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1. Introduction

In the last few years, so-called subriemannian structures have been largely studied in sev-
eral respects, such as differential geometry, geometric measure theory, subelliptic differential
equations, complex variables, optimal control theory, mathematical models in neurosciences,
non-holonomic mechanics, robotics. Roughly speaking, a subriemannian structure on a manifold
M is defined by a subbundle H of the tangent bundle T M, that defines the “admissible” direc-
tions at any point of M (typically, think of a mechanical system with non-holonomic constraints).
Usually, H is called the horizontal bundle. If we endow each fiber H, of H with a scalar product
(,)x, there is a naturally associated distance d on M, defined as the Riemannian length of the
horizontal curves on M, i.e. of the curves y such that y'(r) € H,(;. Nowadays, the distance d
is called Carnot—Carathéodory distance associated with H, or control distance, since it can be
viewed as the minimal cost of a control problem, with constraints given by H.

Among all subriemannian structures, a prominent position is taken by the so-called Carnot
groups (simply connected Lie groups G with stratified nilpotent algebra g: see e.g. [3,25,27]),
which play versus subriemannian spaces the role played by Euclidean spaces (considered as
tangent spaces) versus Riemannian manifolds. In this case, the first layer of the stratification
of the algebra — that can be identified with a linear subspace of the tangent space to the group
at the origin — generates, by left translations, our horizontal subbundle. Moreover, through the
exponential map, Carnot groups can be identified with the Euclidean space R" endowed with a
(non-commutative) group law, where n = dim g.

In this picture, horizontal vector fields (i.e. sections of H) are the natural counterpart of the
vector fields in Euclidean spaces. In the Euclidean setting, several questions in pde’s and cal-
culus of variations (like, e.g., non-periodic homogenization for second order elliptic equations
or semicontinuity of variational functional in elasticity) can be reduced to the following prob-
lem: given two sequences (Ey)x and (D,,), of vector fields weakly convergent in LZ(R”), what
can we say about the convergence of their scalar product? The compensated compactness (or
div—curl) theorem of Murat and Tartar [18,19] provides an answer: it states basically that the
scalar product (Ey, D) still converges in the sense of distributions, provided {div Dy: k € N}
and {curl Ey: k € N} are compact in ngcl (R"™) and (ngcl (R™))"@=D/2 respectively.

When attacking for instance the study of the non-periodic homogenization of differential op-
erators in a Carnot group G, it is natural to look for a similar statement for horizontal vector fields
in G. In fact, a preliminary difficulty consists in finding the appropriate notion of divergence and
curl operators for horizontal vector fields in Carnot groups. To this end, it is convenient to write
our problem in terms of differential forms, and to attack the more general problem of compen-
sated compactness for sequences of differential forms. Indeed, we can identify each vector field
Ey with a 1-form n, and each vector field Dy with the 1-form y;. Then, the compactness of
curl E, is equivalent to the compactness of dni. Analogously, denoting by * the Hodge duality
operator, the compactness of div Dy is equivalent to the compactness of xd (xyx), and hence to
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the compactness of d (xy,). With these notations, if ¢ is a smooth function with compact support
and d'V denotes the volume element in R”, then (Ex, Dx)odV = @ni A *yg.

Thus, a natural formulation of the compensated compactness theorem in the De Rham com-
plex (£2, d) reads as follows (see, e.g., [14] and [20]):

Ifl<si<o0,0<h; <nfori=1,2,and 0 < ¢ < 1, assume that af € Lféc(R”, Q%) for
i =1, 2, where ﬁ + é =1 and h; + hp = n. Assume that

af = a; weaklyin Ly (R", .Qh") as e — 0, (1)
and that
{daf}  is pre-compact in ngcl’si (R, .Qh"H) 2)
fori=1,2.
Then
/(pa‘f/\age/(pal/\az ase— 0 3)
R® R”

for any ¢ € D(R").
Thus, when dealing with Carnot groups, we are reduced preliminarily to look for a somehow
“intrinsic” notion of differential forms such that

e Intrinsic 1-forms should be horizontal 1-forms, i.e. forms that are dual of horizontal vector
fields, where by duality we mean that, if v is a vector field in R”, then its dual form v acts
as v°(w) = (v, w), for all w € R".

e Some “intrinsic” exterior differential should act between intrinsic forms. Again, the intrinsic
differential of a smooth function, should be its horizontal differential (that is dual operator
of the gradient along a basis of the horizontal bundle).

e “Intrinsic forms” and the “intrinsic differential” should define a complex that is exact and
self-dual under Hodge *-duality.

It turns out that such a complex (in fact a sub-complex of the De Rham complex) has been defined
and studied by M. Rumin in [24] and [23] ([22] for contact structures), so that we are provided
with a good setting for our theory. For sake of self-consistency of the paper, we present in Sec-
tion 2 the main features of this complex, that will be denoted by (E(, d..), where d_. : E(})' — E(})l‘H
is a suitable exterior differential. We stress now that a crucial property of d. relies on the fact that
it is in general a non-homogeneous higher order differential operator. To better understand how
this feature affects the compensated compactness theorem, we begin by sketching the basic steps
of the proof in the Euclidean setting. The crucial point consists in proving the following Hodge
type decomposition: if 0 < ¢ < 1, let «® be compactly supported differential #-forms such that

a®—~a ase—0 weaklyin L® (R", .Qh) (€))
and

{da®} is compact in W (R, 2"+1). 5)
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Then there exist h-forms w® and (h — 1)-forms ¥ ¢ such that

e w® — w strongly in LfOC(R”, .Qh);
o Y — y strongly in L} (R", 2"~1);
o o =wf +dy°.

Roughly speaking (for instance, modulo suitable cut-off functions), the proof of the decomposi-
tion can be carried out as follows (see e.g. [20]).

e let A :=38d + d§ be the Laplace operator on k-forms, where § = d* is the L? formal adjoint
of d;
e we write

af = AA ot =8d Ao +dSA ot
e we set
o :=8dA 1ot =sA  dat

that is strongly compact in Lj  (IR"), since da® is strongly compact in ngcl’s(R");
e we set

Yo =8A"1af

that converges weakly in WIL’C‘Y (R™) and hence strongly in Lj .(R").
If we want to repeat a similar argument, we face several difficulties. First of all, the “naif Lapla-
cian” associated with d_, i.e.

Sed + 5.

where §. = df, in general is not homogeneous (and therefore, as long as we know, we lack Rock-
land type hypoellipticity results and optimal estimates in a “natural” scale of Sobolev spaces).
Even if d. is homogeneous, as in the Heisenberg group H", such a “Laplacian” is not homoge-
neous. For instance, on 1-forms in H!, §.d, is a 4th order operator, while d.§. is a 2nd order
one. This is due to the fact that the order of d. depends on the order of the forms on which it
acts on. In fact, d. on 1-forms in H! is a 2nd order operator, as well as its adjoint 6. (which acts
on 2-form), while 8. on 1-forms is a first order operator, since it is the adjoint of d. on O-forms,
which is a first order operator.

Though in the particular case of 1-forms in H! this difficulty can be overcame as in [2], by
using the suitable homogeneous 4th order operator é.d. + (d.8.)* defined by Rumin [22] that
satisfies also sharp a priori estimates, the general situation requires different arguments.

In general, the lack of homogeneity of d. can be described through the notion of weight of
vector fields and, by duality, of differential forms (see [24]). Elements of the jth layer of g are
said to have (pure) weight w = j; by duality, a 1-form that is dual of a vector field of (pure)
weight w = j will be said to have (pure) weight w = j. Vector fields in the direct sum of the
first j — 1 layers of g are said to have weight w < j. Thus, a non-vanishing 1-form is said to
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have weight w > j if it vanishes on all vectors of weight w < j. This procedure can be extended
to h-forms. Clearly, there are forms that have no pure weight, but we can decompose E(})' in the
direct sum of orthogonal spaces of forms of pure weight, and therefore we can find a basis of
Eg given by orthonormal forms of increasing pure weights. We refer to such a basis as to a basis
adapted to the filtration of Eg induced by the weight.

Then, once suitable adapted bases of h-forms and (& + 1)-forms are chosen, d. can be viewed
as a matrix-valued operator such that, if & has weight p, then the component of weight g of d .«
is given by a differential operator in the horizontal derivatives of order ¢ — p > 1, acting on the
components of «.

The following two simple examples can enlight the phenomenon. We restrict ourselves to 1-
forms, and therefore we need to describe only Eé and Eg. For more examples and proofs of the
statements, see Appendix B.

Let G := H! = R3 be the first Heisenberg group, with variables (x, y, ). Set X := d, + 2ya;,
Y := 0, — 2x0;, T := 9,. The dual forms are respectively dx, dy and 6, where 6 is the contact
form of H!. The stratification of the algebra g is given by g = Vi @ V>, where V| = span{X, ¥}
and V, = span{T'}. In this case, Eé = span{dx, dy} and E(Z) = span{dx A0,dy A0}. These forms
have respectively weight 1 (1-forms) and 3 (2-forms). As for 1-forms, the exterior differential d,.
acts as follows:

1
de(axdx +aydy) = —Z(X2oty —2XYax + YXaX) dx N6

1 2
— Z(ZYXay —Y?ax — XYay)dy A
= Pi(ax,ay)dx A0+ Pry(ax,ay)dy A6.

Notice that Py, P> are homogeneous operators of order 2 (=3 — 1) in the horizontal derivatives.

Consider now a slightly different setting. Let G := H! x R, and denote by (x, y, t) the vari-
ables in H! and by s the variable in R. Set X, Y, T as above, and S := 9. The dual form of S is ds.
The stratification of the algebra g is given by g = V| @ V,, where V| = span{X, Y, S} and V, =
span{T'}. In this case E} = span{dx,dy,ds} and E2 = span{dx Ads,dy Ads,dx A6,dy A 6}.
Thus, all 1-forms have weight 1, whereas 2-forms have weight 2 (dx A ds and dy A ds) and 3
(dx A6 and dy A 0). The exterior differential d. on 1-forms acts as follows:

de(axdx +aydy +asds) = Pi(ax,ay)dx A6
+ Py(ax,ay)dy A0+ (Xas — Sax)dx Nds
+ Yas — Say)dy Ads,

where P, P, have been defined above. Thus, the components of d. are homogeneous differential
operators of order 2 or 1.

To overcome the difficulties arising from the lack of homogeneity of d., we rely on an argu-
ment introduced in [24] (when dealing with the notion of CC-elliptic complex). Let us give a
non-rigorous sketch of the argument. Denote by A the positive scalar sub-Laplacian associated
with a basis of the first layer of g (Ag is a Hormander’s sum-of-squares operator). Remember
that, once adapted bases of Eé’ and ES"H are chosen, d. can be viewed as a matrix-valued dif-
ferential operator, whose entries are homogeneous operators in the horizontal derivatives. Then
we can multiply d. from the left and from the right by suitable diagonal matrices whose entries
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are positive or negative fractional powers of Ag, in such a way that all entries of the resulting
matrix-valued operator are 0-order operators. By the way, this notion of order of an operator,
as well as all combination rules that are applied, have a precise meaning only in the setting
of a pseudodifferential calculus. We rely on the CGGP-calculus (see [5] and Appendix A). In
such a way, we obtain a “O-order exterior differential” d,, and eventually a “O-order Laplacian”
JC (c?,;)* + (c?c)*d~c, that, thanks to [24] and [5], has both a right and a left parametrix. Thus, we
can mimic the proof we have sketched above for the De Rham complex (again, working in a
precise pseudodifferential calculus allows the composition of different operators).

It is worth noticing that the lack of homogeneity of the exterior differential d,. affects also
the natural hypotheses we assume in order to prove Hodge decomposition and compensated
compactness theorem for forms in Ey. Indeed, in the Euclidean setting, assumptions (4) and (5)
are naturally correlated by the fact that the exterior differential d is a homogeneous operator of
order 1, which maps continuously L;j  (R") into ngcl *(R™). Instead, when we are dealing with
the complex (Eg, d.), given a sequence of #-forms a® that converges weakly L (R", E{)‘), then
the different components of d.«® converge weakly in Sobolev spaces of different negative orders,
according to the weight of the different components. For instance, if we denote by Wéﬁc’i (R") the
Sobolev space of negative order —k associated with horizontal derivatives (see Section 3), then in
our model examples H! and H! x R, with an obvious meaning of the notations, assumption (5)
for 1-forms becomes

loc

{Pi(ek.ay)} compactin Wé’z’s R"), i=12,
when G = H!, and

{Pi(af.af)} compactin W&’%(’)SC(R”), i=1,2,
as well as

{Xa§ — Say}. {Ya§ — Saj} compactin W(allosc (R™)
when G = H! x R.

Our compensated compactness result for horizontal vector fields is contained in its simplest
form in Theorem 5.1, that can be derived by standard arguments from a general statement (The-
orem 4.13) for intrinsic differential #-forms, that holds whenever all intrinsic 4#-forms have the
same pure weight (this is always true if &7 = 1).

In Section 2 we establish most of the notations, and we collect more or less known results
about Carnot groups and the basic ingredients of Rumin’s theory. In Section 3 we introduce from
the functional point of view all the function spaces we need in the sequel, with a special atten-
tion for negative order spaces (which turn out to be spaces of currents). Moreover we emphasize
the connections between our function spaces and the pseudodifferential operators of the CGGP-
calculus. In Section 4 we establish and we prove our main results: Hodge decomposition and
compensated compactness for forms (Theorems 4.1 and 4.13). In Section 5 we apply our main
results to prove a div—curl theorem for horizontal vector fields (Theorem 5.1). We illustrate sev-
eral different explicit examples, and we apply the theory to the study of the H-convergence of
divergence form second order differential operators in Carnot groups. In Appendix A we sum-
marize the basic facts of the theory of pseudodifferential operators in homogeneous groups as
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given in [5]. Moreover, we prove representation theorems and continuity properties for pseudod-
ifferential operators in our scale of Sobolev spaces. Finally, in Appendix B we write explicitly
the structure of the intrinsic differential d. and we analyze a list of detailed examples.

2. Preliminary results and notations

A Carnot group G of step «k is a simply connected Lie group whose Lie algebra g has di-
mension n, and admits a step « stratification, i.e. there exist linear subspaces Vi, ..., V, such
that

QZVIEB"‘@Vm [Vlv‘/i]z‘/i+1’ VK#{O}v ‘/l:{o} ifi>K7 (6)
where [ V7, V;] is the subspace of g generated by the commutators [X, Y] with X € Vi and Y € V;.
Let m; =dim(V;), fori =1,...,x and h; =my + --- + m; with hg = 0 and, clearly, i, = n.
Choose a basis e, ..., e, of g adapted to the stratification, i.e. such that

€h; 14155 €h; isabasisof V; foreach j=1,... «.

Let X ={X1,..., X} be the family of left invariant vector fields such that X;(0) = ¢;. Given
(6), the subset X1, ..., X,,, generates by commutations all the other vector fields; we will refer
to X1, ..., Xy, as generating vector fields of the group. The exponential map is a one to one map
from g onto G, i.e. any p € G can be written in a unique way as p = exp(p1 X1+ -+ + pnXn)-
Using these exponential coordinates, we identify p with the n-tuple (p1,..., py) € R" and we
identify G with (R”, -), where the explicit expression of the group operation - is determined by
the Campbell-Hausdorff formula. If p e G andi =1, ..., k, we put p’ = (Ph; 1415+ Pn;) €
R™i, so that we can also identify p with (p!,..., p¥) e R™ x ... x R"™ =R",
For any x € G, the (left) translation t, : G — G is defined as

I TeZ =X+ 2.
For any A > 0, the dilation §), : G — G, is defined as
8}\.()(15"‘5xn)Z()"dl'x17"'7}"d’lxn)’ (7)

where d; € N is called homogeneity of the variable x; in G (see [10], Chapter 1) and is defined
as

dj =i wheneverh; 1 +1<j<h, (8)

hence l =dj=---=dpy, <dp,+1=2<---<d, =«.
In addition, we remind that

x -8y =26(x-y)
and that the inverse x ! of an element x = (x1,...,x,) € (R", -) has the form

-1
X = (=1, ., —Xp).
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The Lie algebra g can be endowed with a scalar product (-,-), making {X1,..., X,} an or-
thonormal basis.
As customary, we fix a smooth homogeneous norm | - | in G such that the gauge distance

d(x,y) := |y~ 'x| is a left-invariant true distance, equivalent to the Carnot—Carathéodory dis-
tance in G (see [25], p. 638). We set B(p,r) ={q € G;d(p,q) <r}.

The Haar measure of G = (R", ) is the Lebesgue measure £” in R*. If A C G is L"-
measurable, we write also |A| := L"(A).

We denote by Q the homogeneous dimension of G, i.e. we set

Q:=> idim(V)).

i=1

Since for any x € G |B(x,r)| = |B(e,r)| = r2|B(e, 1)|, Q is the Hausdorff dimension of the
metric space (G, d).

The subbundle of the tangent bundle TG that is spanned by the vector fields X1, ..., X,
plays a particularly important role in the theory, and it is called the horizontal bundle HG; the
fibers of HG are

HG, =span{X(x), ..., Xm, (©)}, x€G.

A subriemannian structure is defined on G, endowing each fiber of HG with a scalar product
(-,-)x and with a norm | - |, making the basis X;(x), ..., X, (x) an orthonormal basis.

The sections of HG are called horizontal sections, and a vector of HG, is a horizontal vector.

If f is a real function defined in G, we denote by Y f the function defined by ¥ f(p) :=
f(p™1), and, if T € D'(G), then VT is the distribution defined by (YT'|¢) := (T|¥¢) for any test
function ¢.

Following [10], we also adopt the following multi-index notation for higher-order derivatives.
If I = (i1,...,in) is a multi-index, we set X/ = X' --- X,’. By the Poincaré-Birkhoff-Witt
theorem (see, e.g. [4], 1.2.7), the differential operators X I form a basis for the algebra of left
invariant differential operators in G. Furthermore, we set |I| :=i; + --- + i,, the order of the
differential operator X/, and d(I) :=dyiy + - - + d,i, its degree of homogeneity with respect
to group dilations. From the Poincaré—Birkhoff—Witt theorem, it follows, in particular, that any
homogeneous linear differential operator in the horizontal derivatives can be expressed as a linear
combination of the operators X of the special form above.

Again following e.g. [10], we can define a group convolution in G: if, for instance, f € D(G)
and g€ L] (G), we set

loc

Frg(p) = / F@sla~"p)dg for peG. ©)

We remind that, if (say) g is a smooth function and L is a left invariant differential operator, then
L(fxg)=f=*Lg.

The dual space of g is denoted by /\l g. The basis of /\1 g, dual of the basis X1, ..., X,,is the
family of covectors {61, ..., 8,}. We indicate as (-,-) also the inner product in /\1 g that makes
01, ..., 0, an orthonormal basis.
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Following Federer (see [8], 1.3), the exterior algebras of g and of /\1 g are the graded algebras

indicated as A\, g =y Ay and A" g =PI, A“g where A\gg = Ag =R and, for 1 <
k<n,

/\kg:zspan{Xi]/\--~/\X,~k: 1<ii <+ <ip<n},
k
/\ g:=span{f; A--- NG 1 <ip <--- <ip <n}.

The elements of /\; g and /\k g are called k-vectors and k-covectors.

We denote by OF the basis {0y A NG 1< <+ < i <} of/\kg.

The dual space A\'(/\; g) of /\; g can be naturally identified with A¥g. The action of a
k-covector ¢ on a k-vector v is denoted as (¢|v).

The inner product (-,-) extends canonically to /\; g and to /\k g making the bases X;; A -+ A
X;, and 6;; A --- A 0;, orthonormal.

Asin [8], 1.7.8, we denote by * the Hodge duality operator

*:/\kg<—>/\n_kg and *:/\kg<—>/\n_kg,

for1 <k <n.
If v e A\, g we define vl e /\k g by the identity (v*|w) := (v, w), and analogously we define

k
" €/ \rgforpe \'g.
To fix our notations, we remind the following definition.

Definition 2.1. If V, W are finite-dimensional linear vector spaces and L : V — W is a linear

map, we define

AL\, V= N\, W
as the linear map defined by

(ApL)(wi A -+ Avp) = L) A=+ A L(vp)

for any simple h-vector vi A---Av, € A\, V

Al /\h W — /\h 14
as the linear map defined by

((A"L) (@) |v1 A=+ Avg) = (] (ALY (w1 A=+ Avp))

for any & € /\" W and any simple h-vector vy A -+ A vy, € AV

Starting from /\, g and /\h g, we can define by left translation fiber bundles over G that we
can still denote by /\, g and /\h g, respectively. To do this, for instance we identify /\h g with
the fiber /\g g over the origin, and we define the fiber over x € G by putting

A, 8= ndz) (A, 9)
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and, respectively,

/\Zg = (A" drp71)</\:l g)

forany peGandh=1,...,n.
The inner products (-,-) on A\, g and /\h g induce inner products on each fiber A, » 8 and

/\ g by the identity
(AndT,(v), Ap drp(w))p = (v, w)
and

(A"dT,-1(@), A" dT - (ﬁ))p = (a, B).

Lemma 2.2. If p, q € G, then

Apdr, —
4 /\h,p g /\h,qp g
and
h h
Alrdr o —
VAW BV AW
are isometries onto.

Definition 2.3. If ¢ € /\1 g, o # 0, we say that o has pure weight k, and we write w(a) =k, if
o’ € Vi. Obviously,

i
w(x) =k ifandonlyif o= Z b,
J=hk—1+1
with ap, 41, ..., ap, € R. More generally, if o € /\h g, we say that o has pure weight k if « is

a linear combination of covectors 6;; A --- A6, with w(6;) + --- +w(b;,) =k.

Remark 24. If o, 8 € /\h g and w() # w(B), then (¢, B) = 0. Indeed, it is enough to notice
that, if w(@;; A---A0;) FZw@j; A---A0j,), withiy <ip <--- <ipand ji < jp <--- < jj, then

for at least one of the indices £ =1, ..., h, ig # j¢, and hence (6;; A---A6;,, 05 A--- N0, ) =0.
We have
h M
Y
Nes=D N's (10)
p:M;lr]in

where /\h’p g is the linear span of the h-covectors of weight p and M;lni“, M, are respectively
the smallest and the largest weight of i-covectors.

Since the elements of the basis ®@” have pure weights, a basis of /\h’p g is given by @"P .=
ehn /\h '? g (in the Introduction, we called such a basis an adapted basis).
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As pointed out in Remark 2.4, the decomposition in (10) is orthogonal. We denote by IT"-7
the orthogonal projection of /\h gon A"Pg.

The identification of /\h g and /\f g yields a corresponding identification of the basis @" of
A" g and O of /\2‘ g. Then " := A¥(d7,-1)O! is a basis of /\i’ g. Notice that the Lie algebra
g can be identified with the Lie algebra of the left invariant vector fields on G = R”. Hence,
the elements of (H)fc’ can be identified with the elements of ®" evaluated at the point x. Through
all this paper, we make systematic use of these identifications, interchanging the roles of left
invariant vector fields and elements of /\ g.

Keeping in mind the decomposition (10), we can define in the same way several fiber bundles
over G (that we still denote with the same symbol A"7 g), by setting A"” g := A"? g and
/\ﬁ’p g:= Ak (dt,-1) /\Z”p g. Clearly, all previous arguments related to the basis @" can be
repeated for the basis @7,

Sections of A\, g are called h-vector fields, and sections of /\h g are called h-forms. We

denote by £2;, (£2") the vector space of all smooth sections of /\ 59 (of /\h g, respectively) and
by d : 2" — "% the exterior differential acting on /-forms.

We denote also by 2”7 the vector space of all smooth A-forms in G of pure weight p, i.e.
the space of all smooth sections of /\h'p g. We have

M}rlnax
= @ Qhr, (11)

p:M;lnln

Lemma 2.5. We have d(\"P g) c N'"T'P g, ie., ifa € NP g and da # 0 is a left invariant
h-form of weight p, then w(da) = w(a).

Proof. See [24], Section2.1. O

Let now o € £2”7 be a (say) smooth form of pure weight p. We can write

a= Y b, withe; €EG).

oleohp

Then

da= " Y (Xjoa)0; A0+ Y «;ido].

oleohr J oeoh.p
Hence we can write
d=do+d +-+d,

where

doo = Z a,-d@ih

ol eohr
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does not increase the weight,

nj
dia = Z Z(X.,ai)ej N

oleohr j=1

increases the weight of 1, and, more generally,

dk(x: Z Z (onc,-)Gj /\Ql-h, k=1,...,K.

gih c@h.p wO;)=k

In particular, dj is an algebraic operator, in the sense that its action can be identified at any point
with the action of an operator from /\h gto /\h'H g (that we denote again by dp) through the
formula

(doy(x) = Y «;(x)do!' = > a;i(x)do)],

oleoh-r oheehr

by Lemma 2.5.
Analogously, 8y, the L?-adjoint of dy in £2* defined by

f(doa,ﬂ)dv =/(a, d0B)dV

for all compactly supported smooth forms « € 2" and g € £2*!, is again an algebraic operator
preserving the weight.

Definition 2.6. If 0 < h < n we set
Eg :=kerdy Nkerdy = kerdy N R(dy)™~ C "

Since the construction of E{)’ is left invariant, this space of forms can be viewed as the space of
sections of a fiber bundle, generated by left translations and still denoted by Eg.

We denote by N;l“i“ and N;"™* the minimum and the maximum, respectively, of the weights
of forms in E(})’.

If we set Eg’p = E(})l N 2P then

max
N h

El= P Eg”.

p:N;;ni“

max

Indeed, if o € Eg, by (11), we can write ¢ = ZN

b i h.p }
p=Nmin ap, with a, € 27 for all p. The as

max

sertion follows by proving that o), € Eg. Indeed, by definition, 0 = dpox = ZN

ph:N];nin doa,. But
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w(doap) # w(doay) for p # g, and hence the doa,’s are linear independent and therefore they
are all 0. Analogously, dparp, = 0 for all p, and the assertion follows.

We denote by 17 ? the orthogonal prOJGCthIl of 2" on E

We notice that also the space of forms Eo can be viewed as the space of smooth sections of
a suitable fiber bundle generated by left translations, that we still denote by Eg P

As customary, if £2 C G is an open set, we denote by £(£2, Eg) the space of smooth sections
of Eg. The spaces D(£2, Eg) and S(G, Eél) are defined analogously.

Since both Eg P and Eé’ are left invariant as /\h g, they are subbundles of /\h g and inherit

the scalar product on the fibers.
In particular, we can obtain a left invariant orthonormal basis = uo = {E } of Eé’ such that

N]l;ﬂélX
—h =h,
sh= | &, (12)
p_N;l‘nm
where Sé’ P=5"n /\h P g is a left invariant orthonormal basis of E "7 _All the elements of

Ey P have pure weight p. Without loss of generality, the indices j of & uo = {éh} are ordered
once for all in increasing way with respect to the weight of the corresponding element of the
basis.

Correspondingly, the set of indices {1, 2, ..., dim E{)‘} can be written as the union of finite sets
(possibly empty) of indices

N;lnax
{1 ,dim E0 U I0 P
p_lel'l
where
h

Jj€E I&p if and only if &;’ € Eo’p

Without loss of generality, we can take

Once the basis @)6’ is chosen, the spaces £(£2, Eg), D(s2, E{)‘), S(G, Eg) can be identified
with £(£2)4MEs | D(2)dmEg | §(G)IMEq | respectively.

Proposition 2.7. (See [24].) If 0 < h < n and * denotes the Hodge duality, then
*El = EJ .

By a simple linear algebra argument we can prove the following lemma.
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Lemma 2.8. If 8 € QM1 then there exists a unique o € Q"N (kerdy)t such that
Sodoa = 80P
Definition 2.9. Let «, 8 be as in Lemma 2.8. Then we set
a:=d, lﬁ .
In particular
a=dy'p ifandonlyif doox — B € kerdp.

Remark 2.10. We stress that d; Uis an algebraic operator, like dy and §.
Finally, we notice that

d61</\h+Lpg>(:/\hpg.

(13)

Since d; ! do = Id on R(dy ! ), we can write d, 'd = Id + D, where D is a differential operator

that increases the weight. Clearly, D : R(d,, h- Rdy h. Asa consequence of the nilpotency

of G, D¥ = 0 for k large enough, and the following result holds.

Lemma 2.11. (See [24].) The map d(;]d induces an isomorphism from R(dal) to itself. In

addition, there exists a differential operator
N
P= Z(—l)ka, N € N suitable,
k=0

such that

Pd(;]d :d(;ldp =Id7€(a'0’1)'

We set Q := Pdo_l.

Remark 2.12. If « has pure weight k, then P« is a sum of forms of pure weight greater or equal

to k.

We state now the following key results. Some examples will be discussed in detail in

Appendix B.

Theorem 2.13. (See [24].) There exists a differential operator d. : Eé’ — Eg‘|rl such that

() d*>=0;
(ii) the complex Eqy := (E;, d.) is exact;
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(iii) the differential d. acting on h-forms can be identified, with respect to the bases Eé’ and

E(])’H, with a matrix-valued differential operator L" := (Lzh,j)' Ifje I&p and i € Ié’;l,

nos . . . , .
then the L j s are homogeneous left invariant differential operators of order ¢ — p > 1 in

the horizontal derivatives, and Lf-”j =0ifje Ié’,p andi € Ié’;l, withqg — p < 1.

In particular, if » =0 and f € EQ = £(G), then d,. f = Z:’!l (X; f)@i1 is the horizontal differ-
ential of f.
The proof of Theorem 2.13 relies on the following result.

Theorem 2.14. (See [24].) The de Rham complex (2%, d) splits in the direct sum of two sub-
complexes (E*,d) and (F*, d), with

E:=kerd, ' Nker(dy'd) and F:=R(d;")+R(dd;"),
such that:

(1) The projection I1g on E along F is given by [1gp =1d — Qd —d Q.
(i) If Mg, is the orthogonal projection from $2* on Ej, then Ig I1gllg, = Mg, and
HOpHg,l1g =ME.
(iii) d. = Mg dIE.
(iv) *E = F1 (in the sense of the LG, £2%)-duality).

Remark 2.15. We have

dllg =1Igd. (14)
Indeed, we can write « = [Tga + ITpo, and hence da = dIlTga + dI1po. But E and F are
complexes, so that dlTra € F and dI1ga € E; therefore [1Tg da = Mg dlIpa + g dllra =
dITga, and we are done.

Moreover, by Theorem 2.14(iv), if « € 2" and B € 2"" are compactly supported forms
with 0 < h < n, we have

/ o A (ITgf) = / (Mpa) A (ITgp) = / (Mpa) A . (15)
G G G

Finally, if o € 2" and B e Eg_h with 0 < & < n, we have
a N B=UIga) AB. (16)
Remark 2.16. If y; € D(G, E,') fori = 1,2 with iy + 1 + hy =n, we have

/dcwl A = (1) /wl ndoy.
G

G

Indeed
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/dcwl sz=/<nEodHEw1)wz
G G
_ [ @ITgy) AY (by (16)
G

_ /d((nwo A2) + (D) /(nwo Ad
G G

=(=D" /(HEI/fl) Advyr,  (by Stokes theorem)
G

=(-Dn / Y1 A (ITgdyn)  (by (15))
G

= (=" fl//l A(dTE(Y2))  (by (14))
G

=(-Dn f Y1 A (deyn)  (again by (16)).
G

Proposition 2.17. (See [24], formula (7).) For any o € Eg’p, if we denote by (I1ga) ; the com-
ponent of [1ga of weight j (that is necessarily greater or equal than p, by Remark 2.12), then

(Iga)p =«,

(nEa>,,+k+1=—d(;1< > de(nEa>p+k+1_z>. (17)
1<e<k+1

Proposition 2.18. Let j, p, k be fixed, N;lnin SpSN™ je Ié’,p, and 0 <k < M™ — p. Then
there exist homogeneous left invariant differential operators Qﬁy ki’ iel ;‘ 4 Of order k,
such that, if « = ocjé]h, then

(ITga) pyik = Z (Q?;,p-i—k,j,iaj)gih‘

:—7h
lEIp+k

Therefore

M}rlnax_p

Tpa = Z Z (Qﬁ,p—&-k,j,ia./')eih'

= co7h
k=0 lEIp+k

Proof. The proof can be carried out by inductionon k. O
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Remark 2.19. We can notice that, if o € Eg P then d.a has no components of weight j = p.
Indeed,

ITga = o 4 terms of weight greater than p.
Thus

dITpa = doa + terms of weight greater than p.
But dpo = 0 by the very definition of Eg P and the assertion follows.

Definition 2.20. If 2 C G is an open set and 1 < & < n, we say that T is an h-current on £2
if T is a continuous linear functional on D(£2, Eg) endowed with the usual topology. We write
T e D'(2, E}).

Any (usual) distribution T € D’(£2) can be identified canonically with an n-current T e
D'(82, Ej}) through the formula

(T|a) == (T |*cx) (18)

for any o € D(£2, Ej)).
If E(;l = {Slh, A S(;limEg} is a left invariant basis of E(})l and T € D'(£2, Eé’), then there exist

(uniquely determined) Ty, ..., T £l € D’ (£2) such that

> “dim
T =) TiL(«).
J
where
T h . 7 h
(T (7)) = (Tj[d A 5£5)
for all ¢ € D(£2, Eg). Currents can be viewed as forms with distributional coefficients in the

following sense: if o € E(S2, Eg), then o can be identified canonically with an h-current T,
through the formula

(Talp) 1=/*0lA<P (19)

2

for any ¢ € D(S2, Eé’). Moreover, if o = Zj ajéjl.’ then
To= Y a;L(«&])
J

(see [1], but we refer also to [7], Sections 17.3, 17.4 and 17.5).
The notion of convolution can be extended by duality to currents.
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Definition 2.21. Let ¢ € D(G) and T € &' (G, Eé’) be given, and denote by V¢ the function
defined by Yo (p) := ¢(p~!). Then we set

(@ Tla):=(T|"p*a)
for any o € D(G, Eg).
We need a few definitions. We set
Ié’ = {p; Ié"p #* @} and |Ié’| = cardIg. (20)
Let
m= (mN,‘,“‘“’ cees mN,T“")

be an |Zg|—dimensional vector where the components are indexed by the elements of Ié‘ (i.e.
by the possible weights) taken in increasing order. We stress that, since weights p such that
I& = @ can exist, then some consecutive indices in m can be missed. In the sequel we shall
say that m is an h-vector weight. We say that m > 0 if m, > 0 for p € 7", and that m > n if
mp > n, for all p € T)'. We say also that m > n if m), > n,, for all p € I. Finally, if my is a
real number, we identify mg with the h-vector weight mg = (my, ..., mo). In particular, we set
m—mgy:= (mN;lnin —mo, ..., mymx —my).

Definition 2.22. A special &-vector weight that we shall use in the sequel is the #-vector weight
Ny= (mN;;nin, ‘e ,mN,:nax) with

mp=p forallpe[é’.

If all h-forms have pure weight Ny, i.e. if N;,“i“ = N;"* := Ny, then an h-vector weight has
only one component, i.e. m = (my;,,).

3. Function spaces

Through the next sections, we use notations and results contained in Appendix A and basically
relying on the pseudodifferential operators and their calculus of Christ, Geller, Glowacki and
Polin [5]. Briefly, we refer to their operators as to CGGP-operators, and we call CGGP-calculus
the associated calculus.

Let {Xy,..., X;,,} be the fixed basis of the horizontal layer g; of g chosen in Section 2. We
denote by Ag the non-negative horizontal sub-Laplacian

m
Ag = — ZX?
j=1

If 1 <s <ooanda e C, we define A, in L*(G) following [9]. If in addition m > 0, again as

in [9], we denote by W *(G) the domain of the realization of Ag/ % in L*(G) endowed with
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the graph norm. In fact, since s € (1, 00) is fixed through all the paper, to avoid cumbersome

notations, we do not stress the explicit dependence on s of the fractional powers Ag/ % and of its
domain.

Proposition 3.1. The operators Ag/ 2 are left invariant on W('g (G).

Proof. The proof is straightforward, keeping in mind the form of Ag/ 2 ([9], p- 181), and the

representation of the heat semigroup associated with Ag ([9], Theorem 3.1(1)). O
‘We remind that

Proposition 3.2. (See [9], Corollary 4.13.) If 1 < s < 00 and m € N, then the space W¢. " (G)
coincides with the space of all u € L*(G) such that

X'ue L*(G) for all multi-index I with d(I) = m,
endowed with the natural norm.

Proposition 3.3. (See [9], Corollary 4.14.) If 1 <5 < o0 and m > 0, then the space W¢.* (G) is
independent of the choice of X1, ..., Xm,.

Proposition 34. If 1 <s < 0o and m > 0, then S(G) and D(G) are dense subspaces of
Wi (G).
G

Proof. The density of D(G) is proved in [9], Theorem 4.5. If m € N U {0}, by Proposition 3.2,
SG) C W(g “*(G), since the vector fields X1, ..., X, have polynomial coefficients (see [11],
Proposition 2.2). Thus, by [9], Proposition 4.2, S(G) C W™ (G) for m > 0. Moreover, since
D(G) is a dense subspace of W(,* (G), the assertion follows. O

Definition 3.5. Let m > 0, 1 < s < oo be fixed indices. Let £2 C G be a given open set with
L"(9§2) = 0 (from now on, even if not explicitly stated, we shall assume this regularity property
whenever an open set is meant to localize a statement). We denote by W(g' **(£2) the completion
in W(g’ *(G) of D(£2). More precisely, denote by v — rov the restriction operator to £2; we
say that u belongs to W(g ¥ (£2) if there exists a sequence of test functions (uy)ien in D(£2)
and U € Wg;*(G), such that uy — U in W(;"*(G) and u = roU. On the other hand, since in
particular uy — U in L%(G), necessarily U = 0 outside of £2. Therefore, if u = roU; = roU;
with Uy, U, both belonging to the completion in Wz *(G) of D($2), then U; = U, so that,
without loss of generality, we can set

lull s 2y 2= [ o) W Gy

where po(u) denotes the continuation of u by zero outside of £2.

It is well known that Wé’joc (G) is continuously embedded in W]L/C(KH)’S(G) (see [21]); thus,
by classical Rellich theorem and interpolation arguments ([9], Theorem 4.7 and [26], 1.16.4,
Theorem 1), we have:
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Lemma 3.6. Let 2 C G be a bounded open set. If s > 1, and m > 0, then
W(g’s(.Q) is compactly embedded in L*(£2).
Proposition 3.7. If m >0, 1 <s < oo and 2 C G is a bounded open set, then
~ || A™/2
”“”v‘i/gs(g) ~ “ Ag PO(“)”LS(G)

when u € ng (£2) and po(u) denotes its continuation by zero outside of §2.

Proof. By Definition 3.5,

so that we have only to prove the reverse estimate.
We want to show preliminarily that the map u — Ag/ 2 po(u) from Wé’ F(2) to L*(G) is
injective. Let u € Vi/&"s (£2) be such that Ag/zpo (u) = 0. If (pg)s=0 are group mollifiers, by the

left invariance of Ag/z, we have p, * po(u) € D(G) and Ag/z(pg * po(u)) =0 for e > 0. By [9],

Theorem 3.15(iii), keeping in mind that D(G) C Dom(Ag,) for all « > 0, if N is an integer

number such that N > m/2, then AR (p. * po(u)) = Agfm/zAg/z(,og % po(u)) = 0, so that

Pe * po(u) =0, e.g. by Bony’s maximum principle. Then, taking the limit as ¢ — 0, po(u) =0,
and eventually u = 0.

We can achieve now the proof by using a simple form of the following Peetre—Tartar lemma
(see, e.g., [6], p. 120):

Lemma 3.8 (Peetre-Tartar). Let V, Vy, Vo, W be Banach spaces, and let A; € L(V, V;) be con-

tinuous linear maps for i = 1,2, the map A1 being compact. Suppose there exists co > 0 such
that

lvllv < co(llA1vlly, + 11A2v]lv,) (2D
for any v € V. In addition, let L € L(V, W) be a continuous linear map such that
Llkera, =0. (22)
Then there exists C > 0 such that
ILvllw < CllAzv]lv, (23)
foranyveV.

For our purposes, we choose V = Vi’g’x(ﬂ), Vi =V, =L*(G), W=W"G), A| = po,
Ay = Ag/z o po, L = pg. Indeed, A; := pp is a compact map from Wé”s(Q) to L*(G), by
Lemma 3.6. On the other hand, we have already pointed out in Definition 3.5 that po(u) €

) 2 ] 2
W™(G), so that AT po(u) € L*(G), and |G po(w) @) < 1ol lwms(@) = lullyyms g
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(again by Definition 3.5). Thus A, := Ag/z opo: Vi/(g”s(fz) — L%(G) continuously. The same
argument shows that (21) holds. On the other hand, we have shown that ker A, = {0}, so that (22)
holds.

Then (23) reads as

”u”W’" (2 — “PO(”)” wms(G) X C”AG PO(“)| L5(G)’

achieving the proof of the proposition. O

Lemma 3.9. If m > 0 let P,, € K"~ € be the kernel defined in Theorem A.16 and Remark A.17.
If 2 cC G is an open set, R > Ry(s, G, m, §2) is sufficiently large, and u € D(82), then
||“||W('G?”'(G) ~ ||O((Pm)R)u||LS((G) = “ AG Ru”LS(G)’

with equivalence constants depending on s, G, m, §2.

Proof. By Proposition 3.7, there exists ¢ > 0 such that (keeping in mind that we can think
po(u) =u)

Jaz?

ul @ S lullwes ) <ce ” Ag/z”‘

LGy
By Remark A.17, we have

g/zu = ((Pm)R)u + Su,

where Su =u * (1 — ¢¥g) P,,. Hence

m/2

|ag ”“LS(G) |O(Pw)R)u ||Lé(<(;)'|'||’“<(1 VR) P ”LS(G)

On the other hand, by [9], Proposition 1.10, and a standard argument (see e.g. [15,16])

lu* (1 = yr) P

m/2

<CG6,G,mR ™ ullpse) <C(s,G,m)R™ CQHAG u

L(G)

5 || e

provided R > Ry(s, G, m, §2). Therefore

”Ag/z” L@y S 2||O((Pm)R)” L5(G)
and hence
leell s 6y < 2 [O(Pu)R)u 1y -

Conversely,
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|O(@w)R)ul s g
<AL ul oy + e =Y Bl
3 3
<3188 o < 5 Mlugeo

This achieves the proof of the lemma. 0O

Definition 3.10. Let 2 C G be an open set. If m >0 and 1 <5 < o0, W(gm’s(.Q) is the dual

space of Wé”sl(ﬂ), where 1/s 4+ 1/s" = 1. It is well known that, if m € N and £2 is bounded,
then

W (82) = { Z X' f1, f1 € L*(82) for any I such that d(I) = m}
d(D=m

and

> x’f,=u}.

o i 1nf{2 | filles i dCT) =m,
1 d(l)=m

Proposition 3.11. If 1 <s < oo and m,m’ >0, m' < m, then
WIS (G) > WS(G) and W™ (G) = W™ (G)

algebraically and topologically.
In addition, if 2 is a bounded open set, 1 <s <ooandm,m’ >0, m' < m, then

W' (82)  is compactly embedded in Wg (2)
and
Wé’”/'s (82) is compactly embedded in W, (£2).

Proof. The first assertion is nothing but [9], Proposition 4.2. As for the second assertion, take
first R > 0, and let £2¢ be a sufficiently large bounded open neighborhood of 2. If u € W(g S(82),
by Lemma A.22, we can write

u= A(E:;:/z o Agﬁu + @Su,

where ¢ € D(§29) and S € OC™*°. By Lemma A.l11, the map u — ¢Su is compact from
W(; *(82) to WYY "5 (820). As for the first term, the same property follows from Proposition A.18,
Lemma A.7, and Lemma 3.6.

Finally, the third assertion of the proposition follows by duality. O
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Remark 3.12. The compactness result of Proposition 3.11 can be improved as in the Euclidean
space (see e.g. [17], Section 1.4.6). For sake of simplicity, let us restrict ourselves to the case
m € N and m’ = 0. We have

Wé’ *(£2) is compactly embedded in L7 (£2)
and
L' (£2) is compactly embedded in W([;'"’S/(.Q),
if s, 5" and o, ¢’ are Holder conjugate exponents, provided o (m — Q/s) + Q > 0.
Definition 3.13. If m > 0 is an h-vector weight, 0 < h < n, and s > 1, we say that a measurable

section @ of Eg, a0 =3, 3" ;€] belongs to W5 (G, Eg) if, for all p € Iy, i.e. for all p,
. -P
NIt < p < N, such that I, # 0,

aj e We"" (G)
forall j € Ié’ » endowed with the natural norm.

The spaces Wé”s(Q,Eé’), where §2 is an open set in G, as well as the local spaces
W(g)li)c (£2, Eé’) are defined in the obvious way.

Since
m,s 0 Eh .. . mp,s G cardI(')’p
W5 (82, Eg)  is isometric to H(WG () s
peI(’)’
then
° Wél’s(.Q, Eg) is a reflexive Banach space (remember s > 1);

o C®(2,E))NWg" (2, E}) is dense in W5 (2, ED).

The spaces Wg’s(ﬂ, Eg) are defined in the obvious way.
We can define and characterize the dual spaces of Sobolev spaces of forms.

Proposition3.14. If 1 <s < oo, 1/s+1/s' =1, 0< h <n, m is an h-vector weight, and 2 C G

is a bounded open set, then the dual space (Wél's, (£2, E(})l))* coincides with the set of all currents
T € D'(£2, Eg) of the form (with the notations of (18))

T=Y > TjL(«£}) 24)

P el
]GIO.p
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with T; € W(;mp’s(ﬂ) for all j e Ih and for p € Ih The action of T on the form o =

m, s’

Z Z]elh (XJE € WG (2,E" o) is given by the identity
T@) =Y Y (Tjla)). (25)
I4 jeI(’ip
In particular, it is natural to set
—m,s h . o m, o/ h
We™ (2. Ep) = (W5~ (2. Ep))”

Moreover, if T is as in (24)

1Ty gy ~Z 2 Ty g

jelh

Proof. Suppose (24) holds. If o = Z dic i, 3 h is smooth and compactly supported in 2,
then (keeping in mind that the basis (eh j }is orthonormal, so that éih A *57 =4;;dV)

(2 5 ALeehle)=3 & X Sl

jelh ]elh 4q lE]h
=2 2 2 L ATleE) Ax) =30 3 Tk,
Pojery, 9 iely, 4 ielg,

Thus, clearly, if T; € W(;m"‘s(.Q) for all i € I&q and for ¢ € Z", then the map o —
2p Zjelgp(Tﬂaj) belongs to (Wén’s (2, Eg))*.

Suppose now T € (Wé”s,(ﬂ, Eg))*. Since D(S2, E(})l) — Wg’s/(ﬂ, Eé‘), then T' can be iden-
tified with a current that we still denote by T. Thus, by (19), we can write

T = Z Z T; I_(*élh)

P jel{{p
Ifie Iéfp for some p € Ig and f € D(S2), we can consider the map

F=T|rel) =" D (Ti| r88 A (s£8)) = (Tl £).

I3 ]elh_p
Because of the boundedness of 7', we get

(TN <C|rg H Cllfll

@B T Y@y

that yields 7; € W(E "p ’S(.Q). This achieve the proof. O
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4. Hodge decomposition and compensated compactness

In this section we state and we prove our main results, i.e. a Hodge decomposition theorem
for forms in Ej and — as a consequence — our compensated compactness theorem in Ej. Through
this section, we assume that &, the degree of the forms we are dealing with, is fixed once and for
all, 1 < h < n, even if it is not mentioned explicitly in the statements.

From now on, we always assume that an orthonormal left invariant basis {Ef} of Eg has
been fixed for all £ =1, ...,n, and therefore pseudodifferential operators acting on intrinsic
forms or current and matrix-valued pseudodifferential operators can be identified. We use this
identification without referring explicitly to it.

Theorem 4.1. Let s > 1 and h =1, ..., n be fixed, and suppose h-forms have pure weight Nj,.
Let 2 CC G a given open set, and let «® € L°(G, Eé’) neE (S, Eg) be compactly supported
differential h-forms such that

af ~a ase—0 weaklyinL® (G, Eg)
and
{dca®} s pre-compact in Wé(ﬂh“_Nh)’s (G, E{)’)

Then there exist h-forms o° € L (G, Eg) and (h — 1)-forms ¢ € L}

loc loc

(G, Eg_l) such that

(i) »® — w strongly in L} (G, E(})’);

(i) ¥* — ¢ strongly in L (G, Eé’_l);
(i) of =w® +d Y°.

We can choose wf and ¢ supported in a fixed suitable neighborhood of $2. Moreover, if the of
are smooth, then ® and ¢ are smooth.

Remark 4.2. We stress that d. : L*(G,E}) — Wé(ﬂ"“_}v”)’s(G, El). Indeed, if
o= Zjelélth aj‘;‘;’ e L5 (G, Eél) and (d.«); is a component of weight ¢ of d.«, then (keep-

ing in mind that h-forms have pure weight Nj) (d.a); = Zj Lﬁjaj, where Lf’j is a ho-

s

mogeneous differential operator in the horizontal vector fields of order ¢ — N, > 1, so that
(d.o); € W(;(q_N”)’s (G). On the other hand (N 11 — Nj)q = g — Ny, and the assertion follows.

The proof of Theorem 4.1 entails several preliminary statements.

Definition 4.3. Let R > 0 be fixed. If 0 < & < n, following Rumin we define the “0-order differ-
ential” acting on compactly supported h-currents belonging to £'(B(e, R), Eé‘) by

~ —Npt1/2 Ni/2
d. = AG}IH/ ch@f}é ,
where N, is defined in Definition 2.22. By Lemma A.13, the definition is well posed, and

d.:E'(B(e,R), E}) — &' (B(e,3R), E{).
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Analogously, we define the following “O-order codifferential” acting on compactly supported
(h + 1)-currents belonging to £'(B(e, R), E(})"H):

Ind Np/2 —-N 2
8¢ 1= A@f’lé SCAG;{'H/ .

Again the definition is well posed, and
8.:&'(B(e, R), EpT") — &'(B(e,3R), EP).
By Theorem A.8(a) in Appendix A,
8c = (o).
Notice also that

d2=0, §7=0 (modOC™®).

C c

Letnow T = Zp Zjelé’p Tj I_(*S;’) € &' (B(e, R), Eé’) be given.

By Theorem 2.13, the differential d. acting on h-forms can be identified with a matrix-valued
differential operator L" := (Lf.f j), where the Lf.” j’s are homogeneous left invariant differential

operator of order g — p if j € Iélp andi € Ig‘qH. Thus, by Definition A.19, we have

—_~—

AT=37 37 3 3 (ALY AT (™).
q

it p<q icph
ielyy P~ jely,

Analogously, if T = ZP Z}-EIIHI i‘j L(*éjlﬁl) e &'(B(e, R), E(;)'-H), then
0.p

ST=3000 00 3 (AURLL AT,

q iel&q‘1<PjeIé’_J;1

Proposition 4.4. Both d, and 8. are matrix-valued pseudodifferential operators of the CGGP-
calculus, acting respectively on £'(G, Eé’) and &' (G, E(})Z‘H). Moreover d. ~ P" .= (Pfj'.), where

Pl=P_yx(L};P,) ificlfitandjely,, (26)
and 53: ~ Qh = (Qfl/.), where

O =Py x('Lh,P,) ifiely, andje i}t 27)
Proof. Takei € Ié’;l and j € I(’)', - Statement (26) follows by proving that

—q/27h AP/2 h
AGIRLE A R~ P—g % (Ll-’ij).
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The proof of (27) is analogous. Thus, notice first that, by (49) and Lemma A.12, the cores of
Lff jA(_},p 142 and A(Ef]éz are, respectively, Lf‘, j Pp and P_,. Hence the assertion follows by Theo-
rem A.8(c). O

Remark 4.5. With Rumin’s notations (see [23,24]), when acting on Sy(G, E(’}),
Oo(Ph) = dcV .
An analogous assertion holds for OO(Qh).

We set

The following assertion is a straightforward consequence of Theorem A.8 and Proposition 4.4.

Proposition 4.6. A(((S)R is a matrix-valued 0-order pseudodifferential operator of the CGGP-
calculus acting on £'(G, E{)‘), and

©) A0, (A0
Agr~Ag = ()
where

0 _ h h h—1 h—1
AG,ij—Z(QiefPej"‘Piz * Qi )
¢

Remark 4.7. As in Remark 4.5, with the notations of [23,24], when acting on So(G, Eé’),
O()(Aég)) = Oo(Qh) o dCOO(Ph) + Oo(Ph_l) o (SCO()(Qh_l)
=8YdY +dY8Y =0,

Theorem 4.8. For any R > 0 there exists a (matrix-valued) CGGP-pseudodifferential operator
(AS?R)_I such that

(AR A =1d on &(G.E}) (mod OC™) (28)
and
AP (A ' =1d on E(G.E}) (mod OC™). (29)

Proof. Keeping in mind [5], Theorems 5.1 and 5.11, it follows from Rockland’s condition (see
Theorem A.4), that is satisfied by [23], that there exists (A((é)))_l € K€ such that

The assertion follows taking now (Ag)R)_1 = O((Ag))gl) forR>0. O
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Remark 4.9.If « € £’ (B(e, r), Eé’), then, by Lemma A.13, both
0) \—1 , (0 0 0) \—1
supp(A(((;?R) A(((;?Ra and supp(A(((;?R Aé}?R) o

are contained in a fixed ball B depending only on r, R. Thus, we can multiply the identities (28)
and (29) by a suitable test function ¢ that is identically one on B, and then we can replace
the smoothing operators S appearing in (28) and (29) by operators of the form ¢S, that maps
&G, El) in DG, ED).

Proposition 4.10. For any R > 0

(A A =d (L) on E(G.EL) (mod OC™), (30)
and
(AER) e =8(ag%) ™" on €(G.E]) (mod OC™). (31)

Proof. By duality, it is enough to prove (30). In the sequel, S will always denote a smoothing
operator belonging to OC~°° that may change from formula to formula, and, with the same
convention, we shall denote by Sy an operator of the form ¢S, with § € OC~ and ¢ € D(G).
Keeping in mind Remark 4.9, we have

-1

Remark 4.11. We can repeat the arguments of Remark 4.9 also for (30) and (31).

Proof of Theorem 4.1. In the sequel, S will always denote a smoothing operator belonging
to OC~*° that may change from formula to formula, and, with the same convention, we shall
denote by Sy an operator of the form ¢S, with S € OC™° and ¢ € D(G). Moreover, without

loss of generality, we may assume «® € D(S2, E(’)’). Take now R > 0 such that 2 C B(e, R); by

Lemma A.13, A@%"/zas € D(B(e, 2R), Eg) and therefore, by (29),

0) ©) \—1 ,—Nn/2 —Nn/2 e —Nn/2
AG,R(AG,R) AgR e —Agy e =SAg R e, (32)
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with S € OC~°. Since supp Ag)R(Ag)R)_IA(EjNRh/zaS C B(e,4R), we can multiply the previ-

ous identity by a cut-off function ¢ = 1 on B(e, 4R) without affecting the left-hand side of the
identity. Thus, we can write (32) as

0 0) \—1 ,—Ny/2 —Ny/2 —Nj/2
Aé}?R(Aé}?R) AG}h/ af — AG}h/ a = goSAG’*Rh/ a’ = Spa®, (33)
by Lemma A.10. From (33), it follows easily that
Ni/2 A (O 0) \—1 , —Ny/2 Nu/2  —Np/2 Niu/2
AR A R(ALR) T A e = AT Mg et + ALY Soa. (34)
so that, by Lemma A.22 and arguing as above,
AGR AR T AR P = + 50a”. (35)

If we write explicitly Ag?R in (35), we get

— ANW/2 N\ Ny/2 =Np41/2 \ =N jp41/2 Ni/2 0, (0) \—1 , —N;/2
O‘S—AG,R AG R (SCAG,R+ AG,R+ deAG TR (AG,R) Agr of

Nn/2 \ —Nn/2 Np-1/2 \ Nn-1/2 —Nu/2( A (0) \—1 A, —Np/2
+AG R Ag R deAG R TAG R T8 AG R T (Agk) Ak o

+ Soatf =11 + I + Spa. (36)
By Lemma A.22,

Nac1/2 «Nie1/2« «=Nn/27 «(0) \—1 » —Np/2
L= de NG P AG 28 AR P (ALY R) T AG R Pat + Soat

=d. ¢ + Soaf. (37)
Thus (36) becomes

_ ANW/2 \Nin/2 ~Npt+1/2 \ =Nnt1/2 Np/2 (5 0) =1, —Np/2
of = AG'R AGR S MG R T T AGR TG (AgR) Dgk o

+ Soat® +dopf =’ +dpt. (38)

We want to show that (%)~ ¢ and (w®)¢= converge strongly in L] (G, E(’)’_l) and L} (G, Eé‘),

loc loc
respectively. As for (¥).~0, by Proposition A.21, (A([—;NR}’/ 2a5)8>0 converges weakly in

W& " (G, El}). On the other hand, by Proposition A.18, (AYx) ™' Ag R/ a®)s=0 converges

weakly in W"* (G, E['). Thus, again by Proposition A.18, (A5 /(AL ) AZN af)e-g

converges weakly in Wéﬂh (G, E(’)’). We remind that all intrinsic s-forms have the same weight

Ny, so that all the components of a form in Eé’ belonging to Wéﬁh’s(((}, Eé’) belong to the same
Sobolev space WéN"’S(G, E}).

For sake of simplicity, denote now by pB%, j € Ig N, @ generic component of

A&%H(AQR)_IAé%ﬂaS that converges weakly in W(éN""Y(G, Eg_l). Ifie Ié’y;l (g < Np),

then the ith component of &, ,8;‘7 is givenby 'L ; ,8]8.. Keeping in mind that L ; is a homogeneous
differential operator in the horizontal vector fields of order Nj, — g, then ('L i ,6? )e=0 converges
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weakly in Wg ntq.s (G), so that, eventually, the ith component of (1¢).~ converges weakly in
W(g "~%%(G). Then the assertion follows by Rellich theorem (Proposition 3.11), since supp * is
contained in a fixed neighborhood of £2, and ¢ < N},.

Let us consider now (wf).~0. By Lemma A.11, we can forget the smoothing operator Sy. By

Proposition 4.10 and Remark 4.11, we can write

7&’1/20[6

Nn A Ni/2 ~Npnt+1/2 \ =Np+1/2 Nn/2 (4 (0) \—1
AG'RAGR SeBgr T Ag R T NG R (Ag k) Ak

Nn/2 . Np/2 —Ny 2 0 -1, —-N 2
ﬁ,’h/ ﬁ,’h/ 5. ’,I+1/ (ﬁ( ? ) A : ht+1/ dCOls S &
N2:O —lszZS —Nnt 25—N 2{ S, 39
G,hR{ ( é},)R) Gf]é c G,Rh 1/ G,Rh l/ c ‘ 0 8' ( )
By Proposition A.21,

“Npt1/2 \=Npt1/2 5, o - : Nhy1+Np,s h
Ag gt AG R Tdea® s pre-compact in W 1o T(G, Ep).

Arguing as above, denote now by ,318., Jj € Ié“;l, a generic component of B¢ :=

“Nps1/2 « —Nap1/2 . . :
AG’—R"“/ AG}h+]/ dca®. We know that 5 is pre-compact in Wéjé:’“b (G, Eé’“). Moreover

notice that §.8; is an h-form, and therefore, by assumption, has pure weight Nj,. If i € I& N,
(N < p), then the ith component of 80;3; is given by tLj,i,BJE.. Keeping in mind that L;; is
a homogeneous differential operator in the horizontal vector fields of order j —i = p — Ny,
then (8.8%); is pre-compact in W(é]’\l’g’cs(G). Thus, SCA(ET%"“HA(;%“'/ZQ&S is pre-compact

in Wé%gés(G, El'). Again, by Proposition A.21, A%f’lézécAé%’“/ZA(&%"“/zdcas is pre-

hsS

loc (G, Eg). As above, we can rely now on the fact that all components of

. N
compact in W

20 a- 2 —Nps1/2 .
A%”Ié SCAGNR"“/ AG—R”“/ d.af have the same weight and hence belong to the same Sobolev
space, to conclude that

©0) =1, Np/2 ~Nnt1/2 \ =N p+1/2
(AG,R) Ag'r 8cAg g Ag R dea®

is pre-compact in ngoz (G, Eg). Then, we achieve the proof of the theorem using again Propo-

sition A.21.
Finally, the last statement follows by Lemma A.13 and Theorem A.8(b). O

Lemma 4.12. If o € £(G, E!) with2 <h <n and p € E(G, E} "), then
dda A (T B) = 0.

Proof. By Remark 2.15, we have

ddca AN (ITgP) = (Mgddea) A = (dl1pdea) A B
= (MgydMgdea) AB = (dedea) N\B=0. O
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Theorem4l3 If 1 <s; < oo, O l- <nfori=1,2 and 0 <& < 1, assume that o €
Lli’)c((G E ") for i = 1,2, where S— + = =1 and h1 + hy = n. Suppose hi-forms have pure

weight Nh. (by Hodge duality, this lmplles that also hy-forms have pure weight Ny, = Q — Np, ).
Assume that, for any open set 29 CC G,

af >« weakly in L* (2o, Egi), (40)
and that
P —(N hi+1— Nh ),Si hi
{deaf}  is pre-compact in W5 loc (G, Ey") 41
fori=1,2.
Then
/goaf Aah — /(pal N (42)
G G

for any ¢ € D(G).

Proof. By Remark 4.2, without loss of generality we can assume that both o and o5 are smooth
forms. In addition, let us prove that, if £2 is an open neighborhood of supp ¢, then

—(Nh;+1— Nh)Yl(

dc(paf) is pre-compact in W, 2, Eg) (43)

An analogous argument can be repeated for Y a3, where ¥ € D(£2) is identically 1 on supp .
Thus, without loss of generality, we could restrict ourselves to prove that

/a‘angﬁ/alAag (44)

G G

when (40) and (41) hold and o; € D(R2, Eg') fori = 1,2.

In order to prove (43), set B° := dc(paf), with B =3 >~ h1+1/3 éhH. If of =

i€l

Zp Zje]éll (af)jé’.l, then, by Theorem 2.13, when i € Iél"; , we have
P ’

=2 D Lileled))=ed ] > Ll +2 > Y. (Bo(Qy())

P=<djer, P=djer, P=<djery  ISlvIsq—p

a)i+2. 2 2 B«

P=4 jery  ISIvISq—p

where P, and Q, are homogeneous left invariant differential operators of order |y| and
g — p — lyl, respectively, in the horizontal derivatives. By (41), ¢(d.(«f)); is compact in

W((;(q_p)’s(ﬂ). On the other hand Q, (a}); is bounded in W(;(q_p_lyl)’s(ﬂ), and therefore
compact in W(;(q_p)’s(ﬂ) by Proposition 3.11, since |y | > 0. This proves (43).
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We can proceed now to prove (44). By Theorem 4.1 we can write
of =deyi +of, =12,

with ¥¢ and ] supported in a suitable neighborhood £2¢ of £ and converging strongly in

L% (82, Eé” ). Thus the integral of ozf A oeg in (44) splits into the sum of 4 terms. Clearly, 3 of
them are easy to deal with, since they are the integral of the wedge product of two sequences of
forms, at least one of them converging strongly. Thus, we are left with the term

/ oyt Ao,
G

with ¥¢ € D(£20, E') for i = 1,2. By Remark 2.16, we have

[ devi ndews =0,
G

since d? = 0. This achieves the proof of the theorem. 0
5. Div—curl theorem and H -convergence

We state some dual formulations of our main theorem for horizontal vector fields in G, i.e. for
sections of HG. Since in this case the compensated compactness theorem takes a form akin to
the original form of the theorem proved by Murat and Tartar, we can refer to it as to the div—curl
theorem for Carnot groups. In this case, our compensated compactness theorem applies for any
Carnot group G, since, as pointed out in Example B.1, Eé consists precisely of all forms of pure
weight 1. In addition, as in [12] and [2], the div—curl theorem makes possible to develop a theory
of the H-convergence for second order divergence form elliptic differential operators in Carnot
groups of the form

{Eu = Y X (O X ) = f € W5 (@), (45)
u= 0 on 39,
with application for instance to non-periodic homogenization. Here A(x) := (a; ; (x))i, j=1,....m,

is an m x m elliptic matrix with measurable entries.

We stress again that L is elliptic with respect to the structure of the group G, but is degenerate
elliptic as a usual differential operator in R".

If V is a horizontal vector field, i.e. if V is a section of HG, as customary we set

divg V i= (xd.(xV7))"
and
curlgV := (dCV“)D.

Moreover, if f is a function, we denote by Vg f the horizontal vector field Vg f == (X1 f, ...,
Xm, f). Setnow Eg ) := (Eg)D (with the induced scalar product). An orthonormal basis of Eg
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is given by X1, ..., X;;,, and hence the horizontal vector field V can be written in the form
V.= Z;"zll V; X ; and therefore identified with the vector-valued function (V1, ..., V). In the

sequel, we write also (Vx,, ..., Vx,, ). Thus divg V = Zjll X jV;. The Dirichlet problem (45)
takes the form

{ Lu = —divg (A(x) Veu) = f € W5 2(2), (46)

u=0 onads2.
If we refer to the examples of Appendix B, the operator curlg on a horizontal vector field V
takes the following forms:
e Example B.2: if V = (Vx, Vy), then
curlg V=P (Vx, Vy) X AT 4+ P,(Vx, Vy)Y AT.

Let D be another horizontal vector field. In this case, assumption (41) of Theorem 4.13, with
a1 := VY and *a, := D, becomes

P;(Vx, Vy) compactin W(gz’sl

loc

G), i=12
and
divg D compact in W(éj(’fcz G).
e Example B.3: if V = (Vx, Vy, Vy), then

curlg V=P (Vx,Vy) X AT 4+ P,(Vx,Vy)Y AT
+ (XVs —SVx))XAS+ (Y Vs —SVy)Y A S.

As above, (41) of Theorem 4.13 becomes

P;(Vx, Vy) compactin Wéﬁ(’)? @), i=1,2,

XVs—SVx,YVs—SVy compactin W .2/ (G),

(0]

and

divg D compact in W(;(’)Sf (G).

e Example B.4:if V = (Vx,, Vx,, Vy,, Vr,, Vs), then

curlg V = (X1ax, — Xoax ) X1 A Xo + (Yiay, — Yaay) ) Y1 A Y2
+ (Xi1ay, — Yaox) ) X1 A Y2 + (Xoay, — Yiex,))Xa A Y]
+ (Xi1as — Sax ) X1 AS+ (Xoas — Sax,)Xo AS
+ Yioas — Say Y1 AS + (Yoos — Say,) Yo A S

Xiay, — Yiax, — Xsay, + Yooy, L

V2 V2

(X1 AY] — X2 A Ya).
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Here, assumption (41) requires that all the coefficients of curlgV, as well as divg D, are
compact in WG1 1((G) and W | OCZ (G), respectively.
e Example B.5: if V= (Vx1» Vxys Vxs, Vx,, Vxs, Vxg), then
curlg V = (Xjax, — X3ax,) X1 A X3
+ (X1(X1ax, — Xoax,) — Xaox,) X1 A X4
+ (X2(X1ax, — Xoax,) — Xaox,) X2 A X4
+ (X2(Xaax; — X3ax,) — Xsox,) X2 A Xs
+ (X3(X2ax; — X3ax,) — Xsox;) X3 A Xs.

As above, (41) of Theorem 4.13 becomes

Xyax, — X3ax, compactin Wg ioscl G,
X1(X1ax, — Xoax,) — Xqax,, Xo(X10x, — X2ax,) — Xa0x,,
Xa(Xoax; — X3ax,) — Xsax, compactin Wg ! E(e)
X3(Xoax, — X3ax,) — Xsax, compactin Wg locl (@),
and

divg D compact in WG Iog 2(G).
e Example B.6: if V = (V1, V,), then
curlg V = (X2(X1Va — Xa V1) — X3V2) X2 A X3
+ (X1 (XTV2 — (X1 X2+ X3)V1) — X4 V1) X) A Xa.
As above, (41) of Theorem 4.13 becomes

Xo(X1Vo — X Vi) — X3V compactanG LG,

loc
X1(XTVa — (X1X2+ X3)V1) — X4V compact in WG3 o (©),

loc

and
divg D compact in WG o 2(G).
e Example B.7: if V = (V{, V;), then
curlg V = (X1 (X1Va — X1 X2 Vi — X3Vi) — XaVi) X1 A X4
+ (X2(X2X1 V2 — X3V1 — X3V2) — X5V2) X2 A X5

+ = (X1(X2X1V2 — X3V1 — X3V5) — X5 Vi

| =
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+ X2(XTV2 — X1 X2 V1 — X3V1) — XaV2) (X1 A X5+ X2 A Xa).

Here, assumption (41) requires that all the coefficients of curlg V are compact in W_’31’OXC] (G),

and that divg D is compact in W, i(’)scz G).
Theorem 4.13 yields the following result that generalizes to arbitrary Carnot groups Theo-
rem 3.3 of [12] and Theorem 5.5 of [2], extending to the setting of Carnot groups Theorem 5.3
and its Corollary 5.4 of [14].

Theorem 5.1. Let 2 C G be an open set, and let s, 0 > 1 be a Hilder conjugate pair. Moreover,
with the notations of (20), if p € Ig (i.e. if p > 2 is the weight of an intrinsic 2-form), let a(p) > 1
and b > 1 be such that

0 and b > Qo

)
W)= =1y O+o

Let now G* € Ly (2, HG) and D ¢ Ly (82, HG) be horizontal vector fields for k € N, weakly
convergent to G and D in Ly (22, HG) and in L] (£2, HG), respectively.

If the components of {curlgG*} of weight p are bounded in Lfo(f)((), HG) for p Ig and
{divg D*} is bounded in LY. (2, HG), then

loc

(G, D¥) - (G, D) inD' (%),
ie.

/(Gk(x), D*(x)) o (x) dx — /(G(x), D(x)),¢(x)dx
2

2
for any ¢ € D(£2).
Proof. We want to apply Theorem 4.13 (with its notations) to the forms

ok :=(G*)" and o := (D",

taking h1 =1, ho=n—1,51=s,50=0.

The assertion will follow by showing that {divg Dk } is compact in W([; 110‘2 (£2) and the com-
ponents of {curlgG*} of weight p are compact in W(Il}_l(‘fc’s(ﬂ). Indeed, p — 1 is precisely the
component of index p of Ny — 1= N; — Nj.

But this follows by a simple computation from Remark 3.12, since

(i) LY (2, HG) is compactly embedded in W&’I’J(Q);

loc loc

(i) La(p)(.Q, HG) is compactly embedded in Wl_p’x(.Q).

loc G,loc

Indeed, in order to prove (i), it is enough to notice that

b(1—-Q/)+Q>b(1-0Q/s+0(0~1/0-1/0)) =0,
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whereas, to prove (ii) we notice that

—1
a(p) (p—1-Q/0)+Q >a(p)/<p— -2y Q(] _ %)) —o. o

In particular, as we pointed out above, Theorem 5.1 makes possible to extend the notion of
Murat-Tartar H-convergence (see e.g. [19]), given in [12] and [2] for G = H", to an arbitrary
Carnot group G. In fact, the definitions given in [12] and [2] are naturally stated in general Carnot
groups as follows.

Definition 5.2. If 0 < o < 8 < 0o and 2 is an open subset of G, we denote by M («, 8; §2) the
set of (m x m)-matrix-valued measurable functions in 2 such that

1
(A0S Ejan > 2| AE 20 and (AQOE E)p, > al€Rn

for all £ € R™ and for a.e. x € 2.

Definition 5.3. We say that a sequence of matrices A* € M(a, B; 2) H-converges to the ma-
trix Aff € M(a/, B'; §2) for some 0 < o/ < B’ < oo, if for every f € W(;]’Z(Q), called uy the
solutions in Wé’z(ﬂ) of the problems —divg(A*Vguy) = f, the following convergences hold:

g = Uog in W (£2)-weak,

AVgur - AMVgus  in L?(2; HG)-weak.
Therefore u is solution of the problem —divg (AfVGus) = fin 2.

Repeating verbatim the arguments of Theorem 4.4 of [12], we can show now that the sets
M («, B; §2) are compact in the topology of the H-convergence.

Theorem 5.4. [f0 < o < 8 < 00 and $2 is a bounded open subset of G, then for any sequence of
matrices A" € M(a, B; §2) there exists a subsequence A% and a matrix A*f e M (o, B; £2) such
that A% H-converges to A,

Appendix A. Pseudodifferential operators

To keep the paper as much self-contained as possible, we open this appendix by reminding
some basic definitions and results taken from [5] on pseudodifferential operators on homoge-
neous groups.

We set

Sy = {u eS: /x”‘u(x)dx =0}
G

for all monomials x%.
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If « € R and o ¢ Z* := N U {0}, then we denote by K“ the set of the distributions in G that
are smooth away from the origin and homogeneous of degree o, whereas, if « € Z™1, we say that
K € D'(G) belongs to K* if has the form

K =K + p(x)In|x],
where K is smooth away from the origin and homogeneous of degree «, and p is a homogeneous
polynomial of degree «.
Kernels of type a according to Folland [9] belong to K*~€. In particular, if 0 < « < Q, and

h(t, x) is the heat kernel associated with the sub-Laplacian Ag, then ([9], Proposition 3.17) the
kernel Ry € L] .(G) defined by

)
Ry (x) := m / 1D h(x, 1) dt
0
belongs to K*~€.
If K € K%, we denote by Oy(K) the operator defined on Sg by Og(K)u :=u * K.
Proposition A.1. (See [5], Proposition 2.2.) Oy(K) : So — So.
Theorem A.2. (See [15,16].) If K € K~2, then Oy(K) : L*(G) — L*(G).
Remark A.3. We stress that we have also
So(G) C Dom(AG*"?)  witha > 0.
Indeed, take M e N, M > o /2. If u € So(G), we can write u = A{é’v, where

vi= (O()(Rz) 00Op(Ry)o---0 Oo(Rz))u € So(G)

(M times). Since v € Dom(AY) N Dom(Ag_“/z) (by Proposition 3.4), then u = AMv €
Dom(Ag*/%), and Ay ~*/*v = AZ** A¥ v, by [9], Proposition 3.15(iii).

Theorem A.4. (See [13] and [5], Theorem 5.11.) If K € K2, and let the following Rockland
condition hold: for every non-trivial irreducible unitary representation v of G, the operator Tg
is injective on C*° (1), the space of smooth vectors of the representation 7. Then the operator
Oo(K) : L*(G) — L*(G) is left invertible.

Obviously, if Og(K) is formally self-adjoint, i.e. if K ="K, then Oy (K) is also right invert-
ible.

Proposition A.5. (See [5], Proposition 2.3.) If K; € K¥, i = 1,2, then there exists at least one
K e KO+2+Q gquch thar

Oo(K2) 0 Op(K1) = Op(K).

It is possible to provide a standard procedure yielding such a K (see [5], p. 42). Following [5],
we write K = Ky x K.
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We can give now a (simplified) definition of pseudodifferential operator on G, following [5],
Definition 2.4.

Definition A.6. If « € R, we say that K is a pseudodifferential operator of order « on G with
core K if

(1) K eD'(G xG).
(2) Let B := —Q — o. There exist K™ = K" € KA+ depending smoothly on x € G such that
for each N € N there exists M € Z1 such that, if we set

M
Ki—Y KI':=Eu(x,-),
m=0
then Ey € CN(G x G).

(3) For some finite R > 0, supp K, C B(e, R) forall x € G.
@) If u e D(G) and x € G, then

Ku(x) = (u* K;)(x).

We write K ~ )" K", K= 0O(K), and r(K) = r(K) = inf{R > 0 such that (3) holds}.
We let

OC®(G) := {pseudodifferential operators of order a on G}.

Clearly, if IC € OC*(G), then K : D(G) — £(G). Moreover, K can be extended to an operator
K:£(G)— D(G).

Lemma A.7. If suppu C B(e, p), then supp Ku C B(e, p + r(K)).
Ify =1,...,yn) € (ZT)", forany f € D'(G) we set
M, f=x"f,

and, if X = (X1, ..., X,) is our fixed basis of g, we denote by o, (X) the coefficient of x in the
expansion of (y!/|y|)(x - X)4®),

Theorem A.8. (See [5], Theorem 2.5.) We have:

(@) If K := O(K) € OC*(G), then there exists a core K* such that O(K*) € OC*(G) and

(v, Ku) 2y = (O(K™)v, 1) 2
forallu,v € D(G).

(b) If K € OC*(G), V C G is an open set, and u € E'(G) is smooth on V, then Ku is smooth
onV.
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(© If Ki € OCHG), Ki ~ >, K", i =1,2, then K := K3 o Ky (that is well defined by
Lemma A.7) belongs to OC* T2 (G). Moreover K ~ > K™, where

1 A
K= 2. Sl (&) ]e[o, O(KT) ).
dy)+j+t=m "’

where o, (X) acts in the x-variable.

Theorem A.9. (See [5], p. 63 (3).) IfK € OCY(@G), then O(K) : LY (G) — L? (G) is continu-

loc loc

ous. In particular, by Lemma A.7, O(K) : LP (G) N E'(B(e, p)) — LP(G) continuously.

We say that a convolution operator u — u * E(x, -) from £’ to D’ belongs to OC~>(G) if E
is smooth on G x G. We notice that, properly speaking, OC~°°(G) is not contained in OC*(G)
for a € R, since E(x, -) is not assumed to be compactly supported.

If 7,8 € OCY(G), we say that S =T mod OC~® if S — T € OC~®(G).
A straightforward computation proves the following results

Lemma A.10. If S € OC~*°(G), ¢ € D(G), and O(K) € OC™(G) for m € R, then both (¢S) o
O(K) and O(K) o (p8S) belong to OC~°(G).

Lemma A.11. If 2 C G is a bounded open set, m,m' € R, 1 <s < 00, and T € OC~*°(G),
then, if ¢ € D(G), the map

oT : WIS (G) N E'(R) - W (G)
is compact.

From now on, let ¢ € D(G) be a fixed non-negative function such that

1
suppy¥ C B(e,1) and ¢ =1 onB(e,E),
We set

YR =Y odiR.

If K € K", then K := ¢ygrK is a core satisfying (1)-(3) of Definition A.6. In addition,
Kr ~ K, since we can write Kg = K + (Yg — 1)K, with (g — 1)K € E(G). Thus O(KR) €
oCc"2(G).

Thus, if K is a Folland kernel of type « € R, then K, is a core of a pseudodifferential operator
O(KR) € OC™*(G). In particular, if 0 < @ < Q, then O((Ry)g) belongs to OC~%(G) (see [9],
Proposition 3.17).

Lemma A.12. If K € K", and X' is a left invariant homogeneous differential operator; then

X'O(Kg) e OC™HD=Q().
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Moreover; the core Kg | of XI(’)(KR) satisfies
Kri1~X'K
and
X'O(Kr)=0((X'K),) mod OC™.

Lemma A.13. If u € £'(G) and suppu C B(0, p) then supp O(K g)u C B(0, R + p). Moreover,
if p=R, then

OKsp)u=u* K on B(0, R).
Proposition A.14. Let K; € K! be given cores fori = 1,2, and let R > 0 be fixed. Then
O((K2%x K1)r) = O((K1)r) 0 O((K2)g) mod OC™°.
In particular, O((K1)g) o O((K2)r) = O(K) for a suitable core K with K ~ K x K.

Remark A.15. As in Remark 5 at p. 63 of [5], the previous calculus can be formulated for
matrix-valued operators and hence, once left invariant bases {S;‘} of Eg are chosen, we obtain
pseudodifferential operators acting on i-forms and A-currents, together with the related calculus.

In particular, let K := (Kjj)i=1,..,N, j=1,..,m an M x N matrix whose entries K;; belong to
K™ii. Then K acts between So(G)"N and So(G)M as follows: if T = (T4, ..., Ty), then

Oo(K)T :=T xK := (ZTj*Klj,...,ZTj*KMj).
‘ j

J

When K;; € K™ for all i, j, we write shortly that K € K™.
If K :=(K;j)i=1,.n,j=1,.,m and K’ := (Kl'/j)i=1,.-.,M/,j=1,.-.,M’ we write

K'xK:= (ZK;E * ng).
2
Notice that
Oo(K") 0 Op(K) = Oo(K' % K). (47)

In addition, if K = (K; ) is a matrix-valued pseudodifferential operator of the CGGP-calculus,
and K = (K;;) is a matrix-valued core as above with IZ,-j ~ K;j foralli, j, we write K ~K,and
K — K is a matrix-valued smoothing operator. As above, if all the K;;’s are pseudodifferential
operators of the same order «, we refer to « as to the order of the matrix-valued pseudodifferential

operator K.

Finally, we prove that the fractional powers of Ag, when acting on suitable function spaces,
can be written as suitable convolution operators. This is more or less known (see for instance [5],
Section 6), though not explicitly stated in the form we need.
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Theorem A.16. [f m € R and 1 < s < 00, then So(G) C Dom(Ag/z), and there exists Py, €
K"~ such that

Ag/zu =ux* P, forallueS)(G).
Moreover, if R > 0 then
O((Pn)) p € OC™(G). (48)
Coherently, in the sequel we shall write
A2 2 O((P) - (49)
Remark A.17. The same argument shows that, if m > 0, then D(G) C Dom(Ag/ 2), and
AYu=ux P, forallueD(G).

Proposition A.18. If 2 C G is a bounded open set, m,ax € R, 1 <s < 00, and T € OC*(G),
then

T: WL (G)NE(R) — WL (G)
continuously.

Proof. Suppose first m,m +a > 0. Let u € Wng“’S(G) N &'(£2) be given. Without loss of
generality, we can assume u € D(§21), where £2; is a given bounded open neighborhood of €2,
since D(£21) is dense in Wg'm’s (G) N E'(£2). Indeed, by Proposition 3.4, if ¢ > 0, we can find
us € D(G) such that ||u — M8||Wé1+a,s(G) < ¢. Let now v € D(£21) be such that ¢ =1 on £2.

Then, by [9], Corollary 4.15,
|l — WM8||W£+,1,S(G) = Yu — wu£||Wg+a.s(G) < Cyllu— Mg”W(nga,s(G) < Cye.

By definition, there exists a bounded open set £27 (depending only on £21 and 7) such that
Tu e D(27). If R > 0is fixed (sufficiently large), by Proposition 3.9, we have

~ m/2
||T“||w¢’§“(@) ~ “ AG,RTM HLS(G)'
On the other hand,

A Tu= AGRT AL AL 0+ goSu,

with S € OC™® and ¢y € D(G) with ¢g =1 on 21 - B(e, 2R), since AEZ’W)/zAg’;a)/zu is
supported in £21 - B(e, 2R). Then the assertion follows by Proposition A.18, since

Ag{,iTAaﬁ*“)/ 200G,

by Theorem A.8 and by Lemma A.11.



1596 A. Baldi et al. / Advances in Mathematics 223 (2010) 1555-1607

This accomplishes the proof when m, m 4o > 0. Remaining cases can be dealt by duality. O

Definition A.19. Let T € £'(G, Eg) be a compactly supported /-current on G of the form

T=Y Y TjL(x}) withT;€&(G) forj=1,....dimEg.
p jel(’)fp

Let m be an h-vector weight, and let R > 0 be fixed. We set (with the notation of (49))

m/ZT _Z Z mp/2 ; *(’;‘- )

p
fEIO,p

In particular, if 7 can be identified with a compactly supported i-form o = > » » jert @ jgf’,
P

then our previous definition becomes

g/ﬁ,a—z D7 (o) x (P, R)E

)4 h
J€ly 0.p

Remark A.20. As in Definition A.19, if m is an h-vector weight, we define the operator
Oo(Pw) : So(G, EL) — So(G, EY)

as follows: if a =", " ajgj’? with @ € So(G), then

jel(’)"p
Oo(Pw)a =Y > (aj* Py, )EN.
p jelé‘yp
In other words, P, can be identified with the matrix ((Py,);;), where
(Pwij=0 ifi#j and (Py)jj=m, ifjel],

We can write

m/2

AL~ Py

The following result is a straightforward consequence of Proposition A.18, thanks to “diago-
nal form” of the operator A /

Proposition A.21. Let 2 C G be a bounded open set. If m and o are h-vector weights, and
1 <s < 00, then for any R > 0

a/2

AY R WETN (G EL) nE (2. EL) — WE (G, E))

continuously.
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Lemma A.22. [f m is an h-vector weight, then for any R > 0

m/2 —m/2

AGroAg g =1Id mod oc—>®

and
A&"—;{z o A%/Ize =1d mod OC~°.

Appendix B. Differential forms in Carnot groups

In this appendix, we provide a list of explicit examples of the complex (Ey, d.) for some
significant groups.

Example B.1. First of all, we stress that in any Carnot group G the space Eé consists precisely

of all horizontal forms, i.e. of all forms of weight 1. Indeed, notice first that on O-forms do = 0.

On the other hand, if X;, X ; are left invariant vector fields, and 6, € ® 1 by the identity
dobe(Xi, X j) =d0y(Xi, X ;) = —0e(Xi, X 1),

it follows that dpfy = 0 if and only if 6, has weight one, since [X;, X ;] belongsto V2 ®--- D V.

Example B.2. Let G := H! = R3 be the first Heisenberg group, with variables (x, y, ). Set

X =0y +2yd, Y :=03y —2x9, T := 3,. We have X* =dx, Y* =dy, T" =6 (the contact form

of H'). The stratification of the algebra g is given by g = V| @ V5, where V| = span{X, Y} and
Vo = span{T}. In this case

Eé = span{dx, dy};
ES =span{dx A6,dy A 0};
ES =span{dx Ady A B}.

Moreover
d.(a1dx + ardy)
= HEOd(al dx +aydy — ;L(onz — Ya1)9>
= D(x1dx + ardy),
where D is the second order differential of horizontal 1-forms in H' that has the form
D(a1dx +ardy)

1 1
= —Z(X2a2 —2XYo + Y Xen)dx A0 — 2 (2Y Xay — Y21 — XYa)dy A O

= Pi1(ag,a0)dx AO + Pr(aq, a0)dy A 6.
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On the other hand, if
o =~4a;3dx N0 +ax3dyNb € E%,
then
deo = (Xapz — Yarz)dx Ady N 6.
Example B.3. Let G := H! x R, and denote by (x, y, r) the variables in H' and by s the variable
in R. Set X, Y, T as above, and S := d;. We have X' =dx, Y =dy, S"=ds, T" = 0. The

stratification of the algebra g is given by g = V| & V,, where V| = span{X, Y, S} and V, =
span{T}. In this case

Eé = span{dx, dy, ds};
E% =span{dx Ads,dy ANds,dx NO,dy N6};
E} =span{dx Ady A0,dx Ads AO,dy Ads AB).

Moreover
de(apdx +oaydy + azds)
=D(a1dx +ardy) + (Xaz — Say)dx Ads + (Yaz — Sap) dy Ads,
where D is the second order differential of horizontal 1-forms in H! that has the form D(ajdx+

ardy) = P1(ay,2)dx A0 + Pry(ay,a0)dy AO.
On the other hand, if

a=a13dx/\ds—}—ot23dy/\ds+a14dx/\9+a24dy/\9eEg,

then

deao = (Xaoa — Yara)dx Ady N O

1

+ <T0l13 — Sayq — Z(X2Ol23 — XYO(13)> dx ANds NO
1 2

+ | Tarz — Sapg — Z(YXO[B -Y Oé13) dy Ads NO.

Example B.4. Let now G := H? x R, and denote by (x1, x2, y1, ¥2, t) the variables in H? and by
s the variable in R. Set X; := 0y, +2y;0;, ¥; 1= 0y, — 2x;0;, i = 1,2, T := 9, and S := 9. We
have Xltl =dx;, Yiu =dy;,i =1,2, §" =ds, T% = 0 (the contact form of H2). The stratification
of the algebra g is given by g = V| @ V», where V| = span{X1, X, Y1, Y2, S} and V, = span{T}.

Let us restrict ourselves to show the structure of the intrinsic differential on Eol, i.e. on

horizontal 1-forms. Using the notations of (10), we can chose an orthonormal basis of /\h g,
h=1,2,3 as follows:
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h=1: O =@}, ...,0}) = (dxi,dx2,dyi. dy>,ds), and ©'2 = (6}) = (6).

h=2: 022 = (6,...,03) = (dx1 A dxp,dy; A dyr,dxi A dyr,dx; A dyr,dxy A dyy,
dxy Adyy,dxi Ads,dxy Ads,dy) Ads,dyr Ads), OF3 = (02,...,0%) = (dx1 A0,
dxo NO,dy; ANO,dyy NO,ds NB).

h=3: ©33=(6;,...,0}) = (dxi Adxy Adyi,dx) Adxy Ady,, dx) Adxy Ads,dxi Ady) A
dyy,dxi ANdyy Ads,dxy Adyy Adyr,dyr Adyy Ads,dxy Adys ANds,dxa ANdyr, ANds,
dyy Adys Ads), @34 = (05, ...,03) = (dx1 Adxy A0, dyy Adys AO,dxi Ady) A,
dxiy Ndyr ANO,dxy ANdyr ANO,dxy Adya ANO,dx1 Ads ANO,dxy Ads ANOB,dyr Ads N6,
dy) Ads N 0O).

We have:

dof! =0 wheni=1,....,5,  dofd =4(65 +62);
dob? =0 wheni=1,...,10,  dof} =463,  dob} = —463,
dobiy = —46;, dob}, =463, dobis = 4(03 +63;).
As usual, Eé is the space of left invariant horizontal 1-forms, and an orthonormal basis of Eé

is given by {dxy, dx3, dy1, dys, ds}. In addition, the left invariant form o = Zj ajej? belongs to
E} if and only if

0 = —Q3
and
1] =012 =013 =014 =U]5 =0.

Hence an orthonormal basis of E% is given by {512, 522, \%(532 - 562), Sf, 552, 572, 582, 592, 5120} =
{dx1 A dxa, dyy A dys, %(dxl Adyy —dxy Adyr),dxy Adys,dxa Adyr,dxy Ads,dxy A
ds,dyy Nds,dy A ds}. In particular, the orthogonal projection ITg,« of o on Ey has the form

10

Mpo= ) o5+
j=1
J#3.6

o3 — e
2

(65— &) (50)

We want now to write explicitly d, acting on forms o = «(x) = 25/:1 a; (x)é}. To this end, let

us write first I71. Because of the structure of /\1 g, by Proposition 2.17,
Hpia=a+y0,
for a smooth function y, with y6 = — 0_1 (dia), i.e.
do(y0) + dia € ker bp, (51)

by Definition 2.9. We can write (51) in the form
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4y (dxy Ndy1 +dxy A dyr)

+ (X1a2 — Xoay) dxy Adxa + (Yiag — Yaa3) dyy Adyr

+ (X3 — Vo) dxy Adyy + (X1as — Yoa1) dxy Adys

+ (Xoo3 — Vo) dxa Adyy + (Xo04 — Yoon) dxa Adyr

+ (X105 — Say)dxy Ads + (Xpa5 — San) dxy Ads

+ (Y15 — Sa3) dy; Ads + (Yoas — Saa) dyr Ads € ker §g.

Because of the form of ' M above, this gives

ie.

8y + X103 — Y11 + Xoaq — Yoap =0,

1
y = —g(X10t3 — Yia1 + Xoa4 — You2).

(52)

However, the explicit form of y does not matter in the final expression of d.«. Indeed, keeping
in mind that dooe = 0, and that [Tg,(d;(y0)) = I1g,(dy A 6) =0, and I1g,(d2 (o + y0)) =0,

since ITg, vanishes on forms of weight 3, by our previous computation (52), we have

by (50).

deo = ITgy(d(a + 7/9))

(
= Mg, (do(@ + y0) +di(a + y0)) + Mg, (da (e + )
= HEO(do()/@) +d1a)
=g, (X102 — Xoo1)dx; Adxy + (Yias — Yoaz)dy) Ady;
+ (Xio3 — Vi +4y)dxi Adyr + (Xioa — Yaa)dxi Ady:
+ (Xo03 — Y1) dxo Adyr + (Xoas — Yoo +4y)dxa Ady:
+ (Xja5 — Say)dx; Ads + (Xoas — Sap)dxy Ads
+ (Y1a5 — Saz)dy; Ads + (Yoas — Sag)dys A ds)
= X1z — Xoay)dxy Adxa + (Yio4 — Yoaz) dyr Adys
+ (X104 — Yaor1) dxy Adys + (Xoa3 — Yian) dxa A dy)
+ (X1a5 — Say)dx) Ads 4+ (Xoa5 — Sap) dxy Ads

+ (Y1a5 — Saz)dy; Ads + (Yoas — Saq)dyr Ads

Xia3 — Yo — Xoag + Yoo 1
—=(dx1 Ndy) —dxz ANdyr),
2 2 y y
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Example B.5. Let G = R® be the Carnot group associated with the vector fields

X1 =0y,
X2 =0y + x104,
X3 =03 4+ x205 + X406

and

X4 =04,
X5 =05 + x1 06,
X6 = 06.
Only non-trivial commutation rules are
[X1, X2] = X4, [X2, X3] = X5, [X1, X5] = X, [X4, X3] = Xe.

The X ;’s are left invariant and coincide with the elements of the canonical basis of RO at the
origin. The Lie algebra g of G admits the stratification

g=9g1D g Dygs,
where g1 = span{X1, X3, X3}, g» = span{X4, X5}, and g3 = span{X¢}. We set also

05 =dxs — x2dx3,
04 =dx4 — x1dx2,

06 =dxe — x1dxs + (x1x2 — x4) dx3

and
01 =dxq, 0 =dxy, 03 = dxs.
Clearly
;=X fori,j=1,...,6.
Moreover

dfy = —01 N 6y, dfs = —0 A 63, dbg =603 ANOy — 61 ABs.

As in Example B.4, let us restrict ourselves to show the structure of the intrinsic differential on
Eé, i.e. on horizontal 1-forms. Using the notations of (10), we can chose an orthonormal basis

of /\h g, h=1,2,3 as follows:

h=1: O"! ={0),6,,63), ©'2 = {64, 65}, and O3 = {66}.
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h=2: 022 ={02,02,03) = {61 A 02,01 A 03,0, A O3}, O3 ={07,...,03} = {01 A 04,01 A
95,92/\94,92/\95,93/\94,93/\95},024 {03, ....0%) = {01 Abs, 02 \O6, 03 N6, 04 A
05}, O3 = {07, 0%} = {04 A 06, 05 A Og}.

h=3: 033 ={03) = {01 AL AO3}, O34 =163, ...,03) = {61 A0y AO4, 01 AOL AO5, 01 AO3 A
04,00 AO3 A Os, 00 A O3 AO4, 00 AO3 AOsY, O35 =1{03,...,0%) = {01 A 02 A6, 01 A
03 A O, 00 A O3 Ao, 01 AOs AOs, 00 A Oy AOs, 03 AOy AOs}, O30 =1{03 ... 0%} =
{91/\94/\96,91/\95/\96,92/\94/\96,92/\95/\96,93/\94/\96,93A95/\96},@3’72
{03, = {04 A 65 A O6).

We notice that an orthonormal basis of /\h g, h =4,5, 6 can be obtained by Hodge duality.

As usual, Eé is the space of left invariant horizontal 1-forms, i.e. an orthonormal basis of E(])
is given by {01, 62, 63}. In addition, the left invariant form o = ) Ixs ,-9]2 belongs to ES if and
only if

as=-—ag, op=0o =ap=013=0u04=0u15=0
and
as=ag, az3=0oa]=0.
) 2 2 2,2 23 . .
Therefore, an orthonormal basis {Sl,...,gs}ofE =Ey @ E is given by

{01 AO3} U {01 A 04,02 N Oy, 02 AOs, 03 A Os).
In particular, the orthogonal projection [Tg,« of a € /\2 gon Eg has the form
HEOOl =201 A O3+ 0401 A Os + agBy A Oy + 70y A OBs + g3 A Os. (53)

We want now to write explicitly d. acting on forms o = a(x) = 23:1 a;(x)8;. To this end, let
us write first I7;1 0. We have
Hpio = (ITgio)1 + (Tgia)z + (ITp1a)3
=a+ (Ipa) + {UTgia);
=0o + (Yabs + y505) + vebs,

with
V404 + ys05 = —dy ' (dy (161 + 0262 + 363))
= —do_l((Xlolz — Xha1)01 AOr + (X1a3 — X3a1)01 A O3
+ (X203 — X3000)607 A 93), 54
and

Yebe = —d(;l (d1 (7404 + y505) + dot). (55)
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Now (54) is equivalent to

do(y40s + y505) + (X100 — Xo01)01 A 02 + (X103 — X3001)01 A O3
+ (Xoa3 — X302)0 A 03 € ker "M, (56)

i.e.

(=4 + X102 — X201)01 A0y + (X103 — X301)01 A O3
+ (—ys5 + Xoa3 — X300)02 A 03 € ker "M, (57)

that gives eventually
ya = X100 — Xp0e1 and  y5 = Xooz — X300,

Consider now (55), that is equivalent to

do(v69) + di (X102 — X201)04 + (X203 — X302)05 + dacr)

=v6(03 AOs — 01 ANOs5) + X1 (X102 — Xoa1)01 A Oy
+ Xo(Xjop — Xp01)02 A Oy
+ X3(X102 — X201)03 A 64 + X1 (Xoa3 — X302)01 A 65
+ Xo(Xoa3 — X302)02 A 05
+ X3(Xoa3 — X302)03 A Os — Xq0101 A Oy
— Xq00607 A Oy — Xqa303 A Oy — X500101 A Os
— Xs50007 A O5 — Xsaz03 A O5

= X1 (X102 — X201)01 AOs + Xo(X a2 — Xooty)02 A Oy
+ (X3(X102 — Xoa1) + )03 A s + (X1 (X2a3 — X302) — ¥6)61 A 65
+ X2(Xo03 — X3002)02 A s
+ X3(Xoa3 — X302)03 A Os — Xqa101 A Oy — Xgqap6r A Oy
— X40303 A Oy — X500101 N Os
— Xsa06h A 05 — X500303 A Os

= (X1 (X102 — Xo01) — Xae1)63 + (X1 (Xoa3 — X302) — 6 — X501)63
+ (X2 (X102 — Xoa1) — Xa2)63 + (X2(Xaa3 — X302) — X502)67
+ (X3(X102 — Xo01) + ¥6 — X203)0F + (X3(X203 — X300) — X503)05 € ker ‘M1,

i.e. to

X1(X203 — X302) — 6 — Xsa1 — (X3(X 102 — Xoo1) + y6 — X4a3) =0.
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This yields
1
Yo = E(XI(X2053 — X302) — Xsa1 — X3(X102 — Xoa1) + X403).
Thus

i =a101 + a0z + o363
+ (X102 — Xo01)04 + (X203 — X302)05

1
+ E(XI(XZOB — X302) — Xsa1 — X3(X100 — Xoa1) + X403)06.

Then

dea = (X103 — X3a)01 A 63 + (X1 (X100 — Xoo1) — X4001)01 A 04
+ (X2(X12 — Xoa1) — X402)02 A U4
+ (X2(X203 — X3a2) — X502)62 A 65
+ (X3(X2013 — X3a0) — X50l3)93 A Os.
Example B.6. Let G = (R*, ) be the Carnot group whose Lie algebrais g=V, ® V> @ V3

with Vi = span{X1, X»}, V» = span{X3}, and V3 = span{X4}, the only non-zero commutation
relations being

[X1, X2] = X3, [X1, X3] = X4.

The group G is called Engel group. In exponential coordinates an explicit representation of the
vector fields is

2

X2 X3 X1X2 X1 X

X1=0— =8 — =+ — )0, Xy =02+ —03+ — 04,
1 1= 5% <2+12>4 2 2+23+124

xi
X3=33+584, X4 =04.

Denote by 61, ..., 60, the dual left invariant forms. The following result is proved in [24]: as
in Remark B.1, an orthonormal basis of Eé is given by {01, 6>}; an orthonormal basis of E 2 —

E§’3 @ E§’4 is given by {6 A 63} U {0 A 64). Moreover, bases of E3, E(‘)1 can be written by Hodge
duality.
Ifa=a6 +a0; € Eé, then
dea = (Xz(Xlolz — Xoa1) — X3a2)92 N 0O3

+ (XI(X%OQ — (X1X2 4+ X3)a1) — X4a1)01 A b4
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Example B.7. Let us consider now the free group G of step 3 with 2 generators, i.e. the Carnot
group whose Lie algebra is g = V| & V> @ V3 with V| = span{X, X»}, V» = span{X3}, and
V3 = span{X4, X5}, the only non-zero commutation relations being

[X1, Xo] = X3, [X1, X3] = Xaq, [X2, X3] = X5.

In exponential coordinates, the group G can be identified with R>, and an explicit representation
of the vector fields is

2
X
X =0, X2=82+x183+7184+x1x285,

X3 =03+ x104 + x205, X4 =04, X5 =0s.

Denote by 61, ..., 05 the dual left invariant forms. As in Remark B.1, an orthonormal basis of Eé
is given by {61, 6>}.
We have d0; = d6, =0 and

dfy = —601 A0y, dfy = —61 A 03, dfs = —6r A Os.

Using the notations of (10), we can chose an orthonormal basis of /\h g, h=1,2,3 as follows
(notice that an orthonormal basis of /\h g, h =4, 5 can be obtained by Hodge duality):

h=1: O ={6,6,}, ©'2 = {63}, and ©"3 = {6,, 65}.

h=2: 022 = {02} = {61 A6}, OF3 = (02,02} = {61 A 03,0, A O3}, OF4 = {62, ... 97}=
(61 A 04, 01 A 05,02 A 03, 0 7 O}, O3 = {65, 65} = (63 A 64,63 A 65}, O = (0]} =
{04 N 05}

h=3: O3 = {0} = {01 Ay A3}, O35 = {05,605} = {01 A2 A 04,00 A O A Os}, ©F6
63,... 07}—{91/\03/\94,9]/\93/\95 02 A O3 AOs, 00 AO3 A Os}, O3 =1{63,65)
{61 A Os AO5, 05 A Oy ABs}, O3 = {03} = {03 A 04 A s}

Thus, o = 167 + - - + a100], € E} if and only if
ai=ar=0a3=0
and
o5 = g, ag =a9g =a19=0.

Therefore, an orthonormal basis of E(% is given by
{92 i(ez +6¢) 92}.
4> ﬁ 5 6/ Y7

‘We want to show how d, acts on 1-forms o = «16] + a26; € Eé. To this end, let us write [Tpo =
o + 303 + 464 + y5605. We apply Proposition 2.17. We get first

Y303 = —dy ' (dia) = —dy ' (X102 — X201)61 A 62),
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ie.
—y301 A0 + (X102 — Xoa1)01 A 62
=do(y303) + (X102 — X2001)01 A 6 € ker ‘M.
Therefore
3 = X102 — Xoa.
Analogously,
Y464 + 505 = —do_l (di(363) + dacx).
This gives

V4= X%az — X1 Xh01 — X3aq,

s = Xo X100 — X%Otl — X3a7.
Eventually, we get

deo = (X1ys — X401)01 AOs + (X275 — Xs502)02 A O5

1
+ Z(Xl)/s — Xsay + Xoya — Xaa2) (61 AOs + 02 A 0s).
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