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Let {X, Xn; n � 0} be a sequence of independent and identically distributed random
variables, taking values in a separable Banach space B with topological dual B∗. Considering
the geometrically weighted series ξ(β) = ∑∞

n=0 βn Xn for 0 < β < 1, motivated by Einmahl
and Li (2005, 2008), a general law of the iterated logarithm for ξ(β) is established.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and main result

Suppose that (B,‖ · ‖) is a separable Banach space with topological dual B∗, and (Ω, U ,P) is a probability space. Let
{X, Xn, n � 0} be a sequence of B-valued random variables. As usual, write Sn = ∑n

k=0 Xk , n � 0 and Lt = log(t ∨ e),
LLt = L(Lt), t � 0.

Consider a geometrically weighted series ξ(β) = ∑∞
n=0 βn Xn, 0 < β < 1. When B = �, it is well known that if {Xn, n �

0} is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero and variance one, Bovier
and Picco [1] obtained a law of the iterated logarithm (LIL) as follows:

lim
β↗1

d

(
γ (β)

∞∑
n=0

βn Xn, [−1,1]
)

= 0 a.s.

and

C

(
γ (β)

∞∑
n=0

βn Xn

)
= [−1,1] a.s.,

where γ (β) = √
1 − β2/

√
2LL((1 − β2)−1), d(x, K ) means the distance from the point x to the set K , and C(xβ) (resp.

C(xn)) denotes the set of limit points of {xβ} as β ↗ 1 (resp. of {xn} as n → ∞). This result was also extended to stationary
ergodic martingale difference sequence by Picco and Vares [5] with a very complicated method. Later, Zhang [6] studied the
strong approximation theorems of ξ(β) for general cases and proved the LIL for independent but not identically distributed
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cases and mixing dependent cases, respectively. Moreover, Zhang [7] extended it to the Banach space setting, and got the
following theorem.

Theorem A. Let {X, Xn; n � 0} be a sequence of i.i.d. B-valued random variables with X ∈ W M2
0 := {X: E f (X) = 0, E f 2(X) < ∞

for all f ∈ B∗}. Assume that

E‖X‖2/LL‖X‖2 < ∞,

and

Sn√
2nLLn

→ 0 in probability. (1.1)

Then we have

lim
β↗1

γ (β)

∥∥∥∥∥
∞∑

n=0

βn Xn

∥∥∥∥∥ = σ a.s.,

where σ 2 = sup f ∈B∗
1

E f 2(X).

Noting that Zhang [7] assumed that E f 2(X) < ∞, it is interesting to consider the situation when E f 2(X) is infinite. In
this paper, we aim to solve this problem by establishing a general LIL for B-valued geometrically weighted series, where
E f 2(X) may be infinite. Before stating our main result, we shall present some necessary notations. Let cn be a sequence of
positive real numbers satisfying

cn/
√

n ↗ ∞, (1.2)

and

∀ε > 0 ∃mε > 0: cn/cm � (1 + ε)n/m, n � m � mε. (1.3)

Note that condition (1.3) is satisfied if cn/n is non-increasing or if cn = c(n) : [0,∞) → [0,∞) is regularly varying at infinity
with exponent γ < 1. The reader is referred to Einmahl and Li [2,3] for more details about the choice of cn . Let

H(t) = sup
f ∈B∗

1

E f 2(X)I
{‖X‖ � t

}
, t � 0,

where B∗
1 is the unit ball of B∗ , and set

α0 = sup

{
α � 0:

∞∑
n=1

n−1 exp

(
− α2c2

n

2nH(cn)

)
= ∞

}
. (1.4)

Now we are in a position to exhibit our main result.

Theorem 1.1. Let {X, Xn; n � 0} be a sequence of i.i.d. B-valued random variables with EX = 0. Assume that

∞∑
n=1

P
(‖X‖ � cn

)
< ∞, (1.5)

and

Sn

cn
→ 0 in probability, (1.6)

where cn is a sequence of real numbers satisfying conditions (1.2) and (1.3). Then we have with probability one

lim sup
β↗1

∥∥∥∥∥
∞∑

n=0

βn Xn

∥∥∥∥∥
/

c(1−β2)−1 = α0,

where c(1−β2)−1 = c[(1−β2)−1], and α0 is defined in (1.4).

Remark 1.1. It is obvious that we extend Theorem A in two sides. On one hand, we use a general normalizing sequence cn ,
which contains the classical

√
2nLLn, and on the other hand, one can get the LIL when sup f ∈B∗

1
E f 2(X) is infinite, by taking

some special normalizing sequence cn (for example, cn = √
nh(n), where h(x) is a slowly varying function (cf. Einmahl and

Li [2,3])). Generally condition (1.5) is necessary for the conclusion of Theorem 1.1, and (1.6) here is for getting precise value
of the LIL.
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2. Proof

In what follows we use the notation an ∼ bn if an/bn → 1 as n → ∞, and [x] means the largest integer less than x. We
also denote with C, C1, K etc. generic constants that may be different in each of its appearance.

We first proceed with some lemmas which will be used later.

Lemma 2.1. (See Zhang [6].) Let {an; n � 0} be a sequence of real numbers or a sequence in B, {An; n � 0} a sequence of monoton-
ically non-decreasing positive numbers satisfying ‖∑n

k=0 ak‖ � An for n large enough and Akn/An � C0kQ , k � 1, n � 0, for some
C0, Q > 0. Then for any r > 0 and N0 � 1, we have

lim sup
β↗1

A−1
N(β)

∥∥∥∥∥
∞∑

n=0

βnran

∥∥∥∥∥ � r

2
+ rC0

2

∞∫
1

exp

(−rx

2

)
xQ dx,

and

lim sup
β↗1

A−1
N(β)

∥∥∥∥∥
∞∑

n=N0 N(β)

βnran

∥∥∥∥∥ � rC0

2

∞∫
N0

exp

(−rx

2

)
xQ dx + C0 exp

(−rN0

2

)
N Q

0 ,

where N(β) = [ 1
1−β2 ].

Lemma 2.2. (See Zhang [7].) Let {un; n � 0} be a non-increasing sequence of positive numbers and {xn; n � 0} be a sequence in B.
Then for each x > 0,∥∥∥∥∥

n∑
i=0

uixi

∥∥∥∥∥ � u0 max
i�n

∥∥∥∥∥
i∑

j=0

x j

∥∥∥∥∥.

Now we begin to prove Theorem 1.1.

Proof. For α > 0 small enough, set X ′
i = Xi I(‖Xi‖ � αci), X ′′

i = Xi − X ′
i , i � 0, and denote the sums of the first n of these

variables by S ′
n and S ′′

n,n � 1, respectively. Observe that (1.5) implies for any ε > 0,
∑∞

n=1 P(‖X‖ > εcn) < ∞ (cf. Lemma 1
of Einmahl and Li [2]), which guarantees that

∞∑
n=1

P
(

Xn �= X ′
n

)
< ∞,

and then we have with probability one Xn = X ′
n eventually. Thus for completing the proof, what we need to do is to

demonstrate that

lim sup
β↗1

‖∑∞
n=0 βn X ′

n‖
c(1−β2)−1

= α0 a.s. (2.1)

We first show the upper bound, i.e.,

lim sup
β↗1

‖∑∞
n=0 βn X ′

n‖
c(1−β2)−1

� α0 a.s. (2.2)

Writing τ (β) = 1/(1 −β2), it is easily seen that τ (β) is a monotonically increasing continuous function of β and τ (β) ↗ ∞
as β ↗ 1. Set

βk :=
√

1 − (1 + θ)−k, k � 1, (2.3)

for any θ > 0 (without loss of generality, we can assume that θ is small enough). Then we have βk ↗ 1 and τ (βk) = (1 + θ)k

as k ↗ ∞.
Note that for βk−1 � β � βk,∥∥∥∥∥

∞∑
n=0

βn X ′
n

∥∥∥∥∥
/

cτ (β) � sup
0�β�βk

∥∥∥∥∥
∞∑

n=0

βn X ′
n

∥∥∥∥∥
/

cτ (βk−1),

and thus for proving (2.2), it is enough to present that
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lim sup
k→∞

sup0�β�βk
‖∑∞

n=0 βn X ′
n‖

cτ (βk−1)

� α0 a.s. (2.4)

From Lemma 2.2, we have that for any 0 � β � βk and any integer M � 0,∥∥∥∥∥
M∑

n=0

βn X ′
n

∥∥∥∥∥ =
∥∥∥∥∥

M∑
n=0

(β/βk)
nβn

k X ′
n

∥∥∥∥∥ � (β/βk)
0 sup

0�m�M

∥∥∥∥∥
m∑

n=0

βn
k X ′

n

∥∥∥∥∥ = sup
0�m�M

∥∥∥∥∥
m∑

n=0

βn
k X ′

n

∥∥∥∥∥,

and this, coupled with letting M → ∞, implies

sup
0�β�βk

∥∥∥∥∥
∞∑

n=0

βn X ′
n

∥∥∥∥∥ � sup
0�m�∞

∥∥∥∥∥
m∑

n=0

βn
k X ′

n

∥∥∥∥∥.

Notice that if we can show for any ε > 0 and θ > 0

∞∑
k=1

P

(
sup

0�m�∞

∥∥∥∥∥
m∑

n=0

βn
k X ′

n

∥∥∥∥∥ � (α0 + 2ε)(1 + ε)(1 + θ)cτ (βk)

)
< ∞, (2.5)

then (2.4) follows from the Borel–Cantelli lemma, (1.3) and the fact τ (βk)/τ (βk−1) = 1 + θ, immediately.
It is readily seen that under the assumption (1.5), (1.6) implies limn→∞ E‖Sn‖/cn = 0, and this of course entails that

lim
β↗1

E

∥∥∥∥∥
∞∑

n=0

βn Xn

∥∥∥∥∥
/

cτ (β) = lim
k→∞

E

∥∥∥∥∥
∞∑

n=0

βn
k Xn

∥∥∥∥∥
/

cτ (βk) = 0.

Then for any ε > 0, we have for k large enough, E‖∑M
n=0 βn

k X ′
n‖ � εcτ (βk). Also notice that for any n, there exists an N0

such that N0N(βk) � n � (N0 + 1)N(βk), and thus we have that for n large enough

cn � c(N0+1)N(βk) � (N0 + 1)cN(βk) � Ccτ (βk). (2.6)

Hence, by applying Theorem 3.1 of Einmahl and Li [3] with (2.6), for any M � 0, ε > 0, θ > 0, k sufficiently large and α
small enough, it follows that

P

(
sup

1�m�M

∥∥∥∥∥
m∑

n=0

βn
k X ′

n

∥∥∥∥∥ � (α0 + 2ε)(1 + ε)(1 + θ)cτ (βk)

)

� P

(
sup

1�m�M

∥∥∥∥∥
m∑

n=0

βn
k X ′

n

∥∥∥∥∥ � (1 + ε)(1 + θ)E

∥∥∥∥∥
M∑

n=0

βn
k X ′

n

∥∥∥∥∥ + (α0 + ε)(1 + ε)(1 + θ)cτ (βk)

)

� exp

(
− (α0 + ε)2(1 + ε)2(1 + θ)2c2

τ (βk)

(2 + ε) sup f ∈B∗
1
(
∑M

n=0 β2n
k E f 2(X ′

n))

)
+ C

∑M
n=0 E‖βn

k X ′
n‖3

(α0 + ε)3(1 + ε)3(1 + θ)3c3
τ (βk)

� exp

(
− (α0 + ε)2c2

τ (βk)

2H(αcM)
∑M

n=0 β2n
k

)
+ C

∑M
n=0 β2n

k E‖X‖3 I(‖X‖ � αcM)

(α0 + ε)3(1 + ε)3c3
τ (βk)

� exp

(
− (α0 + ε)2c2

τ (βk)

2τ (βk)H(cτ (βk))

)
+ C

τ (βk)E‖X‖3 I(‖X‖ � cτ (βk))

(α0 + ε)3(1 + ε)3c3
τ (βk)

.

Recalling that τ (βk) ∼ (1 + θ)k, it is easily seen that (2.5) follows from the relations (4.7) and (4.8) of Einmahl and Li [3] by
letting M → ∞. Therefore, the proof of the upper bound, i.e. (2.2), is complete.

Then for proving (2.1), it is sufficient to prove the lower bound

lim sup
β↗1

‖∑∞
n=0 βn X ′

n‖
c
(1−β2)

−1
� α0 a.s. (2.7)

Also note that by virtue of Theorem 4.1 in Einmahl and Li [3], we have with probability one

lim sup
n→

‖S ′
n‖

cn
� lim sup

n→∞
‖Sn‖

cn
� α0 < ∞,

and then it follows from Lemma 2.1 that



K.-A. Fu / J. Math. Anal. Appl. 388 (2012) 513–518 517
lim sup
β↗1

‖∑∞
n=N0 N(β)+1 βn X ′

n‖
cτ (β)

� lim sup
β↗1

‖∑∞
n=N0 N(β)+1 βn X ′

n‖
cN(β)

� α0

(
C0

2

∞∫
N0

exp

(−x

2
xQ

)
dx + C0 exp

(−N0

2

)
N Q

0

)
→ 0 as N0 → ∞.

Thus for proving (2.7), we need only to show that for 0 < α < α0 and N0 large enough, with probability one

lim sup
β↗1

∥∥∥∥∥
N0 N(β)∑

n=0

βn X ′
n

∥∥∥∥∥
/

cτ (β) � α. (2.8)

Now we start to demonstrate (2.8) holds. First we may assume that

lim sup
β↗1

P

(∥∥∥∥∥
N0 N(β)∑

n=0

βn X ′
n

∥∥∥∥∥ � αcτ (β)

)
� 1/2.

Otherwise, we would have

P

(
lim sup

β↗1

∥∥∥∥∥
N0 N(β)∑

n=0

βn X ′
n

∥∥∥∥∥ � αcτ (β)

)
� lim sup

β↗1
P

(∥∥∥∥∥
N0 N(β)∑

n=0

βn X ′
n

∥∥∥∥∥ � αcτ (β)

)
> 1/2,

which implies (2.8) holds by the Kolmogorov’s 0–1 law. Thus to prove (2.8), it suffices to exhibit that for any subsequence
{βk} (βk ↗ 1 as k ↗ ∞),

P

(∥∥∥∥∥
N0 N(βk)∑

n=0

βn
k X ′

n

∥∥∥∥∥ � αcτ (βk) i.o.

)
= 1. (2.9)

To that end, for any k, we choose a functional fk ∈ B∗
1 such that

E f 2
k (X)I

(‖X‖ � cτ (βk)

)
� (1 − ε)H(cτ (βk)),

where 0 < ε < 1 to be specified later on. For any k,n � 0, define

ξk,n = βn
k fk(Xn)I

(‖Xn‖ � cτ (βk)

)
, ξ ′

k,n = ξk,n − Eξk,n.

Since |Eξk,n| � βn
k E‖X‖I(‖X‖ � cτ (βk)) and

P

(∥∥∥∥∥
N0 N(βk)∑

n=0

βn
k X ′

n

∥∥∥∥∥ � αcτ (βk)

)
� P

(N0 N(βk)∑
n=0

ξk,n � αcτ (βk)

)
,

it is enough to show that for a suitable 0 < ε < 1,

∞∑
k=1

P

(N0 N(βk)∑
n=0

ξ ′
k,n � (1 + ε)αcτ (βk)

)
= ∞. (2.10)

Also using a non-uniform bound on the rate of convergence in the central limit theorem (cf. Petrov [4]), we have

P

(N0 N(βk)∑
n=0

ξ ′
k,n � (1 + ε)αcτ (βk)

)
� P

(N0 N(βk)∑
n=0

σk,n£ � (1 + ε)αcτ (βk)

)
− Aα−3(1 + ε)−3c−3

τ (βk)

N0 N(βk)∑
n=0

E
∣∣ξ ′

k,n

∣∣3
,

where £ is a standard normal random variable, σk,n = Var(ξk,n) and A is an absolute constant. Observing that E|ξ ′
k,n|3 �

8E|ξk,n|3 � 8β2n
k E‖X‖3 I(‖X‖ � cτ (βk)), we then conclude from the relation (4.8) of Einmahl and Li [3] again that

∞∑
k=1

c−3
τ (βk)

N0 N(βk)∑
n=0

E
∣∣ξ ′

k,n

∣∣3 � C
∞∑

k=1

c−3
τ (βk)

τ (βk)E‖X‖3 I
(‖X‖ � cτ (βk)

)
< ∞.

Hence, to prove (2.10), what we need to do now is to show

∞∑
P

(N0 N(βk)∑
σk,n£ � (1 + ε)αcτ (βk)

)
= ∞. (2.11)
k=1 n=0
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Denote Ξ := {k � 1; H(τ (βk)) � (cτ (βk)/τ (βk))
2}, and thus it leads to that for any η > 0

∑
k∈Ξ

exp

(
− ηc2

τ (βk)

2τ (βk)H(cτ (βk))

)
< ∞. (2.12)

As to k /∈ Ξ, observe

σ 2
k,n = β2n

k

(
E f 2

k (X)I
(‖X‖ � cτ (βk)

) − (
E fk(X)I

(‖X‖ � cτ (βk)

))2)
= β2n

k

(
E f 2

k (X)I
(‖X‖ � cτ (βk)

) − (
E fk(X)I

(‖X‖ > cτ (βk)

))2)
� β2n

k

(
(1 − ε)H(cτ (βk)) − (

E‖X‖I
(‖X‖ > cτ (βk)

))2)
� β2n

k (1 − 2ε)H(cτ (βk)),

and for 0 < β < 1, as N0 → ∞,∑∞
n=N0 N(β)+1 β2n

τ (β)
= β2(N0 N(β)+1) → 0,

where we use the fact that for n large enough E‖X‖I(‖X‖ � cn) = o(cn/n) deduced from the assumption (1.5). Then an
application of a standard lower bound for the tail probabilities of normal random variables, yields that for large N0 and
large k /∈ Ξ

∑
k/∈Ξ

P

(N0 N(βk)∑
n=0

σk,n£ � (1 + ε)αcτ (βk)

)
�

∑
k/∈Ξ

exp

(
− (1 + ε)2α2c2

τ (βk)

2(1 − 3ε)τ (βk)H(cτ (βk))

)
. (2.13)

Hence, by choosing ε so small that α(1 + ε)/
√

1 − 3ε < α0 in (2.13) and applying the relation (4.7) of Einmahl and Li [3]
again, we have

∑
k/∈Ξ

P

(N0 N(βk)∑
n=0

σk,n£ � (1 + ε)αcτ (βk)

)
= ∞,

which, coupled with (2.12), ensures that (2.11) holds, as desired. Therefore, the proof of the lower bound is finished. �
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