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1. Introduction and main result

Suppose that (B, || - ||) is a separable Banach space with topological dual B*, and (£2,U/, P) is a probability space. Let
{X, Xn, n >0} be a sequence of B-valued random variables. As usual, write S, = ZZ:O Xg, n >0 and Lt = log(t Vv e),
LLt =L(Lt), t > 0.

Consider a geometrically weighted series £(8) =Y o, 8" Xn, 0 < 8 < 1. When B =9, it is well known that if {X,, n>
0} is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero and variance one, Bovier
and Picco [1] obtained a law of the iterated logarithm (LIL) as follows:

lim d "Xn,[-1,11) =0 as.
lim (y(ﬂ)Zﬂ [ ]) as

n=0

and

C(y(ﬁ)Zﬁ”Xn> =[-1,1] as.,

n=0

where y(8) = \/1 —ﬁz/\/ZLL((l — B%)~1), d(x, K) means the distance from the point x to the set K, and C(xg) (resp.
C(xn)) denotes the set of limit points of {xg} as 8 7 1 (resp. of {x;} as n — oo). This result was also extended to stationary
ergodic martingale difference sequence by Picco and Vares [5] with a very complicated method. Later, Zhang [6] studied the
strong approximation theorems of £(8) for general cases and proved the LIL for independent but not identically distributed
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cases and mixing dependent cases, respectively. Moreover, Zhang [7] extended it to the Banach space setting, and got the
following theorem.

Theorem A. Let {X, X;;; n > 0} be a sequence of i.i.d. B-valued random variables with X € WM? := {X: Ef(X) =0, Ef%(X) < o0
forall f € B*}. Assume that
ElIXI1%/LLIX]I?
and
Sn
2nLln
Then we have

— 0 in probability. (1.1)

Xn|l =0 as.,

lim
Am v (B)
where 02 = Sup feps Ef2(X).

Noting that Zhang [7] assumed that E f2(X) < oo, it is interesting to consider the situation when E f2(X) is infinite. In
this paper, we aim to solve this problem by establishing a general LIL for B-valued geometrically weighted series, where
Ef2(X) may be infinite. Before stating our main result, we shall present some necessary notations. Let ¢, be a sequence of
positive real numbers satisfying

n//n /o0, (1.2)

and

Ve>03ame, >0: cp/em<(A+e)n/m, n>m>=mg. (1.3)

Note that condition (1.3) is satisfied if c,/n is non-increasing or if c, = c(n) : [0, 00) — [0, 00) is regularly varying at infinity
with exponent y < 1. The reader is referred to Einmahl and Li [2,3] for more details about the choice of c;,. Let

H(t)= sup Ef2(X)I{IX| <t} t>0,
feB]

where B} is the unit ball of B*, and set

2
ocozsup{ >0: Zn exp( 2nHEc)> oo]. (1.4)

Now we are in a position to exhibit our main result.

Theorem 1.1. Let {X, X;;; n > 0} be a sequence of i.i.d. B-valued random variables with EX = 0. Assume that

ZP X1l = cn) < oo, (1.5)
n=1

and

S
C—” — 0 in probability, (1.6)

n
where ¢y, is a sequence of real numbers satisfying conditions (1.2) and (1.3). Then we have with probability one

ZﬂM

n=0

lim sup

/C _g2y-1 =0,
(1=p%)
B/

where €(;_g2y-1 = C(1_p2y-1}, and o is defined in (1.4).

Remark 1.1. It is obvious that we extend Theorem A in two sides. On one hand, we use a general normalizing sequence c;,
which contains the classical ~/2nLLn, and on the other hand, one can get the LIL when SUp fepy Ef2(X) is infinite, by taking

some special normalizing sequence c, (for example, ¢, = +/nh(n), where h(x) is a slowly varying function (cf. Einmahl and
Li [2,3])). Generally condition (1.5) is necessary for the conclusion of Theorem 1.1, and (1.6) here is for getting precise value
of the LIL.
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2. Proof

In what follows we use the notation a, ~ by, if a;/b, — 1 as n — oo, and [x] means the largest integer less than x. We
also denote with C, C1, K etc. generic constants that may be different in each of its appearance.
We first proceed with some lemmas which will be used later.

Lemma 2.1. (See Zhang [6].) Let {a,; n > 0} be a sequence of real numbers or a sequence in B, {A,; n > 0} a sequence of monoton-
ically non-decreasing positive numbers satisfying || > p_o ak|l < An for n large enough and Ay /An < CokQ, k> 1, n >0, for some
Co, Q > 0. Then for any r > 0 and No > 1, we have

o
rCo
llmsupAN(ﬂ) Zﬁ an < +— exp( 5 ) x% dx,
1
and
°° Co [ N
r —rx —r
limsupA;,(lﬁ) Z BMa,| < TO/exp(T)xQ dX—i—Coexp( 5 O)NOQ,
B n=NoN(8)

No
where N(B) = [1 52]

Lemma 2.2. (See Zhang [7].) Let {u,; n > 0} be a non-increasing sequence of positive numbers and {x,; n > 0} be a sequence in B.
Then for each x > 0,

<Ug max

2|

Now we begin to prove Theorem 1.1.

Proof. For @ > 0 small enough, set X] = X;I(| X;|| < ac;), X/ = X; — X[, i >0, and denote the sums of the first n of these
variables by S;, and S;/,n > 1, respectively. Observe that (1.5) implies for any € > 0, > 0 P(|X|| > &¢y) < oo (cf. Lemma 1
of Einmahl and Li [2]), which guarantees that

> P(Xn# X)) <00
n=1

and then we have with probability one X, = X; eventually. Thus for completing the proof, what we need to do is to
demonstrate that

oo B"X;

lim sup w =ag as. (21)
B 1 C(]_ﬂz)—l

We first show the upper bound, i.e.,

00_ ﬂx/
lim sup 12 nz0 "Xl <op as. (2.2)

B Ca—p2)-1

Writing 7(8) = 1/(1 — B2), it is easily seen that T(8) is a monotonically increasing continuous function of 8 and t(8) /' oo
as B 7 1. Set

Bii=y1—(1+0)k k=1, (2.3)

for any 6 > 0 (without loss of generality, we can assume that 6 is small enough). Then we have B 7 1 and T(B¢) = (1 +6)*
as k 7 oo.
Note that for Br_1 < B < Bk,

> X,

n=0

/Cf(lgk—l)’

and thus for proving (2.2), it is enough to present that

ol [ecm < sup
0<B<He
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00 pny/
su o X
lim su Po<s<bi ll Zn_O B Xl

k— o0 Cr(Br-1)

<ap as. (2.4)

From Lemma 2.2, we have that for any 0 < 8 < B¢ and any integer M >0,

M
D B/BO"BEXn|| < (B/B)°  sup iXy| = sup ,
n=0 \m\ \m\
and this, coupled with letting M — oo, implies
sup B"Xp| < sup B Xn
0<B<L B HX(:) o<m<oo Z k
Notice that if we can show for any € >0 and 6 >0
o0
> P( sup Zﬂk X > (o +28)(1+£)(1+ e)cr(ﬁk)) < 0, (2.5)
k=1 o<m<oo

then (2.4) follows from the Borel-Cantelli lemma, (1.3) and the fact T(B8x)/7T(Bx_1) = 1 + 6, immediately.
It is readily seen that under the assumption (1.5), (1.6) implies lim;_,» E||Sn||/cn =0, and this of course entails that

oo oo
> B Xn > BiXn /Cr(ﬂk) =0.
n=0 n=0

Then for any & > 0, we have for k large enough, E|| Z:’Y:o ﬂ,Q’X,;H < &cr(p,)- Also notice that for any n, there exists an Ng
such that NoN(By) <n < (No+ 1)N(Bk), and thus we have that for n large enough

lim E /c — lim E
81 T e

Cn S CNo+DN(B < (No + Deneg) < Cerqpy- (2.6)

Hence, by applying Theorem 3.1 of Einmahl and Li [3] with (2.6), for any M > 0,¢ > 0, 6 > 0, k sufficiently large and «
small enough, it follows that

P( sup Zﬁkx’ >(wo+28)(1+8)(1+9)Cr<ﬂk>)
1<mM
M
<P< sup ZﬁkX’ > (1 +8)(1+0)E| > BIXy| + (o + &) (A +&)(1+0)cr g
1<mM n=0

o (_ (a0+8)2<1+s> (A +0)%c2 ) >+ c a0 EIBEX,IP

2+ &) supgeps (Cno BEF* (X)) (@0 +e3(1+e)31+60)3c )
o (_ (o0 +£)22 5 )+ < Zalo ATEIXIPIOIX) < crem)
B 2H(aew) XM, B2 (@0 +8)3(1+)3cF 4

2.2
exp(_ (@0 +8)°cz g, ) ¢ TBOEIXIPIAXI < o)
2T(Br)H(cr(py) (@0 + 831 +8)3c 4

Recalling that T(By) ~ (14 6), it is easily seen that (2.5) follows from the relations (4.7) and (4.8) of Einmahl and Li [3] by
letting M — oo. Therefore, the proof of the upper bound, i.e. (2.2), is complete.
Then for proving (2.1), it is sufficient to prove the lower bound
Oi ﬂxl
lim sup 12 0 A" Xall >oap as. (2.7)
B/ Capy

Also note that by virtue of Theorem 4.1 in Einmahl and Li [3], we have with probability one

S
s 1520 < i sup 151
n— Cn n—oo Cn

< Qo < 00,

and then it follows from Lemma 2.1 that
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oi nx/ oi ny’
lim sup I E"—1"01\’</5)+1 B Xl < limsup | Zn—NoN(ﬂ)H B Xl
A1 Cx(p) B CNGB)

o0
C No
<a0<70/exp<7xq>dx+&)exp< 5 )NQ>—>O as Ng — oo.
No

Thus for proving (2.7), we need only to show that for 0 < @ < &g and Ny large enough, with probability one

NoN(B)

> B'X,
n=0

Now we start to demonstrate (2.8) holds. First we may assume that

NoN(8)
limsupP< Z B X, 20{&@) <1/2.
B/ _

limsup
3!

/Cr(ﬁ) > . (2.8)

Otherwise, we would have

NoN(8)
P( limsup Z B"Xp | = accp llmsupP
g1 n=0

NoN(8)

2 P

which implies (2.8) holds by the Kolmogorov’s 0-1 law. Thus to prove (2.8), it suffices to exhibit that for any subsequence
{Bk} (B /1 as k 7 o0),

( NoN(Br)

acr(5)> >1/2,

Zﬂk

To that end, for any k, we choose a functional fi € B such that

EfFCOI(IXN < coqpp) = (1= &)H(crpy)-

where 0 < € < 1 to be specified later on. For any k,n > 0, define

En = By fX) (11 Xnll < cz(py))- E,i,n =&kn — Eéin.
Since |E& | < BLEIXIIIXI < ce,)) and
NoN(B)

NoN(Be)
( Z B Xn “Crwk)) ( > %'k,n>0lcr<ﬂk>)’

n=0
it is enough to show that for a suitable 0 <& < 1,

Z QCr(py) lO) =1. (2.9)

e e} NoN(Br)
> P( Y Ea.=0+ g)acf(,gk)> = 00. (210)
k=1 n=0

Also using a non-uniform bound on the rate of convergence in the central limit theorem (cf. Petrov [4]), we have

NoN(Bk) NoN(Bk) NoN (B 3
P( > g,g’n>(1+s)acr(ﬂk))>|>< > ok,n£>(1+s)ac,(ﬁk))—Aa—3(1+s)—3c;(3ﬁk) > Elgl

n=0 n=0 n=0

where £ is a standard normal random variable, oy, = Var(§,) and A is an absolute constant. Observing that E\é,;n|3 <

8E|&¢nl® <8BZ"EIIXIPI(IX]| < cz(s,). We then conclude from the relation (4.8) of Einmahl and Li [3] again that

NoN(By)
Zc,(ﬂk) 3 Elgl chT(ﬁ, TBOEIXIPI(IXI < crpy) < 00
n=0 k=1

Hence, to prove (2.10), what we need to do now is to show

00 NoN(B)
ZP( > owaf>( +e)acr(ﬂk)) = 0. (211)
k=1

n=0
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Denote & :={k>1; H(t(B)) < (cr(ﬂ,‘)/r(ﬂk))z}, and thus it leads to that for any n > 0

Nt g
Zexp(——") < oo0. (212)
2T (B H(cr(p))

keZ

As to k ¢ &, observe

0 =B ES2COI(IXI < cogpp) — (EfCOIIXI < cogp))’)
= B EFZOOI(IXI < copo) — (EFCOIIXI > cegan))?)
> B2((1 — &) H(cr () — ENXI(IXI > cee))”)
> BEM(1 — 28)H(cr(py),

and for 0 < 8 <1, as Ng — o0,
ZrriiNoN(ﬂ)H ﬂzn :'BZ(NON(/S)Jrl) -0,
T(B)

where we use the fact that for n large enough E| X|/I(||X|| > cn) = o(cp/n) deduced from the assumption (1.5). Then an
application of a standard lower bound for the tail probabilities of normal random variables, yields that for large No and
large k ¢ &

NoN(Br) (1+8)20[2C2
(Br)
P Ornf > (14 8)ac > exp(— i ) (213)
ga; ( g ! T(ﬁk)) é 2(1 —3&)T(Br)H(cr(py)

Hence, by choosing ¢ so small that a(1 + €)/4/1 — 3¢ < g in (2.13) and applying the relation (4.7) of Einmahl and Li [3]
again, we have

NoN(Bk)
Z P( Z O'k’nf >\ +8)06C1(ﬂk)> =00,

k¢ = n=0

which, coupled with (2.12), ensures that (2.11) holds, as desired. Therefore, the proof of the lower bound is finished. O
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