NICE, IQWiG, CADTH, Has and EU涅HTA) were reviewed to identify recommen-
dations made for Bayesian NMA in the context of HTAs. Examples of HTA sub-
missions from manufacturers were used to identify how Bayesian results are
reported in practice in order to ensure clarity and simplicity, a guide to interpret
these results was developed in collaboration with analysts not trained in Bayesian
statistical methods, and was validated with analysts trained in Bayesian. Bayesian
analyses are often used in the context of NMA to mean to inform cost-effectiveness
models. Results are generally reported as median or mean of the posterior distribu-
tion, standard deviation, 95% credible intervals and forest plots. Additional results
include the probability for each treatment of ranking first, the SUARCA (Surface
Under the Cumulative Ranking) and the probability for the intervention to perform
better than its comparators. Although it could help interpret the findings, graphi-
cal representation of the posterior distribution is not commonly reported in HTA.
Sensitivity analyses are also often reported, mainly to assess the robustness of
the results.

CONCLUSIONS: Our guide is useful to analysts not trained in Bayesian statistical
methods in developing guidance purposes in HTAs. More specifically, it is a straightfor-
ward reference tool for using NMA results to populate cost-effectiveness models.

PMR206

NON-ADEQUATION AND NON-PERSISTENCE SHOULD BE ANALYZED SEPARATELY: THE EXAMPLE OF METHOTREXATE (MTX) THERAPY IN THE TREATMENT OF NEWLY DIAGNOSED RHEUMATOID ARTHRITIS IN GERMANY

Mueller S1, Krueger K1, Flacke J1, Heinrich H1, Fuchs A1, Maywald U1, Wilke T1

1IPAM, Wismar, Germany; 2Praxsazentrum St. Bonifatius, Munich, Germany; 3Roche Pharma AG, Grenzach, Germany; 4AOK PLUS, Dresden, Germany; 5AOK Plus, Dresden, Germany; 6Deggendorf University of Applied Sciences, Germany

OBJECTIVES: In most adherence studies, results are shown as overall medication possession ratio (MPR). The aim of this study was to show how non-adherence (NA) and non-persistence (NP) are associated with rheumatoid arthritis (RA) patients using methotrexate (MTX) therapy change if adherence is analyzed as overall MPR includ-
ing periods of therapy discontinuation (NP) or, alternatively, for periods of treat-
ment continuation (NT) in the context of NMA. RESULTS: Sensitivity analyses are often used in the context of NMA to mean to inform cost-effectiveness models. Results are generally reported as median or mean of the posterior distribu-
tion, standard deviation, 95% credible intervals and forest plots. Additional results
include the probability for each treatment of ranking first, the SUARCA (Surface
Under the Cumulative Ranking) and the probability for the intervention to perform
better than its comparators. Although it could help interpret the findings, graphi-
cal representation of the posterior distribution is not commonly reported in HTA.
Sensitivity analyses are also often reported, mainly to assess the robustness of
the results.

CONCLUSIONS: Our guide is useful to analysts not trained in Bayesian statistical
methods in developing guidance purposes in HTAs. More specifically, it is a straightfor-
ward reference tool for using NMA results to populate cost-effectiveness models.

PMR207

USING TANGENT LINE SEGMENTS TO DETERMINE STATISTICAL DIFFERENCES BETWEEN SURVIVAL CURVES AT A SINGLE POINT IN TIME

Wasser T1, Kern DM2, Eisenberg D3

1HealthCore Inc, Wilmington, DE, USA; 2HealthCore Inc, Wilmington, DE, USA; 3HealthCore Inc, Wilmington, DE, USA

OBJECTIVES: Typical survival analysis examines differences in curves across the
entire spectrum of time. Often the research question relates to differences in sur-

vival at a single point in time without considering other aspects of the survival
curves. METHODS: We used data from the United States Surveillance, Epidemiology and End Results Program (US-SEER), comparing cervical and ovar-
ian cancer 5-year survival rates from 2007-2011. The steps in this analysis are: 1. Calculate Kaplan-Meier curve (or any survival curve) using standard methods, 2. Calculate the quadratic curve for the survival measure and record the formula
3. Using the point of interest (in this example 12 months) calculate the tangent
line for that point, using the derivative power method. These two slope values are tested against each other using standard slope comparisons. 4. Use the standard
error of the model for the quadratic equation for significance testing. 5. Test the
slope comparisons.

RESULTS: The slope of therapy continuation between first and last prescription only). NA was defined (AOK PLUS) covering the years 2010-2013 were used. Minimum observational period (NA) rates of German patients with rheumatoide arthritis (RA) having initiated a

the results.

Sensitivity analyses are also often reported, mainly to assess the robustness of
the results.

CONCLUSIONS: Our guide is useful to analysts not trained in Bayesian statistical
methods in developing guidance purposes in HTAs. More specifically, it is a straightfor-
ward reference tool for using NMA results to populate cost-effectiveness models.

PMR208

SIMULATED TREATMENT COMPARISON OF TIME-TO-EVENT (AND OTHER NON-OUTCOME) OUTCOMES

Ishak KJ1, Raal M1, Phatak H1, Masseria C1, Lantis J1

1Evidera, Montreal, QC, Canada; 2Evidera, San Francisco, CA, USA; 3Bristol-Myers Squibb, Princeton, NJ, USA; 4Pfizer Inc., New York, NY, USA; 5Evidera, London, UK

OBJECTIVES: Heterogeneity can distort traditional indirect comparisons of treat-
ments in network meta-analysis (NMA). We overcome this with regres-
sion equations to balance differences in populations. Equations are derived using
patient-level data from one trial (drug A, index), however, only mean values of
predictors are typically known for the comparator (B). Thus, adjusted results must be
generated by plugging the mean values of predictors into the NMA. The approach
works for non-linear outcomes (e.g., time-to-event) since it yields the geometric rather
than the required arithmetic mean. We describe a solution and illustrate its application
in an STC of treatments of non-valvular atrial fibrillation (NVAF).

METHODS: Data from the trial of drug A were used to derive an equation for the rate of major bleeds (MB) using Poisson regression. Predictors included gender, age, region, history of stroke/transient ischemic attack, hypertension, diabetes, renal dysfunction, prior use of antithrombotic treatments, and patients' baseline risk. The equation was then
implied by sampling predictor values from a multivariate-normal distribution with
means set to drug B's population and covariance matrix derived from the index trial.

RESULTS: The simulated MB rate in patients matching of the population of drug B was 30 (20.5-45.1), which contrasted with its observed rate (36.0) yielded a rate ratio of
0.84 (0.56-1.27).

CONCLUSIONS: Predicting outcomes with a simulated comparator population produces accurate adjusted results for use in STCs.