G\ H and id,, = 1, = TrG(f) = Tr$(f). Thus f(M) is a

direct summand of Res% M, and we have

M= @ 1,xgf(M)=Indff(M),
gHeG/H

so we are done. |

Proof of Theorem 5.3. In view of Theorem 4.7, it suffices to consider
the case that P is contained in some normal p-subgroup Q of G, and that
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G/Q € &,. In particular, G is p-solvable. Moreover, M is relatively
Q-projective. By Corollary 5.5, M = Ind$, L for some A * H-module L,
where H/Q is a Hall p’-subgroup of G/Q. Thus [M]=ind§[L] in
ka(A+G), and Q is a normal Sylow p-subgroup of H. Conjugating if
necessary, we may assume that P is also a vertex of L, and N is a
P-source of L. This completes the proof. |

Theorem C now follows immediately by choosing A4 := & in Theo-
rem 5.3.

Our proof of Proposition D will essentially be based on Proposition 3.6.
Before we embark on the proof, let us recall a simple fact about idempo-
tents. Let 4 be a G-algebra, and let e and f be idempotents in A%, As
mentioned in the paragraph preceding Proposition 5.2, Ae and Af are
A # G-direct summands of A4, where A(1, —¢) and A(1, — f) are com-
plements of Ae and Af in A, respectively. It is easy to see that Ae and Af
are isomorphic A4 = G-modules, if and only if there are elements a € e4°f
and b € f4% such that e = ab and f = ba. The latter assertion in turn is
equivalent to saying that e and f are conjugate by a unit in A°, as one
easily shows using the Krull-Schmidt theorem.

Proof of Proposition D. (=) The implication “= " is trivial.

(=) First of all, assume that A4 is a G-algebra over F. Denote by #
the set of cyclic p’-subgroups of G. By assumption and the above remarks,
Resé Ae and ResZ Af are isomorphic A4 * C-modules for each C € #.
Moreover, Ae and Af are relatively 1-projective A * G-modules since
e,f€ AY. Hence Ae and Af are projective A4 * G-modules since these
modules are plainly projective as A-modules. Thus res%[ Ae] = res%[ Af]
in Ko(A4*C) forall C € .

By Artin’s induction theorem for the Brauer character ring, there are a
rational number a, and an FC-module L. for C € & such that

1= Z ac indcc;[LH]
Ce¥®

in QG,(FG). Therefore, by Proposition 4.6, we have

[Ae] = [Ae]-1= ) ac[Ae]- (ind?[L,])

Ce®

Y. acindg((res¢[ Ae]) - [Ly])
Ce®

Y acind@((res¢[Af])-[Lyl) = - = [4f]

Ce®
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in QK (A4 = G). Since K,(A4 *G) is a free abelian group, the canonical
map

Ko(A*G) - QKy(A4+G)

is injective. Thus [Ae] = [Af] in K, (A% G). Hence Ae and Af are
isomorphic A4 = G-modules, so e and f are conjugate by a unit in 4°.

Now, if A4 is a G-algebra over @ the result follows from the above
and the well-known fact that the canonical map K (A4#*G) —
K,((A4/3(@)A)* G) is an isomorphism of groups. |
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