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We study the BPS condition in the Ω-deformed N = 2 super Yang–Mills theory when one of the
ε-parameters of the background is zero. We obtain the deformed BPS equation for dyons and the
formula for their central charge. In particular, we find that the deformed BPS monopole equation has
axially-symmetric solution and is equivalent to the Ernst equation. The monopole charge is shown to be
undeformed. We construct one-monopole solution explicitly and examine its profile.

© 2012 Elsevier B.V. Open access under CC BY license.
The Ω-background deformation of N = 2 supersymmetric
gauge theories [1–3] has been attracted much attentions. The Ω-
background is characterized by two complex parameters ε1 and ε2
associated with the U (1)2 action on four-dimensional spacetime
R4 = R2 × R2. This background breaks the super-Poincaré invari-
ance in general. By introducing the R-symmetry gauge field Wilson
line, the deformed theory has one equivariantly nilpotent super-
charge. The instanton partition function can be evaluated via the
localization theorem by using the supercharge. One can reproduce
the Seiberg–Witten (SW) prepotential [4] from the instanton par-
tition function by taking the limit ε1, ε2 → 0 [2].

The theory has extended supersymmetries in two dimensions
when one of the ε-parameters is set to be zero. For ε2 = 0,
the instanton partition function gives the prepotential deformed by
ε1. The deformed prepotential is related to the Yang–Yang func-
tional in a quantum integrable system, where ε1 plays a role
of the Planck constant [5–8]. Recently, it has been pointed out that
the prepotential can be also evaluated by the period integral of
the deformed SW differential obtained from the quantization of
the SW curve [9]. The periods are identified with the exact Bohr–
Sommerfeld integral of the 1d sine-Gordon model [10–13].

The deformation of the prepotential should be also derived
from the microscopic calculation of the deformed super Yang–Mills
theory. In the SW theory, the period integrals of the SW differen-
tial are the central charges of the supersymmetry algebra, which is
related to the masses of the BPS states [14]. In this Letter we will
investigate the BPS states in the Ω-deformed theory in order to
study the deformed prepotential from the field theoretical point of
view. In the previous paper [15], we have shown that the theory
with ε1 = 0 or ε2 = 0 has the deformed N = (2,2) or (2,1) su-
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persymmetry,1 which depends on the choice of the Wilson lines.
We also derived the formula for its central charge and the BPS
monopole equation which preserves part of the supersymmetries.
In this Letter we will consider more general BPS configurations,
which give the BPS equation for dyon. We will obtain the central
charge for the BPS dyon, which includes the monopole charge as
an example. We will then study the BPS monopole solution and
evaluate its charge. For the construction of the solution, it is use-
ful to refer to axially-symmetric monopole solutions in the Yang–
Mills–Higgs model [16,17] based on the Manton’s ansatz [18].
Forgács et al. [19] showed that the monopole equation with this
ansatz reduces to the Ernst equation [20]. It can be solved by
the inverse scattering method [21] and the Bäcklund transforma-
tion [22,23]. They found that one obtains multi-monopole solu-
tions by applying multi-consecutive Bäcklund transformations to a
simple vacuum solution [24]. In this Letter we will show that the
deformed BPS monopole equation is equivalent to the same Ernst
equation. We will also solve the BPS equation associated with one-
monopole perturbatively in ε1.

We consider U (N) N = 2 super Yang–Mills theory in the
Ω-background. The theory contains a gauge field Am (m =
1,2,3,4), Weyl fermions ΛI , Λ̄I (I = 1,2), and complex scalars ϕ ,
ϕ̄ . They belong to the adjoint representation of U (N) gauge group.
Here I denotes an SU(2)I R-symmetry indices. We also introduce
R-symmetry gauge field Wilson lines AI

J and ĀI
J . The Lagrangian

is given by [25]

LΩ = 1

g2κ
Tr

[
1

4
Fmn F mn + (

Dmϕ − FmnΩ
n)(Dmϕ̄ − F mpΩ̄p

)

1 We denote N = (p,q) by supersymmetry with p chiral and q anti-chiral super-
charges.
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+ ΛIσm DmΛ̄I − i√
2
ΛI [ϕ̄,ΛI ] + i√

2
Λ̄I

[
ϕ, Λ̄I]

+ 1√
2
Ω̄mΛI DmΛI − 1

2
√

2
Ω̄mnΛIσmnΛI

− 1√
2
ΩmΛ̄I DmΛ̄I + 1

2
√

2
ΩmnΛ̄I σ̄mnΛ̄

I

+ 1

2

([ϕ, ϕ̄] + iΩm Dmϕ̄ − iΩ̄m Dmϕ + iΩ̄mΩn Fmn
)2

− 1√
2
Ā J

IΛ
IΛ J − 1√

2
A J

IΛ̄
IΛ̄ J

]
, (1)

where Fmn = ∂m An − ∂n Am + i[Am, An] is the gauge field strength,
Dm = ∂m + i[Am,∗] is the gauge covariant derivative, g is the
gauge coupling constant and the constant κ normalizes basis of
U (N). We will consider the Lagrangian in Euclidean spacetime.
We then define the Dirac matrices σm = (iτ 1, iτ 2, iτ 3,1) and σ̄m =
(−iτ 1,−iτ 2,−iτ 3,1), where τ c (c = 1,2,3) are the Pauli matrices.
σmn and σ̄mn are the Lorentz generators. We set the vacuum theta-
angle to zero for simplicity. The Ω-background is parametrized by
Ωmn and Ω̄mn which take the form

Ωmn = 1

2
√

2

⎛
⎜⎝

0 iε1 0 0
−iε1 0 0 0

0 0 0 −iε2
0 0 iε2 0

⎞
⎟⎠ ,

Ω̄mn = 1

2
√

2

⎛
⎜⎝

0 −iε̄1 0 0
iε̄1 0 0 0
0 0 0 iε̄2
0 0 −iε̄2 0

⎞
⎟⎠ . (2)

The vector fields Ωm and Ω̄m are defined by Ωm = Ωmnxn

and Ω̄m = Ω̄mnxn . They generate U (1) × U (1) actions on R4.
Two parameters ε1, ε2 break the super-Poincaré invariance in gen-
eral. However, when one of the ε-parameters ε1 or ε2 becomes
zero, the super-Poincaré invariance over the (x1, x2)-plane or the
(x3, x4)-plane recovers respectively [5].

Supersymmetries in the limit ε1 or ε2 → 0 have been studied
in [15]. They depend on the choice of the Wilson lines. To see
them, it is convenient to introduce the topological twist [26].
We identify the SU(2)I R-symmetry index with the SU(2)R spinor
index in the Lorentz group SO(4) = SU(2)L × SU(2)R . The twisted
supercharges are defined as

Q m = (σ̄m)Iα Q α I , Q̄ = δα̇
I Q̄ I

α̇ ,

Q̄ mn = −(σ̄mn)
α̇

I Q̄ I
α̇ , (3)

where Q α I and Q̄ I
α̇ are supercharges associated with the N =

(4,4) supersymmetry in the undeformed theory. The N = (4,4)

supersymmetry algebra reads

{Q m, Q̄ } = 4Pm,

{Q m, Q̄ pq} = 2
(
δnqδmp − δnpδmq − εmnpq)Pn,

{Q̄ , Q̄ } = 4
√

2 Z̄ ,

{Q m, Q n} = −4
√

2δmn Z ,

{Q̄ mn, Q̄ } = 0,

{Q̄ mn, Q̄ pq} = √
2
(
δmpδnq − δmqδnp − εmnpq) Z̄ , (4)

where Pm is the four-momentum and Z , Z̄ are the central charges.
When the Wilson line is

AI
J = −1

Ωmn
(
σ̄mn)I

J , ĀI
J = −1

Ω̄mn
(
σ̄mn)I

J , (5)

2 2
the theory has N = (2,1) supersymmetry which is generated by
Q 1, Q 2, Q̄ in the case of ε1 = 0 and by Q 3, Q 4, Q̄ in the case of
ε2 = 0. On the other hand, when the Wilson line is

AI
J = −1

2
Ω̄mn

(
σ̄mn)I

J , ĀI
J = −1

2
Ωmn

(
σ̄mn)I

J , (6)

the theory has N = (2,2) supersymmetry which is generated by
Q 3, Q 4, Q̄ 13, Q̄ 14 in the case of ε1 = 0 and by Q 1, Q 2, Q̄ 13,
Q̄ 14 in the case of ε2 = 0. We note that the N = (2,1) and N =
(2,2) transformations for the fields are deformed by the remaining
ε-parameter.

We now examine the BPS equation in the Ω-background for
the dyonic state from the energy bound. To find the bound, we go
back to the Minkowski spacetime and use the phase transforma-
tion of ϕ and Ω to set those to ϕ = −ϕ̄ , Ω = −Ω̄ and define
Ω̂ = √

2iΩ , φ = √
2iϕ such that φ and Ω are real values. Perform-

ing the Bogomol’nyi completion, the energy becomes

E =
∫

d3x
1

κ
Tr

[
1

2

{
Ei ± (

Diφ + Ω̂ j F ji
)

sin θ
}2

+ 1

2

{
Bi ± (

Diφ + Ω̂ j F ji
)

cos θ
}2

+ 1

2

(
D0φ + Ω̂ j F j0

)2
]

∓ 1

κ

∫
d3x Tr

[
Bi Diφ

]
cos θ

∓ 1

κ

∫
d3x Tr

[
Ei(Diφ + Ω̂ j F ji

)
sin θ

]
, (7)

where Ei = Fi0 (i = 1,2,3) is the electric field, Bi = 1
2 εi jk F jk is the

magnetic field and θ is an arbitrary parameter. Here x0 = −ix4 and
other vectors are defined in a similar way.

The energy bound is given by the last two terms in (7). The en-
ergy is saturated provided that the following BPS conditions are
satisfied:

Ei ± (
Diφ + Ω̂ j F ji

)
sin θ = 0,

Bi ± (
Diφ + Ω̂ j F ji

)
cos θ = 0,

D0φ + Ω̂ j F j0 = 0. (8)

The last equation in (8) and the equations of motion for the elec-
tric field imply Gauss’ law Di Ei = 0. Using the Bianchi identity
Di Bi = 0 and Gauss’ law, the energy bound is rewritten as

E = ∓{
Q m cos θ + (Q e + δQ e) sin θ

}
, (9)

where Q m, Q e are the undeformed magnetic and electric charges
defined by

Q m = 1

κ

∫
d3x∂i Tr[Biφ], Q e = 1

κ

∫
d3x∂i Tr[Eiφ], (10)

while δQ e denotes the correction to the electric charge:

δQ e = 1

κ

∫
d3x Tr

[
Ω̂ j F ji Ei]. (11)

The energy bound is minimized when the parameter θ satisfies the
following condition

sin θ = Q m√
Q 2

m + Q ′2
e

, (12)

where we have defined the deformed electric charge Q ′
e = Q e +

δQ e. When this condition is satisfied, the energy is given by the
mass of the BPS state, namely, the dyon mass,
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Mdyon =
√

Q 2
m + Q ′2

e . (13)

To see the relation between the energy bound and the cen-
tral charge in the supersymmetry algebra, we evaluate the de-
formed central charge by calculating the anti-commutation relation
of the Noether charges associated with the deformed supersymme-
try transformation in Euclidean space [15]. We have found that

Z =
∫

d3x
1√
2κ

Tr
[
iDiφBi − DiφEi − Ω̂ j F ji Ei

]
, (14)

where we have used the BPS conditions (8) and the parame-
ter (12). The mass of the BPS state defined by the deformed BPS
equations (8) is given by the deformed central charge:

Mdyon =
√

Q 2
m + Q ′2

e = √
2|Z |. (15)

We note that in the BPS monopole state Bi �= 0, Ei = 0, the ex-
pression of central charge is not deformed by the Ω-background.
However, this can be deformed through the deformed solution of
the monopole equation.

The dyon BPS state preserves parts of deformed supersymme-
tries. Substituting the BPS conditions (8) into the deformed super-
symmetry transformation of fermions in [15], we get the following
condition

e−iθ ξm
(
σm)

α I ∓ i
(
σmn)α̇

I ξ̄mn ∓ iδα̇
I ξ̄ = 0, (16)

where ξm , ξ̄mn , ξ̄ are transformation parameters associated with
the supercharges Q m , Q̄ mn , and Q̄ . This condition is the same as
the monopole case provided that ξm is replaced by e−iθ ξm .

We consider the case ε2 = 0 where the BPS equation pre-
serves at least one supercharge. Our purpose is to evaluate
the ε1-correction to the central charge. In this case the central
charge (14) becomes

Z =
∫

d3x
1√
2κ

Tr
[
i(Dφ) · B − (Dφ) · E − ε

(
x × (E × B)

)
3

]
,

(17)

where we have defined ε = −Re(ε1)/2 and introduced the three-
vectors x = (x1, x2, x3), etc. In order to evaluate it, it is neces-
sary to solve the dyon equation and substitute the solution into
the central charge. In this Letter, we consider the deformed BPS
monopole equation which is the simplest example. The deformed
BPS monopole equation is obtained by setting θ = 0, A0 = 0,
∂0φ = ∂0 Ai = 0 in Eqs. (8):

Bi ± (
Diφ + Ω̂ j F ji

) = 0. (18)

Hereafter we consider the SU(2) gauge group for simplicity.
For ε2 = 0, we see that the deformed BPS equation has the axial
symmetry around the x3-axis. Hence we use Manton’s ansatz [18]
for the fields:

Aa
i =

{
η1ρ̂

a +
(
η2 + 1

gρ

)
ẑa

}
ϕ̂ i + W1ρ̂

iϕ̂a + W2 ẑiϕ̂a,

φa = φ1ρ̂
a + φ2 ẑa, (19)

where (ρ,ϕ, z) are the cylindrical coordinates for the spatial di-
rection (x1, x2, x3), ρ̂ = (cosϕ, sinϕ,0), ϕ̂ = (− sinϕ, cosϕ,0), ẑ =
(0,0,1) and the SU(2) gauge index a runs 1, 2, 3. ηα , Wα and
φα (α = 1,2) are functions of (ρ, z). Substituting (19) into the de-
formed BPS equation (18), we obtain
−∂3η1 + η2W2 = ∂ρφ1 − W1φ2 + ερ

(
∂ρη1 + η1

ρ
− W1η2

)
,

(20)

−∂3η2 − η1W2 = ∂ρφ2 + W1φ1 + ερ

(
∂ρη2 + η2

ρ
+ η1W1

)
,

(21)

∂ρη1 + η1

ρ
− W1η2 = ∂3φ1 − W2φ2 + ερ(∂3η1 − η2W2), (22)

∂ρη2 + η2

ρ
+ η1W1 = ∂3φ2 + W2φ1 + ερ(∂3η2 + η1W2), (23)

∂ρ W2 − ∂3W1 = −η1φ2 + η2φ1, (24)

where ∂ρ = ∂
∂ρ , ∂3 = ∂

∂z . We have chosen the minus sign in the
BPS equation (18). These equations are invariant under the gauge
transformations [27]:

W ′
1 = W1 + ∂ρΛ, W ′

2 = W2 + ∂3Λ,

φ′
1 = cosΛφ1 + sinΛφ2, φ′

2 = cosΛφ2 − sinΛφ1,

η′
1 = cosΛη1 + sinΛη2, η′

2 = cosΛη2 − sinΛη1, (25)

where Λ is a function of (ρ, z). For ε = 0, these equations were
shown to be equivalent to the Ernst equation and solved by
Forgács et al. [19] by using the Bäcklund transformation technique.
We modify their gauge-fixing conditions to

W1 = η1, W2 = −φ1 − ερη1. (26)

Then Eqs. (20) and (24) become equivalent. Eq. (21) becomes

−∂3η2 = ∂ρ(φ2 + ερη2). (27)

This can be solved by the following ansatz:

η2 = ∂ρ f

f
, φ2 + ερη2 = −∂3 f

f
, (28)

where f is a function of (ρ, z) to be determined by other equa-
tions. Under this ansatz, (20) and (24) reduce to

∂ρ( f φ1 + ερ f η1) = −∂3( f η1). (29)

This also can be solved as

η1 = ∂ρψ

f
, φ1 + ερη1 = ∂3ψ

f
, (30)

where ψ is also a function of (ρ, z). The remaining Eqs. (22)
and (23) give the equations for f and ψ :

f

(
∂2
ρ f + 1

ρ
∂ρ f + ∂2

3 f

)

− (∂ρ f )2 − (∂3 f )2 + (∂ρψ)2 + (∂3ψ)2 = 0, (31)

f

(
∂2
ρψ + 1

ρ
∂ρψ + ∂2

3 ψ

)
− 2∂ρ f ∂ρψ − 2∂3 f ∂3ψ = 0. (32)

They do not include the parameter ε and coincide with the
Ernst equation [20]. Therefore we can construct the deformed BPS
monopole solution from the potentials f and ψ .

In summary, we have obtained the following solution of the
deformed BPS monopole equation:

η1 = ∂ρψ

f
, η2 = ∂ρ f

f
, W1 = ∂ρψ

f
, W2 = ∂3ψ

f
,

φ1 = −∂3ψ + ερ∂ρψ
, φ2 = −∂3 f + ερ∂ρ f

, (33)

f f
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Fig. 1. Profile of Tr φ2 for v = 1.
where f and ψ are the solutions of the Ernst equations (31), (32).
We note that the gauge field in this solution is not deformed by ε .
Its magnetic charge can be rewritten without using the scalar field:

Q m =
∫

d3x Ba
i Ba

i . (34)

Therefore the magnetic charge is not deformed by ε . To demon-
strate this fact explicitly, we construct deformed one-monopole
solution and evaluate its magnetic charge. The deformed solution
can be constructed from the Ernst potential for the undeformed
one-monopole solution [28,19]

f1MP = ρ/G, ψ1MP = P/G,

G = r

sinh vr
+ r cosh vz coth vr − z sinh vz,

P = z cosh vz − r sinh vz coth vr, (35)

where r = √
ρ2 + z2 and v = 〈φ〉 is the vacuum expectation value

of the scalar field in the undeformed theory with spherical sym-
metry. In the deformed theory, the asymptotic behavior of the
solution depends on the direction of the point at infinity. Here we
fix the value of v as that of undeformed one. Substituting (35)
into (33), we obtain the deformed one-monopole solution. We plot
the gauge invariant quantity Tr φ2 for ε = 0 and ε = 1 in Fig. 1.
We see that for ε = 0, it is spherical symmetric and thus isotropic
in the ρ- and the z-direction. For ε = 1, it receives the deforma-
tion which breaks the spherical symmetry. It increases in the re-
gion z > 0 and thus becomes anisotropic. As we mentioned above,
its magnetic charge remains undeformed:

Q m = 4π v. (36)

One can also solve the deformed monopole equation in a dif-
ferent approach. For ε = 0, we get the solution of the form [16,17]

φ
(0)
1 = vρ

r
H(r), φ

(0)
2 = vz

r
H(r),

η
(0)
1 = − z

r2
F (r), η̃

(0)
2 = ρ

r2
F (r),

W (0)
1 = z

r2
F (r), W (0)

2 = − ρ

r2
F (r), (37)

where η̃2 = η2 + 1/ρ , and F , H are defined by

F (r) = 1 − vr
, H(r) = coth vr − 1

. (38)

sinh vr vr
The superscript (0) stands for the undeformed solution. This is
gauge-equivalent to the solution associated with (35). The de-
formed solution can be obtained perturbatively by introduc-
ing ε-correction to this undeformed solution as in the case of
monopoles in non-commutative field theories [29,30]. Thus we ex-
pand the deformed solution as

Xα = X (0)
α + ε X (1)

α + · · · , (39)

where Xα = η1, η̃2, Wα,φα and α = 1,2. We assume that the
ε-correction has the following form:

X (1)
α = 1

rn1
Pn2(ρ, z)Pn3

(
H(r), F (r)

)
, (40)

where we denote Pn(s, t) by a polynomial of s and t which has de-
gree n. When n1 = 3, n2 = 3, n3 = 1 and we impose the regularity
at the origin and finiteness at the infinity on the solution, we find
that the corrections

φ
(1)
1 = zρ F

r2
, φ

(1)
2 = 1 − ρ2 F

r2
, (41)

η
(1)
1 = η̃

(1)
2 = W (1)

1 = W (1)
2 = 0, (42)

satisfy the deformed BPS equation and there are no higher-order
corrections. This solution has the same profile as in Fig. 1. In this
approach the gauge field is not deformed by ε . The charge remains
undeformed and coincides with (36).

We now discuss the central charge in the SW theory. In [10,11],
the deformed prepotential has been obtained by the deformation
of the SW theory, which implies that the central charge is ex-
pressed by the period integrals on the deformed SW curve. The re-
lation becomes

Z = nea + nmaD , aD = ∂F
∂a

, (43)

where ne and nm are the electric charge number and the mag-
netic charge number respectively and F is the deformed prepo-
tential and a = v/

√
2. We have shown that the magnetic charge

of the BPS monopole is not deformed by ε . One can consider the
BPS state with purely electric charge: the W-bosons. By examining
their mass under the condition ϕ = −ϕ̄ and Ω = −Ω̄ , we see that
the mass is not deformed by ε . Therefore, in the Manton ansatz
and the perturbative approaches, the central charge for the purely
magnetic or electric BPS state is not deformed by ε . It is not clear
whether there are ε-corrections for the dyon state because the
central charge formula (17) contains the ε-dependent term. It is
important to study the BPS dyon solution and its central charge in
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order to determine the classical prepotential. It is also an interest-
ing problem to investigate the perturbative corrections to the BPS
mass since the perturbative part of the prepotential receives the
ε-corrections [10].

In this Letter we have studied the BPS monopole equations us-
ing the approach of Forgács et al. It is interesting to study the
Nahm construction [31,32] for monopoles in the Ω-background
and its relation to the present approaches. In the string theory,
the undeformed Nahm construction is naturally understood by the
brane configuration [33] and the Ω-background is realized as a
certain N = 2 supergravity background [34,25]. Hence if we find
the deformed Nahm construction, we may obtain the insight of the
stringy realization of the monopole in the Ω-background [35,36].
The deformed monopole solutions that we have derived would be
helpful to find its construction.
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