
A Learning Algorithm for Deterministic
Finite Automata using JFLAP 1

Mikel Alecha and Montserrat Hermo
Dpto. de Lenguajes y Sistemas Informáticos.

Facultad de Informática. Universidad del Páıs Vasco.
Paseo Manuel de Lardizbal, 1
20018-San Sebastián, Spain.

Abstract

The JFLAP package is a free, interactive visualization, and teaching tool for formal languages. JFLAP is
based on the principle that a picture of a concept can be easier to understand than a textual representation.
With the help of this package, we implement Dana Angluin’s algorithm which is able to learn Deterministic
Finite Automata. The use of JFLAP allows users to visualize each step in the process of learning. The
protocol used by the algorithm is called exact learning from membership and equivalence queries. This
protocol was also introduced by Dana Angluin, who showed that her learning algorithm discovers the
unique minimum automaton coherent with the queries in an efficient running time.

Keywords: Exact Learning Model, Deterministic Finite Automata, JFLAP

1 Introduction

Dana Angluin [2] considers the problem of learning a representation class R for a
concept class C by allowing the learning algorithm to make specific kinds of queries
about the unknown target concept c ∈ C. For example, if R is the class of Deter-
ministic Finite Automata DFA over alphabet Σ, then the concept class is the set
of Regular Languages over Σ, and a target concept is a particular regular language
L ⊆ Σ∗.

Among the types of queries Dana Angluin considers are the following.

– Membership: The input to a membership query is an element w whose answer
will be YES if w ∈ c or NO if w �∈ c. In our example w ∈ Σ∗ and the answer will
be YES as long as w ∈ L.

– Equivalence: The input is a hypothesis h ∈ R and the output is YES if ch ≡ c,
where ch is the concept represented by h, and NO otherwise. If the answer is NO

1 This work has been partially supported by Spanish project TIN2007-66523

Electronic Notes in Theoretical Computer Science 248 (2009) 47–56

1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.07.058

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82280142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

an element x in the symmetric difference of ch and c is returned. If x ∈ c−ch then
x is called a positive counterexample. Otherwise, it is a negative counterexample.
In our example the hypothesis is a particular deterministic finite automaton M ∈
DFA. If L(M) �≡ L, then the counterexample must be a string of Σ∗.

The particular selection of a counterexample is assumed to be arbitrary, that is, a
successful learning algorithm must work no matter what counterexample is provided.
Moreover, the algorithm must output a representation of a hypothesis equivalent
to the target concept c, and has to do so in time polynomial w.r.t. the size of
the minimum representation for c, and the length of the largest counterexample
received. When this occurs, it is said that R is efficiently exactly learnable with
membership and equivalence queries.

In our example, the learning algorithm must output a particular M ∈ DFA, such
that L(M) = L and it must work in time polynomial w.r.t. the size of the minimum
automaton that recognizes L and the length of the largest string w ∈ Σ∗ given as
counterexample.

In [1] it was showed that the DFA class is efficiently exactly learnable with
membership and equivalence queries. Moreover, the algorithm finds out the unique
minimum automaton equivalent to the target language.

In this paper, we present an implementation of the learning algorithm for DFA
following the ideas in [3,5]. What is new is the use of the JFLAP tool [4] for visual-
izing the steps of the algorithm. Our algorithm asks the user for strings that must
be answered depending on whether they are in the target language (obviously, the
precondition of the algorithm is that the target language must be regular). Addi-
tionally, when the algorithm asks the user for a particular automaton, it provides
a visual picture of it through the JFLAP tool. This is very useful because it makes
the task of finding a counterexample if the automaton given is not equivalent to the
target language easier.

The application is publicly available on http://www.sc.ehu.es/jiwhehum2/
DFA/dfa.jar/ and the readers can execute it as long as they have a JAVA virtual
machine.

The rest of the paper is organized as follows. In the next section we explain how
the algorithm is able to learn DFA using a particular example. Two other examples
are presented in section 3. Section 4 describes some implementation details. Finally,
section 5 concludes.

2 The Learning Algorithm Trough an Example

Since Dana Angluin’s algorithm and its different versions are sufficiently known in
this field and have been also referenced in the bibliography of this paper, we are
not going to give an in-depth analysis of the structure of the used algorithm and
the way it works. Rather than that, we are going to give a brief summary of its
method of operation and then we will proceed to show the basics of its execution
in our application through an example and a series of captions.

Let us begin with a general overview of what the algorithm does. As previously

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–5648

said, the whole process involves requesting specific information from an external
source (in our case, the user) and processing it to expand the knowledge of the
concept. More specifically, the algorithm starts by gathering basic information of
the target (a particular regular language). Once it has done this, it enters in a loop
consisting of two phases: first, with guidance from the user, who has to answer a set
of membership queries, it builds an hypothesis automaton; once it has done this,
it shows the hypothesis to the user and queries whether that hypothesis exactly
recognizes the target or not. If it does, the process ends; otherwise, it asks the user
for information on why its hypothesis is different from the target, processes it and
begins the loop again.

Now, the example we are going to use to see a more detailed view is the au-
tomaton built when the target is the language

L = {w ∈ {a, b, c}∗ : |w|a mod 2 = 0 ∧ |w|b mod 2 = 1}.

That means L contains the strings over alphabet {a, b, c} that have an even number
of a’s and an odd number of b’s.

The first step is to define the alphabet for the application, something it will
request before starting the execution of the learning algorithm. Once a working
alphabet has been entered, the algorithm starts by asking whether the empty string
is accepted or not. In other words, whether this string is inside of the target
language. The responses to membership queries are put in through a simple interface
consisting of Yes/No buttons. The application stores the answers given for later
use, so that the user is not asked the same membership query more than once.
Additionally, all given answers are also accessible by the user, to be checked if
necessary.

In our case the answer to the first query must be No. Then the hypothesis
automaton M1 (see figures above) is built and displayed so that the user can compare
it with L. At this point the algorithm needs to know whether L(M1) = L. If that
is not the case the algorithm requires a counterexample to justify this statement,

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–56 49

which the user has to input through an interface for equivalence queries. In our
example, a valid counterexample for M1 could be the string aabc.

Next, the algorithm needs to process the information gathered from this coun-
terexample into its main data structure: the classification tree. Another series of
membership queries will be made to the user for this purpose in the same manner as
before, also storing the results for further reusability later on. Once the algorithm
considers it has gathered enough information in the classification tree, it is ready
to once again start the process of building an hypothesis automaton M2. M2 has
one more state than M1.

In our case, before constructing M2, the strings the algorithm asks for and their
respective answers are:

a b c aabca aabcb aabcc

No Yes No No No Yes

As L(M2) �= L, the user has to provide another counterexample. For instance the
string ab. With this information the algorithm proceeds to ask all these membership
queries:

cb aabcab aabcbb aa aab abb ac acb

Yes No Yes No Yes No No No

Next, the algorithm produces M3. If the user decides to give the string baa as
counterexample, then the new set of membership queries is as follows:

ba bab aabcaa aba aca babb baba bac bacb baca

No No Yes Yes No No No No No Yes

Now, the hypothesis M4 verifies that L(M4) = L and the process can finish if
the user confirms it. As we have said before, the algorithm finds out the unique
minimum automaton equivalent to the target language.

To finish this section, it is worthwhile to note that the number of times the
main loop of the learning algorithm is executed is exactly size(M4). That is, the
number of states in M4. This is because the algorithm always starts by considering
a one-state automaton and increases the state count by one during each loop. In
addition, each execution of the main loop requires to update the classification tree
with the help of a single counterexample. If the length of this counterexample is
m, then this process requires at most m operations. Therefore, we have size(M4)
main loop executions, each of which requires O(size(M4) + n) operations, where n

is the length of the longest counterexample.

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–5650

3 Two other examples

The available application 2 keeps all the answers supplied by the user through the
execution. Therefore, as we have said before, the user is not asked the same member-
ship query more than once. Moreover, the algorithm always builds a new hypothesis
automaton which is coherent with previous counterexamples.

For instance, let L be the language over alphabet {0, 1} whose strings contain
the substring 11 but do not contain the substring 00. Formally

L = {w ∈ {0, 1}∗ : 11 ⊆ w ∧ 00 �⊆ w}

2 http://www.sc.ehu.es/jiwhehum2/DFA/dfa.jar

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–56 51

The algorithm starts asking whether the empty string is in L or not. In this
case the answer is No and the hypothesis built by the algorithm is M1.

A valid counterexample for M1 is the string 01101. If this is the counterexample
provided by the user, then the algorithm begins to ask a sequence of membership
queries.

0 1 011010 011011 01 011 11 010 0101

No No Yes Yes No Yes Yes No No

Next the algorithm builds M2. If the user decides to give the string 011001 as
counterexample, then the new sequence of membership queries is

0110 01100 0110100 010110

Yes No No Yes

Once the algorithm shows the hypothesis M3, if the user gives as counterexample
the string 00110, then the membership queries asked by the algorithm are the
following

00 001 0011 01011 010011 000 0001 00011 00111 010011

No No No Yes No No No No No No

At this moment, the algorithm shows the hypothesis M4 which is the minimum
automaton recognizing L.

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–5652

Regarding the fact that all the answers provided by the user are stored during
the process, it should be noted that the user has the possibility of displaying all this
information at anytime.

For instance, in the case of this example, the above figure shows the information
provided by the algorithm when the user asks for the classification of strings.

A third example finishes this section. The target language is the set of natural
numbers that are multiple of 3. Remember that to find out if a number is divisible
by 3, we must add up all the digits in the number and check if the sum is divisible
by 3. For example: the sum of the digits of 12123 is 1 + 2 + 1 + 2 + 3 = 9, As 9 is
divisible by 3, therefore 12123 is too. The target language can be defined as follows

L = {n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : n mod 3 = 0}

According to this definition the string 000360 represents the natural 360 and
belongs to L. We consider 0 (and consequently any string of the form 0i with i ≥ 1)
in the target language, as well as the empty string.

The application shows M1 as hypothesis and, once the string 14 is given as
counterexample, and after making a sequence of membership queries, it shows M2

that recognizes L.

Between M1 and M2, the sequence of membership queries is as follows

0 1 2 3 4 5 6 7 8 9 140 141

Yes No No Yes No No Yes No No Yes No Yes

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–56 53

142 143 144 145 146 147 148 149 24 44 54

No No Yes No No Yes No No Yes No Yes

74 84 1404 1424 1434 1454 1464 1484 1494 10 104

No Yes Yes No Yes No Yes No Yes No No

11 114 12 13 134 15 16 164 17 174 18 19 194

No Yes Yes No No Yes No No No Yes Yes No No

Next figure shows the current classification of strings when the user asks for this
information

4 Implementation

The algorithm has been implemented in the Java language for one main reason: to
be able to make use of the necessary JFLAP tool source code modules. This is also
followed by machine compatibility reasons, but one of the purposes of this tool was
to facilitate the user’s comprehension of the hypothesis automata returned by the
algorithm through their graphical representation.

The implementation is divided in two sections based on this: on one side lie the
main algorithm procedures, the basic data structures and the user interaction inter-
face; on the other side lies the graphical representation interface for the hypothesis
automata, which connects the previous section with the JFLAP modules that allow
management of the automaton data structure and those that portray the graphical
representation on-screen.

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–5654

The data structures are fairly simple: the strings over the alphabet that are
queried or given as counterexamples are managed through a vector and the classifi-
cation tree through a binary tree. All of them have been built within their respective
Java classes, along with their own constructors and methods, except some such as
the automaton data structure, which remains a JFLAP class.

The class responsible for handling the graphical representation is a more com-
plex one, as it must be the one that handles both the requests of the running
algorithm and the communication with the different JFLAP modules. Much of this
communication, such as the events of reshaping the representation of the displayed
automaton, is controlled by the JFLAP modules once they have been properly
linked. Other operations, for instance the assembly and disassembly of the automa-
ton, require to be handled explicitly and to use direct calls to the various methods
of the automaton data structure.

Moreover, the application can handle the addition of many optional features be-
yond the execution of the algorithm and the graphical display of automata. One of
the earliest implemented ones was the ability to memorize the answers to previously
answered membership queries, which reduced the work on the user’s side consid-
erably. Another important one was to allow the users to access the classification
of said answered queries through a new interface, which allows them to view those
values when necessary.

Other features are the option to reset the application at any time and the ability
to save the on-screen built automaton to a file recognized by the JFLAP tool. This
last feature is particularly useful in the case the user would like to further use an
automaton structure learned through our application. It makes it possible to save
an automaton, load it through JFLAP and then edit it with the various automata-
related tools.

By default, the application is set to answer equivalence queries by itself when-
ever possible. Based on the information learned and stored up to the point of an
equivalence query, it automatically checks the built hypothesis automaton to see
whether any of the memorized words can act as a counterexample. This way, if any
of the words do serve as a counterexample, the query is never shown to the user, who
would need to answer equivalence queries only when the application acknowledges
it requires input from the user to continue.

It is still possible for the user to deactivate this function, however. The learning
process becomes less efficient this way, but it allows the user to follow an execution
closer to the actual learning algorithm [5]: the learning iterations become more
clearly separated from each other. It also allows users to experiment with different
counterexample inputs of their own, rather than the ones chosen by the program. It
is possible to turn this function on and off at any time during the execution through
the options menu.

One of the latest implemented features was also a system to undo user actions
during the learning process. This feature is particularly useful, as it saves users the
need to restart the learning process from scratch in case they accidentally answer a
query incorrectly or input an undesired counterexample. This was rather necessary

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–56 55

for users who want to work with big and complex automata, whose learning process
involves a large sum of queries and fairly long words.

Still, due to the internal structure of the algorithm and the implementation
around it of the application, the undo function only becomes available to the user
after the process’ first counterexample is given. It is not possible to undo actions
previous to that point once it is activated, either. The source of this is the way the
algorithm initializes its data structure with the information it receives up to that
point, following a different process from the rest of the learning process’ iterations.

The resulting interface allows the user to receive queries from the algorithm, to
input answers and counterexamples, to observe the graphical representation of an
automaton and to change the on-screen position of its different states for its better
visibility and comprehension. It also allows the user to follow the learning process
step-by-step in a didactic manner.

5 Conclusions

JFLAP integrates visual and interactive tools allowing users to gain hands-on expe-
rience with theoretical concepts. In the case of the learning algorithm, this package
makes the interaction of the user with the learner easier. JFLAP has, among oth-
ers, the ability of comparing finite automata; transforming nondeterministic finite
automata and regular expressions into minimal deterministic finite automata; de-
ciding whether a particular string is recognized by a finite automaton. This means
that even the package would allow us to present the learning algorithm interacting
directly with JFLAP itself.

JFLAP started as a series of tools with students working under the direction of
Susan Rodger (http://www.jflap.org/). We plan to send her the implementation
of the learning algorithm to add a new functionality to JFLAP.

References

[1] D. Angluin, Learning regular sets from queries and counterexamples, Information and Computation,
Vol. 75, 1987, 87–106.

[2] D. Angluin, Queries and concept learning, Machine Learning, Vol. 2, 1988, 319–342.

[3] J.L. Balcázar, J. Dáz, R. Gavaldá and O. Watanabe, Algorithms for Learning Finite Automata from
Queries: A Unified View. Chapter in Advances in Algorithms, Languages, and Complexity, D.-Z. Du
and K.-I. Ko (eds.), Kluwer Academic Publishers, 1997, 73–91.

[4] S.H. Rodger and T.W. Finley, JFLAP. An interactive Formal Languages and Automata Package, Jones
and Bartlett Publishers, 2006. http://www.jflap.org/.

[5] M.J. Kearns and U.V. Vazirani, An introduction to Computational Learning Theory, MIT Press, 1997
(Second printing).

M. Alecha, M. Hermo / Electronic Notes in Theoretical Computer Science 248 (2009) 47–5656

http://www.jflap.org/

	Introduction
	The Learning Algorithm Trough an Example
	Two other examples
	Implementation
	Conclusions
	References

