

Contents lists available at [SciVerse ScienceDirect](http://www.ScienceDirect.com/) Journal of Mathematical Analysis and

Applications

www.elsevier.com/locate/jmaa

Generalized LIL for geometrically weighted random series in Banach spaces $*$

Ke-Ang Fu

School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China

article info abstract

Article history: Received 1 January 2011 Available online 2 December 2011 Submitted by V. Pozdnyakov

Keywords: Law of the iterated logarithm Geometrically weighted series Banach space Regularly varying function I.i.d. random variables

Let $\{X, X_n; n \geq 0\}$ be a sequence of independent and identically distributed random variables, taking values in a separable Banach space *B* with topological dual *B*∗. Considering the geometrically weighted series $\xi(\beta) = \sum_{n=0}^{\infty} \beta^n X_n$ for $0 < \beta < 1$, motivated by Einmahl and Li (2005, 2008), a general law of the iterated logarithm for *ξ(β)* is established.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and main result

Suppose that *(B,* ·*)* is a separable Banach space with topological dual *^B*∗*,* and *(Ω,*U*,*P*)* is a probability space. Let $\{X, X_n, n \ge 0\}$ be a sequence of B-valued random variables. As usual, write $S_n = \sum_{k=0}^n X_k$, $n \ge 0$ and $Lt = \log(t \vee e)$, $Llt = L(Lt), t \geqslant 0.$

Consider a geometrically weighted series $\xi(\beta)=\sum_{n=0}^\infty\beta^nX_n,~0<\beta<1.$ When $B=\Re,$ it is well known that if $\{X_n,~n\geqslant n\}$ 0} is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero and variance one, Bovier and Picco [1] obtained a law of the iterated logarithm (LIL) as follows:

$$
\lim_{\beta \nearrow 1} d\left(\gamma(\beta) \sum_{n=0}^{\infty} \beta^n X_n, [-1, 1] \right) = 0 \quad \text{a.s.}
$$

and

$$
C\left(\gamma\left(\beta\right)\sum_{n=0}^{\infty}\beta^{n}X_{n}\right)=[-1,1] \quad \text{a.s.},
$$

where $\gamma(\beta) = \sqrt{1-\beta^2}/\sqrt{2LL((1-\beta^2)^{-1})}$, $d(x, K)$ means the distance from the point x to the set K, and $C(x_\beta)$ (resp. *C*(*x_n*)) denotes the set of limit points of {*x_β*} as $\beta \nearrow 1$ (resp. of {*x_n*} as $n \rightarrow \infty$). This result was also extended to stationary ergodic martingale difference sequence by Picco and Vares [5] with a very complicated method. Later, Zhang [6] studied the strong approximation theorems of *ξ(β)* for general cases and proved the LIL for independent but not identically distributed

 $*$ Project supported by the National Natural Science Foundation of China (Nos. 11126316 & 11071213), the Natural Science Foundation of Zhejiang Province (No. Q12A010066) and Department of Education of Zhejiang Province (No. Y201119891).

E-mail address: [fukeang@hotmail.com.](mailto:fukeang@hotmail.com)

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2011 Elsevier Inc. All rights reserved. [doi:10.1016/j.jmaa.2011.11.052](http://dx.doi.org/10.1016/j.jmaa.2011.11.052)

cases and mixing dependent cases, respectively. Moreover, Zhang [7] extended it to the Banach space setting, and got the following theorem.

Theorem A. Let {X, X_n; n \geq 0} be a sequence of i.i.d. B-valued random variables with $X \in W M_0^2 := \{X : E f(X) = 0, E f^2(X) < \infty$ *for all f* ∈ *B*∗}*. Assume that*

$$
\mathsf{E} \Vert X \Vert^2 / LL \Vert X \Vert^2 < \infty,
$$

and

$$
\frac{S_n}{\sqrt{2nLLn}} \to 0 \quad \text{in probability.} \tag{1.1}
$$

Then we have

$$
\lim_{\beta \nearrow 1} \gamma(\beta) \left\| \sum_{n=0}^{\infty} \beta^n X_n \right\| = \sigma \quad a.s.,
$$

where $\sigma^2 = \sup_{f \in B_1^*} Ef^2(X)$.

Noting that Zhang [7] assumed that $E f^2(X) < \infty$, it is interesting to consider the situation when $E f^2(X)$ is infinite. In this paper, we aim to solve this problem by establishing a general LIL for *B*-valued geometrically weighted series, where $E f²(X)$ may be infinite. Before stating our main result, we shall present some necessary notations. Let c_n be a sequence of positive real numbers satisfying

$$
c_n/\sqrt{n}\nearrow\infty,\tag{1.2}
$$

and

$$
\forall \varepsilon > 0 \ \exists m_{\varepsilon} > 0: \ c_n/c_m \leqslant (1+\varepsilon)n/m, \quad n \geqslant m \geqslant m_{\varepsilon}.
$$
\n
$$
(1.3)
$$

Note that condition (1.3) is satisfied if c_n/n is non-increasing or if $c_n = c(n)$: $[0, \infty) \rightarrow [0, \infty)$ is regularly varying at infinity with exponent γ < 1. The reader is referred to Einmahl and Li [2,3] for more details about the choice of c_n . Let

$$
H(t) = \sup_{f \in B_1^*} Ef^2(X)I\big\{\|X\| \leqslant t\big\}, \quad t \geqslant 0,
$$

where B_1^* is the unit ball of B^* , and set

$$
\alpha_0 = \sup \left\{ \alpha \geqslant 0 : \sum_{n=1}^{\infty} n^{-1} \exp \left(-\frac{\alpha^2 c_n^2}{2n H(c_n)} \right) = \infty \right\}.
$$
\n(1.4)

Now we are in a position to exhibit our main result.

Theorem 1.1. Let $\{X, X_n; n \geq 0\}$ be a sequence of i.i.d. B-valued random variables with $EX = 0$. Assume that

$$
\sum_{n=1}^{\infty} \mathsf{P}\big(\|X\| \geqslant c_n\big) < \infty,\tag{1.5}
$$

and

$$
\frac{S_n}{c_n} \to 0 \quad \text{in probability}, \tag{1.6}
$$

where cn is a sequence of real numbers satisfying conditions (1.2) *and* (1.3)*. Then we have with probability one*

$$
\limsup_{\beta \nearrow 1} \left\| \sum_{n=0}^{\infty} \beta^n X_n \right\| / c_{(1-\beta^2)^{-1}} = \alpha_0,
$$

where $c_{(1-\beta^2)^{-1}} = c_{[(1-\beta^2)^{-1}]}$ *, and* α_0 *is defined in* (1.4)*.*

Remark 1.1. It is obvious that we extend Theorem A in two sides. On one hand, we use a general normalizing sequence *cn*, **EXPORTE I.I.** It is obvious that we extend Theorem A in two sides. On one hand, we use a general normalizing sequence c_n , which contains the classical $\sqrt{2nLn}$, and on the other hand, one can get the LIL when sup $f \$ some special normalizing sequence c_n (for example, $c_n = \sqrt{n h(n)}$, where $h(x)$ is a slowly varying function (cf. Einmahl and Li [2,3])). Generally condition (1.5) is necessary for the conclusion of Theorem 1.1, and (1.6) here is for getting precise value of the LIL.

2. Proof

In what follows we use the notation $a_n \sim b_n$ if $a_n/b_n \to 1$ as $n \to \infty$, and [x] means the largest integer less than *x*. We also denote with C, C_1, K etc. generic constants that may be different in each of its appearance.

We first proceed with some lemmas which will be used later.

 ${\bf Lemma~2.1.}$ (See Zhang [6].) Let $\{a_n;\;n\geqslant 0\}$ be a sequence of real numbers or a sequence in B, $\{A_n;\;n\geqslant 0\}$ a sequence of monotonically non-decreasing positive numbers satisfying $\|\sum_{k=0}^n a_k\|\leqslant A_n$ for n large enough and $A_{kn}/A_n\leqslant C_0k^Q$, $k\geqslant 1$, $n\geqslant 0$, for some C_0 , $Q > 0$. Then for any $r > 0$ and $N_0 \geqslant 1$, we have

$$
\limsup_{\beta \nearrow 1} A_{N(\beta)}^{-1} \left\| \sum_{n=0}^{\infty} \beta^{nr} a_n \right\| \leq \frac{r}{2} + \frac{rC_0}{2} \int_{1}^{\infty} \exp\left(\frac{-rx}{2}\right) x^{\mathbb{Q}} dx,
$$

and

$$
\limsup_{\beta \nearrow 1} A_{N(\beta)}^{-1} \left\| \sum_{n=N_0N(\beta)}^{\infty} \beta^{nr} a_n \right\| \leqslant \frac{rC_0}{2} \int_{N_0}^{\infty} \exp\left(\frac{-rx}{2}\right) x^{\alpha} dx + C_0 \exp\left(\frac{-rN_0}{2}\right) N_0^{\alpha},
$$

where $N(\beta) = \left[\frac{1}{1-\beta^2}\right]$.

Lemma 2.2. (See Zhang [7].) Let $\{u_n; n \ge 0\}$ be a non-increasing sequence of positive numbers and $\{x_n; n \ge 0\}$ be a sequence in B. *Then for each* $x > 0$ *,*

$$
\left\|\sum_{i=0}^n u_i x_i\right\| \leqslant u_0 \max_{i\leqslant n} \left\|\sum_{j=0}^i x_j\right\|.
$$

Now we begin to prove Theorem 1.1.

Proof. For $\alpha > 0$ small enough, set $X'_i = X_i I(\|X_i\| \leq \alpha c_i)$, $X''_i = X_i - X'_i$, $i \geq 0$, and denote the sums of the first *n* of these variables by S'_n and $S''_n, n \ge 1$, respectively. Observe that (1.5) implies for any $\varepsilon > 0$, $\sum_{n=1}^{\infty} P(\|X\| > \varepsilon c_n) < \infty$ (cf. Lemma 1 of Einmahl and Li [2]), which guarantees that

$$
\sum_{n=1}^{\infty} P(X_n \neq X'_n) < \infty,
$$

and then we have with probability one $X_n = X'_n$ eventually. Thus for completing the proof, what we need to do is to demonstrate that

$$
\limsup_{\beta \nearrow 1} \frac{\|\sum_{n=0}^{\infty} \beta^n X_n'\|}{c_{(1-\beta^2)^{-1}}} = \alpha_0 \quad \text{a.s.}
$$
\n(2.1)

We first show the upper bound, i.e.,

$$
\limsup_{\beta \nearrow 1} \frac{\|\sum_{n=0}^{\infty} \beta^n X_n'\|}{c_{(1-\beta^2)^{-1}}} \leq \alpha_0 \quad \text{a.s.}
$$
\n(2.2)

Writing $\tau(\beta) = 1/(1-\beta^2)$, it is easily seen that $\tau(\beta)$ is a monotonically increasing continuous function of β and $\tau(\beta) \nearrow \infty$ as *β 7* 1. Set

$$
\beta_k := \sqrt{1 - (1 + \theta)^{-k}}, \quad k \ge 1,
$$
\n(2.3)

for any $θ > 0$ (without loss of generality, we can assume that *θ* is small enough). Then we have $β_k \nearrow 1$ and $τ(β_k) = (1+θ)^k$ as $k \nearrow \infty$.

Note that for $\beta_{k-1} \leq \beta \leq \beta_k$,

$$
\left\|\sum_{n=0}^{\infty}\beta^nX'_n\right\|/c_{\tau(\beta)}\leqslant \sup_{0\leqslant\beta\leqslant\beta_k}\left\|\sum_{n=0}^{\infty}\beta^nX'_n\right\|/c_{\tau(\beta_{k-1})},
$$

and thus for proving (2.2), it is enough to present that

$$
\limsup_{k \to \infty} \frac{\sup_{0 \le \beta \le \beta_k} ||\sum_{n=0}^{\infty} \beta^n X'_n||}{c_{\tau(\beta_{k-1})}} \le \alpha_0 \quad \text{a.s.}
$$
\n(2.4)

From Lemma 2.2, we have that for any $0 \leqslant \beta \leqslant \beta_k$ and any integer $M \geqslant 0,$

$$
\left\|\sum_{n=0}^M \beta^n X_n'\right\| = \left\|\sum_{n=0}^M (\beta/\beta_k)^n \beta_k^n X_n'\right\| \leq (\beta/\beta_k)^0 \sup_{0 \leq m \leq M} \left\|\sum_{n=0}^m \beta_k^n X_n'\right\| = \sup_{0 \leq m \leq M} \left\|\sum_{n=0}^m \beta_k^n X_n'\right\|,
$$

and this, coupled with letting $M \rightarrow \infty$, implies

$$
\sup_{0\leq \beta\leq \beta_k}\left\|\sum_{n=0}^{\infty}\beta^nX_n'\right\|\leq \sup_{0\leq m\leq \infty}\left\|\sum_{n=0}^m\beta_k^nX_n'\right\|.
$$

Notice that if we can show for any $\varepsilon > 0$ and $\theta > 0$

$$
\sum_{k=1}^{\infty} \mathsf{P}\left(\sup_{0\leq m\leq \infty} \left\|\sum_{n=0}^{m} \beta_k^n X_n'\right\| \geq (\alpha_0 + 2\varepsilon)(1+\varepsilon)(1+\theta)c_{\tau(\beta_k)}\right) < \infty,\tag{2.5}
$$

then (2.4) follows from the Borel–Cantelli lemma, (1.3) and the fact $\tau(\beta_k)/\tau(\beta_{k-1}) = 1 + \theta$, immediately.

It is readily seen that under the assumption (1.5), (1.6) implies $\lim_{n\to\infty} E||S_n||/c_n = 0$, and this of course entails that

$$
\lim_{\beta \nearrow 1} \mathsf{E} \left\| \sum_{n=0}^{\infty} \beta^n X_n \right\| \bigg/ c_{\tau(\beta)} = \lim_{k \to \infty} \mathsf{E} \left\| \sum_{n=0}^{\infty} \beta_k^n X_n \right\| \bigg/ c_{\tau(\beta_k)} = 0.
$$

Then for any $\varepsilon > 0$, we have for k large enough, $E\|\sum_{n=0}^M\beta_k^nX_n'\|\leqslant \varepsilon c_{\tau(\beta_k)}$. Also notice that for any n, there exists an N_0 such that $N_0N(\beta_k) \leq n \leq (N_0+1)N(\beta_k)$, and thus we have that for *n* large enough

$$
c_n \leqslant c_{(N_0+1)N(\beta_k)} \leqslant (N_0+1)c_{N(\beta_k)} \leqslant C c_{\tau(\beta_k)}.
$$
\n
$$
(2.6)
$$

Hence, by applying Theorem 3.1 of Einmahl and Li [3] with (2.6), for any $M \geqslant 0, \varepsilon > 0, \ \theta > 0, \ k$ sufficiently large and α small enough, it follows that

$$
\begin{split} &\textrm{P}\Biggl(\sup_{1\leq m\leq M}\Biggl|\sum_{n=0}^{m}\beta_{k}^{n}X'_{n}\Biggr|\geq (\alpha_{0}+2\varepsilon)(1+\varepsilon)(1+\theta)c_{\tau(\beta_{k})}\Biggr)\\ &\leqslant \textrm{P}\Biggl(\sup_{1\leqslant m\leqslant M}\Biggl|\sum_{n=0}^{m}\beta_{k}^{n}X'_{n}\Biggr|\geqslant (1+\varepsilon)(1+\theta)\textrm{E}\Biggl|\sum_{n=0}^{M}\beta_{k}^{n}X'_{n}\Biggr|+(\alpha_{0}+\varepsilon)(1+\varepsilon)(1+\theta)c_{\tau(\beta_{k})}\Biggr)\\ &\leqslant \textrm{exp}\Biggl(-\frac{(\alpha_{0}+\varepsilon)^{2}(1+\varepsilon)^{2}(1+\theta)^{2}c_{\tau(\beta_{k})}^{2}}{(2+\varepsilon)\sup_{f\in B_{1}^{*}}(\sum_{n=0}^{M}\beta_{k}^{2n}\textrm{E}f^{2}(X'_{n}))}\Biggr)+C\frac{\sum_{n=0}^{M}\textrm{E}\|\beta_{k}^{n}X'_{n}\|^{3}}{(\alpha_{0}+\varepsilon)^{3}(1+\varepsilon)^{3}(1+\theta)^{3}c_{\tau(\beta_{k})}^{3}}\\ &\leqslant \textrm{exp}\Biggl(-\frac{(\alpha_{0}+\varepsilon)^{2}c_{\tau(\beta_{k})}^{2}}{2H(\alpha c_{M})\sum_{n=0}^{M}\beta_{k}^{2n}}\Biggr)+C\frac{\sum_{n=0}^{M}\beta_{k}^{2n}\textrm{E}\|X\|^{3}I(\|X\|\leqslant \alpha c_{M})}{(\alpha_{0}+\varepsilon)^{3}(1+\varepsilon)^{3}c_{\tau(\beta_{k})}^{3}}\\ &\leqslant \textrm{exp}\Biggl(-\frac{(\alpha_{0}+\varepsilon)^{2}c_{\tau(\beta_{k})}^{2}}{2\tau(\beta_{k})H(\varepsilon_{\tau(\beta_{k})})}\Biggr)+C\frac{\tau(\beta_{k})\textrm{E}\|X\|^{3}I(\|X\|\leqslant c_{\tau(\beta_{k})})}{(\alpha_{0}+\varepsilon)^{3}(1+\varepsilon)^{3}c_{\tau(\beta_{k})}^{3}}.\end{split}
$$

Recalling that $\tau(\beta_k) \sim (1 + \theta)^k$, it is easily seen that (2.5) follows from the relations (4.7) and (4.8) of Einmahl and Li [3] by letting $M \to \infty$. Therefore, the proof of the upper bound, i.e. (2.2), is complete.

Then for proving (2.1), it is sufficient to prove the lower bound

$$
\limsup_{\beta \nearrow 1} \frac{\|\sum_{n=0}^{\infty} \beta^n X'_n\|}{c_{(1-\beta^2)}^{-1}} \ge \alpha_0 \quad \text{a.s.}
$$
\n(2.7)

Also note that by virtue of Theorem 4.1 in Einmahl and Li [3], we have with probability one

$$
\limsup_{n\to}\frac{\|S'_n\|}{c_n}\leqslant\limsup_{n\to\infty}\frac{\|S_n\|}{c_n}\leqslant\alpha_0<\infty,
$$

and then it follows from Lemma 2.1 that

$$
\limsup_{\beta \nearrow 1} \frac{\|\sum_{n=N_0 N(\beta)+1}^{\infty} \beta^n X_n'\|}{c_{\tau(\beta)}} \le \limsup_{\beta \nearrow 1} \frac{\|\sum_{n=N_0 N(\beta)+1}^{\infty} \beta^n X_n'\|}{c_{N(\beta)}} \le \alpha_0 \left(\frac{c_0}{2} \int_{N_0}^{\infty} \exp\left(\frac{-x}{2} x^Q\right) dx + C_0 \exp\left(\frac{-N_0}{2}\right) N_0^Q\right) \to 0 \text{ as } N_0 \to \infty.
$$

Thus for proving (2.7), we need only to show that for $0 < \alpha < \alpha_0$ and N_0 large enough, with probability one

$$
\limsup_{\beta \nearrow 1} \left\| \sum_{n=0}^{N_0 N(\beta)} \beta^n X'_n \right\| / c_{\tau(\beta)} \ge \alpha.
$$
\n(2.8)

Now we start to demonstrate (2.8) holds. First we may assume that

$$
\limsup_{\beta \nearrow 1} \mathsf{P}\left(\left\|\sum_{n=0}^{N_0 N(\beta)} \beta^n X'_n\right\| \geq \alpha c_{\tau(\beta)}\right) \leq 1/2.
$$

Otherwise, we would have

$$
\mathsf{P}\bigg(\limsup_{\beta \nearrow 1}\left\|\sum_{n=0}^{N_0 N(\beta)} \beta^n X_n'\right\| \geqslant \alpha c_{\tau(\beta)}\bigg) \geqslant \limsup_{\beta \nearrow 1} \mathsf{P}\bigg(\left\|\sum_{n=0}^{N_0 N(\beta)} \beta^n X_n'\right\| \geqslant \alpha c_{\tau(\beta)}\bigg) > 1/2,
$$

which implies (2.8) holds by the Kolmogorov's 0-1 law. Thus to prove (2.8), it suffices to exhibit that for any subsequence ${\beta_k}$ ($\beta_k \nearrow 1$ as $k \nearrow \infty$),

$$
P\left(\left\|\sum_{n=0}^{N_0 N(\beta_k)} \beta_k^n X_n'\right\| \geq \alpha c_{\tau(\beta_k)} \text{ i.o.}\right) = 1. \tag{2.9}
$$

To that end, for any *k*, we choose a functional $f_k \in B^*_1$ such that

$$
\mathsf{E} f_k^2(X)I(|X|| \leq c_{\tau(\beta_k)}) \geq (1-\varepsilon)H(c_{\tau(\beta_k)}),
$$

where $0 < \varepsilon < 1$ to be specified later on. For any $k, n \geqslant 0$, define

$$
\xi_{k,n} = \beta_k^n f_k(X_n) I(|X_n| \leq c_{\tau(\beta_k)}), \qquad \xi'_{k,n} = \xi_{k,n} - \mathsf{E}\xi_{k,n}.
$$

Since $|\mathsf{E}\xi_{k,n}| \leq \beta_k^n \mathsf{E} \|X\| I(\|X\| \leq c_{\tau(\beta_k)})$ and

$$
\mathsf{P}\Bigg(\Bigg\|\sum_{n=0}^{N_0N(\beta_k)}\beta_k^nX_n'\Bigg\| \geqslant \alpha c_{\tau(\beta_k)}\Bigg) \geqslant \mathsf{P}\Bigg(\sum_{n=0}^{N_0N(\beta_k)}\xi_{k,n}\geqslant \alpha c_{\tau(\beta_k)}\Bigg),
$$

it is enough to show that for a suitable $0 < \varepsilon < 1$,

$$
\sum_{k=1}^{\infty} \mathsf{P}\!\left(\sum_{n=0}^{N_0 N(\beta_k)} \xi'_{k,n} \geqslant (1+\varepsilon)\alpha c_{\tau(\beta_k)}\right) = \infty. \tag{2.10}
$$

Also using a non-uniform bound on the rate of convergence in the central limit theorem (cf. Petrov [4]), we have

$$
\mathsf{P}\Biggl(\sum_{n=0}^{N_0N(\beta_k)}\xi_{k,n}'\geqslant (1+\varepsilon)\alpha c_{\tau(\beta_k)}\Biggr)\geqslant \mathsf{P}\Biggl(\sum_{n=0}^{N_0N(\beta_k)}\sigma_{k,n}\mathsf{E}\geqslant (1+\varepsilon)\alpha c_{\tau(\beta_k)}\Biggr)-A\alpha^{-3}(1+\varepsilon)^{-3}c_{\tau(\beta_k)}^{-3}\sum_{n=0}^{N_0N(\beta_k)}\mathsf{E}\bigl|\xi_{k,n}'\bigr|^3,
$$

where £ is a standard normal random variable, $\sigma_{k,n} = \text{Var}(\xi_{k,n})$ and A is an absolute constant. Observing that $E|\xi_{k,n}'|^3$ $8E|\xi_{k,n}|^3\leqslant 8\beta_k^{2n}\mathsf{E}\|X\|^3I(\|X\|\leqslant \varepsilon_{\tau(\beta_k)}),$ we then conclude from the relation (4.8) of Einmahl and Li [3] again that

$$
\sum_{k=1}^{\infty} c_{\tau(\beta_k)}^{-3} \sum_{n=0}^{N_0 N(\beta_k)} \mathsf{E} \big|\xi'_{k,n}\big|^3 \leqslant C \sum_{k=1}^{\infty} c_{\tau(\beta_k)}^{-3} \tau(\beta_k) \mathsf{E} \Vert X \Vert^3 I\big(\Vert X \Vert \leqslant c_{\tau(\beta_k)}\big) < \infty.
$$

Hence, to prove (2.10), what we need to do now is to show

$$
\sum_{k=1}^{\infty} P\left(\sum_{n=0}^{N_0 N(\beta_k)} \sigma_{k,n} E \geqslant (1+\varepsilon)\alpha c_{\tau(\beta_k)}\right) = \infty.
$$
\n(2.11)

 $\text{Denote } E := \{k \geqslant 1; H(\tau(\beta_k)) \leqslant (c_{\tau(\beta_k)}/\tau(\beta_k))^2\}$, and thus it leads to that for any $\eta > 0$

$$
\sum_{k \in \mathcal{Z}} \exp\left(-\frac{\eta c_{\tau(\beta_k)}^2}{2\tau(\beta_k)H(c_{\tau(\beta_k)})}\right) < \infty. \tag{2.12}
$$

As to $k \notin \mathcal{Z}$, observe

$$
\sigma_{k,n}^2 = \beta_k^{2n} (\mathsf{E} f_k^2(X) I(||X| \le c_{\tau(\beta_k)}) - (\mathsf{E} f_k(X) I(||X| \le c_{\tau(\beta_k)}))^2)
$$

= $\beta_k^{2n} (\mathsf{E} f_k^2(X) I(||X| \le c_{\tau(\beta_k)}) - (\mathsf{E} f_k(X) I(||X| > c_{\tau(\beta_k)}))^2)$
 $\ge \beta_k^{2n} ((1 - \varepsilon) H(c_{\tau(\beta_k)}) - (\mathsf{E} ||X|| I(||X| > c_{\tau(\beta_k)}))^2)$
 $\ge \beta_k^{2n} (1 - 2\varepsilon) H(c_{\tau(\beta_k)}),$

and for $0 < \beta < 1$, as $N_0 \rightarrow \infty$,

$$
\frac{\sum_{n=N_0 N(\beta)+1}^{\infty} \beta^{2n}}{\tau(\beta)} = \beta^{2(N_0 N(\beta)+1)} \to 0,
$$

where we use the fact that for *n* large enough $E||X||I(||X|| \ge c_n) = o(c_n/n)$ deduced from the assumption (1.5). Then an application of a standard lower bound for the tail probabilities of normal random variables, yields that for large N_0 and large $k \notin \mathcal{Z}$

$$
\sum_{k \notin \mathcal{E}} \mathsf{P} \Bigg(\sum_{n=0}^{N_0 N(\beta_k)} \sigma_{k,n} \mathsf{E} \geq (1+\varepsilon) \alpha c_{\tau(\beta_k)} \Bigg) \geq \sum_{k \notin \mathcal{E}} \exp \bigg(-\frac{(1+\varepsilon)^2 \alpha^2 c_{\tau(\beta_k)}^2}{2(1-3\varepsilon)\tau(\beta_k)H(c_{\tau(\beta_k)})} \bigg). \tag{2.13}
$$

Hence, by choosing ε so small that $\alpha(1 + \varepsilon)/\sqrt{1 - 3\varepsilon} < \alpha_0$ in (2.13) and applying the relation (4.7) of Einmahl and Li [3] again, we have

$$
\sum_{k \notin \Xi} \mathsf{P}\!\left(\sum_{n=0}^{N_0 N(\beta_k)} \sigma_{k,n} \mathsf{E} \geqslant (1+\varepsilon) \alpha c_{\tau(\beta_k)}\right) = \infty,
$$

which, coupled with (2.12), ensures that (2.11) holds, as desired. Therefore, the proof of the lower bound is finished. \Box

References

[1] A. Bovier, P. Picco, A law of the iterated logarithm for random geometric series, Ann. Probab. 21 (1993) 168–184.

[2] U. Einmahl, D.L. Li, Some results on two-sided LIL behavior, Ann. Probab. 33 (2005) 1601–1624.

[3] U. Einmahl, D.L. Li, Characterization of the LIL behavior in Banach space, Trans. Amer. Math. Soc. 360 (2008) 6677–6693.

[4] V.V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995.

[5] P. Picco, M.E. Vares, A law of iterated logarithm for geometrically weighted martingale difference sequence, J. Theoret. Probab. 7 (1994) 375–415.

[6] L.X. Zhang, Strong approximation theorems for geometrically weighted random series and their applications, Ann. Probab. 25 (1997) 1621–1635.

[7] L.X. Zhang, A law of the iterated logarithm for geometrically weighted series of *B*-valued random variables, Acta Sci. Math. (Szeged) 63 (1997) 671–688.