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Abstract

A Rota–Baxter operator of weight λ is an abstraction of both the integral operator (when λ = 0) and the summation operator
(when λ = 1). We similarly define a differential operator of weight λ that includes both the differential operator (when λ = 0) and
the difference operator (when λ = 1). We further consider an algebraic structure with both a differential operator of weight λ and a
Rota–Baxter operator of weight λ that are related in the same way that the differential operator and the integral operator are related
by the First Fundamental Theorem of Calculus. We construct free objects in the corresponding categories. In the commutative case,
the free objects are given in terms of generalized shuffles, called mixable shuffles. In the noncommutative case, the free objects are
given in terms of angularly decorated rooted forests. As a byproduct, we obtain structures of a differential algebra on decorated
and undecorated planar rooted forests.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 16W99; 12H05; 05C05

1. Introduction

1.1. Motivation

This paper studies the algebraic structure reflecting the relation between the differential operator and the integral
operator as in the First Fundamental Theorem of Calculus.

As is well-known, the two principal components of calculus are the differential calculus which studies the
differential operator d( f )(x) =

d f
dx (x) and the integral calculus which studies the integral operator P( f )(x) =

∫ x
a

f (t)dt . The discrete versions of these two operators are the difference operator and the summation operator. The
abstraction of the differential operator and difference operator led to the development of differential algebra and
difference algebra [5,21]. Likewise, the integral operator P and the summation operator have been abstracted to give
the notion of Rota–Baxter operators (previously called Baxter operators) and Rota–Baxter algebras [3,24,25]. In the
last few years, major progress has been made in both differential algebra and Rota–Baxter algebra, with applications in
broad areas in mathematics and physics [1,2,4,6,10,11,13,14,16,26,27]. For instance, both operators played important
roles in the recent developments in renormalization of quantum field theory [6,7,12].

∗ Corresponding author. Tel.: +1 973 353 5156x30; fax: +1 973 353 5270.
E-mail addresses: liguo@newark.rutgers.edu (L. Guo), keigher@andromeda.rutgers.edu (W. Keigher).

0022-4049/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2007.06.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82279963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jpaa
mailto:liguo@newark.rutgers.edu
mailto:keigher@andromeda.rutgers.edu
http://dx.doi.org/10.1016/j.jpaa.2007.06.008


L. Guo, W. Keigher / Journal of Pure and Applied Algebra 212 (2008) 522–540 523

The differential operator and the integral operator are related by the First Fundamental Theorem of Calculus stating
that (under suitable conditions)

d
dx

(∫ x

a
f (t)dt

)
= f (x). (1)

Thus the integral operator is the right inverse of the differential operator, so that (d ◦ P)( f ) = f . A similar relation
holds for the difference operator and the summation operator (see Example 1.1(e)). It is therefore natural for us to in-
troduce the notion of differential integral algebra, or more generally the notion of differential Rota–Baxter algebra, that
provides a framework to put differential/difference algebra and Rota–Baxter algebra together in the spirit of Eq. (1).

Quite often, problems on differential equations and differential algebra are studied by translating them to integral
problems. This transition uses in disguise the underlying structure of differential Rota–Baxter algebra. In fact,
Baxter [3] defined his algebra and gave an algebraic proof of the Spitzer identity in probability guided by such a
point of view for first order linear ODEs. This view was further stressed by Rota [25] in connection with finding
q-analogues of classical identities of special functions. The framework introduced in the current paper should provide
a natural setting to study such problems. The reader is also invited to consult the paper [23], which came to our
attention after our paper was submitted, where a similar structure was independently defined under a different context
and was applied to study boundary problems for linear ODE in differential algebras. This coincidence might suggest
that a systematic study of differential Rota–Baxter algebra is now in order after the observation of Baxter several
decades ago.

1.2. Definitions and preliminary examples

We now give more details of our constructions. By analogy to a Rota–Baxter operator that unifies the notions
of an integral operator and a summation operator, we first unify the concepts of the differential operator and the
difference operator by the concept of a λ-differential operator, where λ is a fixed element in the ground ring, that
gives the differential (resp. difference) operator when λ is 0 (resp. 1). We then introduce the concept of a differential
Rota–Baxter algebra of weight λ consisting of an algebra with both a λ-differential operator and a λ-Rota–Baxter
operator with a compatibility condition between these two operators.

Definition 1.1. Let k be a unitary commutative ring. Let λ ∈ k be fixed.

(a) A differential k-algebra of weight λ (also called a λ-differential k-algebra) is an associative k-algebra R
together with a linear operator d : R → R such that

d(xy) = d(x)y + xd(y) + λd(x)d(y), ∀x, y ∈ R, (2)

and

d(1) = 0. (3)

Such an operator is called a differential operator of weight λ or a derivation of weight λ. It is also called a
λ-differential operator or a λ-derivation. The category of differential algebras (resp. commutative differential
algebras) of weight λ is denoted by Difλ (resp. CDifλ).

(b) A Rota–Baxter k-algebra of weight λ is an associative k-algebra R together with a linear operator P : R → R
such that

P(x)P(y) = P(x P(y)) + P(P(x)y) + λP(xy), ∀x, y ∈ R. (4)

Such an operator is called a Rota–Baxter operator of weight λ or a λ-Rota–Baxter operator. The category of
Rota–Baxter algebras (resp. commutative Rota–Baxter algebras) of weight λ is denoted by RBλ (resp. CRBλ).

(c) A differential Rota–Baxter k-algebra of weight λ (also called a λ-differential Rota–Baxter k-algebra) is an
associative k-algebra R together with a differential operator d of weight λ and a Rota–Baxter operator P of weight
λ such that

d ◦ P = idR . (5)

The category of differential Rota–Baxter algebras (resp. commutative differential Rota–Baxter algebras) of weight
λ is denoted by DRBλ (resp. CDRBλ).
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We also use Alg = Algk to denote the category of k-algebras. When there is no danger of confusion, we will
suppress λ and k from the notations. We will also denote the set of nonnegative integers by N and the set of positive
integers by N+.

Note that we require that a differential operator d satisfies d(1) = 0. A linear operator d satisfying Eq. (2) is
called a weak differential operator of weight λ. A weak differential operator of weight λ with d(1) 6= 0 is called a
degenerate differential operator of weight λ for the reason given in Remark 2.4, and will be discussed in Section 2.1.

We next give some simple examples of differential, Rota–Baxter and differential Rota–Baxter algebras. Further
examples will be given in later sections. In particular, the algebras of λ-Hurwitz series are differential Rota–Baxter
algebras (Proposition 2.10). By Theorem 3.2 and Theorem 4.2, every differential algebra naturally gives rise to a
differential Rota–Baxter algebra. We also obtain the structure of a differential Rota–Baxter algebra on rooted forests
(Theorem 5.1).

Example 1.1. (a) A 0-derivation and a 0-differential algebra is a derivation and differential algebra in the usual
sense [21].

(b) Let λ ∈ R, λ 6= 0. Let R = Cont(R) denote the R-algebra of continuous functions f : R → R, and consider the
usual “difference quotient” operator dλ on R defined by

(dλ( f ))(x) = ( f (x + λ) − f (x))/λ. (6)

Then it is immediate that dλ is a λ-derivation on R. When λ = 1, we obtain the usual difference operator on
functions. Further, the usual derivation is d0 := limλ→0 dλ.

(c) A difference algebra [5] is defined to be a commutative algebra R together with an injective algebra endomorphism
φ on R. It is simple to check that φ − id is a differential operator of weight 1.

(d) By the First Fundamental Theorem of Calculus in Eq. (1), (Cont(R), d/dx,
∫ x

0 ) is a differential Rota–Baxter
algebra of weight 0.

(e) Let 0 < λ ∈ R. Let R be an R-subalgebra of Cont(R) that is closed under the operators

P0( f )(x) = −

∫
∞

x
f (t)dt, Pλ( f )(x) = −λ

∑
n≥0

f (x + nλ).

For example, R can be taken to be the R-subalgebra generated by e−x : R =
∑

k≥1 Re−kx . Then Pλ is a
Rota–Baxter operator of weight λ and, for the dλ in Eq. (6),

dλ ◦ Pλ = idR, ∀0 6= λ ∈ R,

reducing to the fundamental theorem d0 ◦ P0 = idR when λ goes to 0. So (R, dλ, Pλ) is a differential Rota–Baxter
algebra of weight λ.

1.3. Main results and outline of the paper

Our main purpose in this paper is to construct free objects in the various categories of λ-differential algebras and
λ-differential Rota–Baxter algebras.

In Section 2, we first prove basic properties of λ-differential algebras. We then construct the free objects in Difλ in
Theorem 2.5 and cofree objects in Difλ in Corollary 2.9. The construction of free objects in CDRBλ is carried out in
Section 3 (Theorem 3.2) and the construction of free objects in DRBλ is carried out in Section 4 (Theorem 4.2).
Both constructions rely on the explicit construction of free Rota–Baxter algebras, in the commutative case in
[16,17] and in the noncommutative case in [2,10,11]. Consequently, we obtain a structure of a differential algebra
on the mixable shuffle and shuffle algebras, and on angularly decorated rooted trees. We further obtain the structure
of a λ-differential algebra on planar rooted forests in Section 5 (Theorem 5.1). Grossman and Larson [15] have also
obtained a differential algebra structure on trees. There are differences between their construction and ours. The
multiplications on the trees are different. Further our trees form a differential algebra while theirs form a ring of
differential operators. It would be interesting to further explore their relation.

2. Differential algebras of weight λ

We first give some basic properties of λ-differential algebras, followed by a study of free and cofree λ-differential
algebras.
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2.1. Basic properties and degenerate differential operators

Some basic properties of differential operators can be easily generalized to λ-differential operators. The following
proposition generalizes the power rule in differential calculus and the well-known result of Leibniz [21, p.60]. It holds
without the assumption that d(1) = 0.

Proposition 2.1. Let (R, d) be a differential k-algebra of weight λ.
(a) Let x ∈ R and n ∈ N+. Then

d(xn) =

n∑
i=1

(n

i

)
λi−1xn−i d(x)i .

(b) Let x, y ∈ R, and let n ∈ N. Then

dn(xy) =

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
λkdn− j (x)dk+ j (y). (7)

Proof. (a) The proof is similar to the inductive proof on n for the usual power rule, using an index shift and Pascal’s
rule.

(b) The proof is again similar to the case for differential operators. Proceeding by induction on n, the case n = 0 is
trivial, so assume that Eq. (7) holds for n, and consider

dn+1(xy) = dn(d(xy)) = dn(d(x)y) + dn(xd(y)) + λdn(d(x)d(y)). (8)

Applying the induction hypothesis to the first term gives

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
λkdn+1− j (x)dk+ j (y)

=

n∑
k=0

n−k∑
j=1

(
n
k

) (
n − k

j

)
λkdn+1− j (x)dk+ j (y) +

n∑
k=0

(
n
k

)
λkdn+1(x)dk(y).

Doing the same to the second term in Eq. (8) followed by an index shift gives

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
λkdn− j (x)dk+ j+1(y)

=

n∑
k=0

n+1−k∑
j=1

(
n
k

) (
n − k
j − 1

)
λkdn+1− j (x)dk+ j (y)

=

n∑
k=0

n−k∑
j=1

(
n
k

) (
n − k
j − 1

)
λkdn+1− j (x)dk+ j (y) +

n∑
k=0

(
n
k

)
λkdk(x)dn+1(y).

Thus by Pascal’s rule,

dn(d(x)y) + dn(xd(y)) =

n∑
k=0

n−k∑
j=1

(
n
k

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y)

+

n∑
k=0

(
n
k

)
λkdn+1(x)dk(y) +

n∑
k=0

(
n
k

)
λkdk(x)dn+1(y)

=

n∑
k=0

n+1−k∑
j=0

(
n
k

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y)

=

n∑
k=1

n+1−k∑
j=0

(
n
k

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y) +

n+1∑
j=0

(
n + 1

j

)
dn+1− j (x)d j (y).
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For the same reason, the third term in Eq. (8) gives

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
λk+1dn+1− j (x)dk+ j+1(y)

=

n+1∑
k=1

n+1−k∑
j=0

(
n

k − 1

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y)

=

n∑
k=1

n+1−k∑
j=0

(
n

k − 1

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y) + λn+1dn+1(x)dn+1(y).

Therefore another application of Pascal’s rule gives

dn(d(x)y) + dn(xd(y)) + λdn(d(x)d(y)) =

n∑
k=1

n+1−k∑
j=0

(
n + 1

k

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y)

+

n+1∑
j=0

(
n + 1

j

)
dn+1− j (x)d j (y) + λn+1dn+1(x)dn+1(y)

=

n+1∑
k=0

n+1−k∑
j=0

(
n + 1

k

) (
n + 1 − k

j

)
λkdn+1− j (x)dk+ j (y).

This completes the induction. �

We now briefly study degenerate λ-differential operators, that is, weak differential operators d for which d(1) 6= 0.
We first note that, for any λ ∈ k and any k-algebra R, the zero map

d : R → R, d(r) = 0, ∀r ∈ R

is a differential operator of weight λ, called the zero differential operator of weight λ.
We next note that for any λ ∈ k that is invertible and for any k-algebra R, the map

d : R → R, d(r) = −λ−1r, ∀r ∈ R, (9)

is a weak differential operator of weight λ. We call such an operator (resp. algebra) a scalar differential operator
(resp. algebra) of weight λ. We remark that by our definition, the zero map is not a scalar differential operator even
though the zero map is given by a scalar multiplication.

For λ ∈ k invertible, it is also easy to check that

Pλ : R → R, Pλ(r) = −λr, ∀r ∈ R,

is a Rota–Baxter operator of weight λ. Further dλ ◦ Pλ = id. This gives an instance of a degenerate differential
Rota–Baxter algebra of weight λ.

Proposition 2.2. Let λ ∈ k. Let (R, d) be a weak differential k-algebra of weight λ with no zero divisors. Then the
following statements are equivalent.

(a) λ is invertible and d is a scalar differential operator of weight λ.
(b) λ is invertible and d(1) = −λ−1.

(c) d(1) 6= 0.
(d) For every r ∈ R, d(r) is a nonzero k-multiple of r .

Proof. We clearly have (a) ⇒ (b) ⇒ (c) and (a) ⇒ (d). So we only need to prove (c) ⇒ (a) and (d) ⇒ (c).
(c) ⇒ (a): By Eq. (2), for any x ∈ R, we have

d(x) = d(1)x + d(x) + λd(1)d(x).
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Thus d(1) (x + λd(x)) = 0. Since R has no zero divisors, if d(1) 6= 0, then we have

x + λd(x) = 0. (10)

Letting x = 1, we have 0 = 1+λd(1) = 1+d(1)λ since λ ∈ k. Thus λ is invertible and Eq. (10) gives d(x) = −λ−1x ,
as needed.
(d) ⇒ (c): Taking r = 1 in (d) we have d(1) = α(1) 6= 0. Thus we have (c). �

Corollary 2.3. Let (R, d) be a weak differential algebra of weight λ that has no zero divisors. If d is not a scalar
differential operator, then it is a differential operator of weight λ.

Remark 2.4. Since a scalar differential algebra is just an algebra with a fixed scalar multiplication, its study can be
reduced to the study of algebras. By Corollary 2.3, a nonscalar weak differential algebra is a differential algebra under
a mild restriction. This justifies the requirement in our Definition 1.1 that a λ-differential algebra be nondegenerate.
A more careful study of degenerate differential operators will be carried out in the future.

2.2. Free differential algebras of weight λ

Using the same construction as for free differential algebras (of weight 0), we obtain free differential algebras of
weight λ in both the commutative and noncommutative case.

Theorem 2.5. Let X be a set. Let

∆(X) = X × N = {x (n)
|x ∈ X, n ≥ 0}.

(a) Let k{X} be the free commutative algebra k[∆X ] on the set ∆X. Define dX : k{X} → k{X} as follows. Let
w = u1 · · · uk, ui ∈ ∆X, 1 ≤ i ≤ k, be a commutative word from the alphabet set ∆(X). If k = 1, so that
w = x (n)

∈ ∆(X), define dX (w) = x (n+1). If k > 1, recursively define

dX (w) = dX (u1)u2 · · · uk + u1dX (u2 · · · uk) + λdX (u1)dX (u2 · · · uk). (11)

Further define dX (1) = 0 and then extend dX to k{X} by linearity. Then (k{X}, dX ) is the free commutative
differential algebra of weight λ on the set X.

(b) Let kNC
{X} be the free noncommutative algebra k〈∆X〉 on the set ∆X. Define dNC

X : kNC
{X} → kNC

{X} on the
noncommutative words from the alphabet set ∆X in the same way as dX is defined in (a). Then (kNC

{X}, dNC
X ) is

the free noncommutative differential algebra of weight λ on the set X.

Remark 2.6. Our use of k{X} for free commutative differential algebras of weight λ is consistent with the notation
of the usual free commutative differential algebra (when λ = 0). We do not know a standard notation for free
noncommutative differential algebras.

Proof. We just give a proof of (a). The proof of (b) is the same. In either case, it is similar to the proof of the λ = 0
case [21, p. 70].

Let (R, d) be a commutative λ-differential algebra and let f : X → R be a set map. We extend f to a λ-differential
algebra homomorphism f̄ : k{X} → R as follows.

Let w = u1 · · · uk, ui ∈ ∆X , 1 ≤ i ≤ k, be a commutative word from the alphabet set ∆X . If k = 1, then
w = x (n)

∈ ∆X . Define

f̄ (w) = dn( f (x)). (12)

Note that this is the only possible definition in order for f̄ to be a λ-differential algebra homomorphism. If k > 1,
recursively define

f̄ (w) = f̄ (u1) f̄ (u2 · · · uk).

Further define f̄ (1) = 1 and then extend f̄ to k{X} by linearity. This is the only possible definition in order for f̄ to
be an algebra homomorphism.

Since k{X} is the free commutative algebra on ∆X , f̄ is an algebra homomorphism. So it remains to verify that,
for all commutative words w = u1 · · · uk from the alphabet set ∆X ,
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f̄ (dX (w)) = d( f̄ (w)), (13)

for which we use induction on k. The case when k = 1 follows immediately from Eq. (12). For the inductive step, by
Eq. (11):

f̄ (dX (w)) = f̄ (dX (u1)u2 · · · uk) + f̄ (u1dX (u2 · · · uk)) + λ f̄ (dX (u1)dX (u2 · · · uk))

= f̄ (dX (u1)) f̄ (u2 · · · uk) + f̄ (u1) f̄ (dX (u2 · · · uk)) + λ f̄ (dX (u1)) f̄ (dX (u2 · · · uk)).

Then by Eq. (12), the induction hypothesis on k and the λ-differential algebra relation for d, the last sum equals to
d( f̄ (w)). �

2.3. Cofree differential algebras of weight λ

For any k-algebra A, let AN denote the k-module of all functions f : N → A. We define a product on AN by
defining, for any f, g ∈ AN, f g ∈ AN by

( f g)(n) =

n∑
k=0

n−k∑
j=0

(
n
k

) (
n − k

j

)
λk f (n − j)g(k + j).

Note that this definition is motivated by Proposition 2.1.(b). It is easily checked that this product is commutative,
associative, distributive over addition, and has an identity 1AN defined by 1AN(n) = 0 if n 6= 0 and 1AN(0) = 1A. We
call this product the λ-Hurwitz product on AN, since if we take λ = 0, the product reduces to

( f g)(n) =

n∑
k=0

(
n
k

)
f (n − k)g(k),

which is the usual Hurwitz product defined in [20]. We denote the k-algebra AN with this product by D A, and call
it the k-algebra of λ-Hurwitz series over A. Also, there is, for any k-algebra A, a homomorphism κA : A → D A
of k-algebras defined by κA(a) = a1AN . This makes D A into an A-algebra, where for any a ∈ A and any f ∈ D A,
a f ∈ D A is given by (a f )(n) = a( f (n)).

The k-algebra D A behaves much like the ring of Hurwitz series. The following proposition is one instance of this.
We first define a map

∂A : D A → D A, (∂A( f ))(n) = f (n + 1), n ∈ N, f ∈ D A. (14)

Proposition 2.7. The map ∂A is a λ-derivation on D A.

Proof. It is clear that ∂A is a mapping of k-modules, so all that remains is to show that for any f, g ∈ D A,

∂A( f g) = ∂A( f )g + f ∂A(g) + λ∂A( f )∂A(g).

But because of the definition of the λ-Hurwitz product, the proof of this equation is virtually identical to the proof of
Proposition 2.1(b) and is left to the reader. �

It follows from Proposition 2.7 that (D A, ∂A) is a λ-differential k-algebra. If h : A → B is a k-algebra
homomorphism, one checks that Dh : D A → DB defined by ((Dh)( f ))(n) = h( f (n)) is a morphism of k-algebras,
and that ∂B ◦ Dh = Dh ◦ ∂A. Recalling that Dif = Difλ denotes the category of λ-differential k-algebras, we see that
we have a functor G : Algk → Dif given on objects A ∈ Alg by G(A) = (D A, ∂A) and on morphisms h : A → B
in Alg by G(h) = Dh as defined above. Letting V : Dif → Alg denote the forgetful functor defined on objects
(R, d) ∈ Dif by V (R, d) = R and on morphisms f : (R, d) → (S, e) in Dif by V ( f ) = f , we have the following
characterization of G(A).

Proposition 2.8. The functor G : Alg → Dif defined above is the right adjoint of the forgetful functor V : Dif → Alg.

Proof. By [22], it is equivalent to show that there are two natural transformations η : idDif → GV and ε : V G →

idAlg satisfying the equations Gε ◦ ηG = G and εV ◦ V η = V . Here idDif denotes the identity functor on Dif, and
similarly for idAlg.
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For any A ∈ Alg, define εA : D A → A for any f ∈ D A by εA( f ) = f (0). One checks that εA is a morphism
of k-algebras, and that if h : A → B is any morphism of k-algebras, then εB ◦ Dh = h ◦ εA, i.e., ε is a natural
transformation as desired.

For any (R, d) ∈ Dif, x ∈ R and n ∈ N, define η(R,d) : (R, d) → (DR, ∂R) by (η(R,d)(x))(n) = d(n)(x).
It is not difficult to see that η(R,d) is k-linear, and it is immediate from Proposition 2.1(b) that for any x, y ∈ R,
(η(R,d)(x))(η(R,d)(y)) = (η(R,d)(xy)). Also, it is clear that ∂R ◦ η(R,d) = η(R,d) ◦ d, so that η(R,d) is a morphism in
Dif. Further, if f : (R, d) → (S, e) is a morphism in Dif, then one sees that η(S,e) ◦ f = D f ◦ η(R,d). Hence η is a
natural transformation.

To see that Gε ◦ ηG = G, let A ∈ Alg, f ∈ D A and n ∈ N. Then

((DεA)(η(D A,∂A)( f )))(n) = εA(η(D A,∂A)( f )(n)) = εA(∂
(n)
A ( f )) = (∂

(n)
A ( f ))(0) = f (n).

Similarly, to see that εV ◦ V η = V , let (R, d) ∈ Dif, and x ∈ R. Then εR(η(R,d)(x)) = (η(R,d)(x))(0) = d(0)(x)

= x . �

The following corollary gives a “universal mapping property” characterization of the λ-differential k-algebra of
λ-Hurwitz series as the cofree λ-differential k-algebra on any k-algebra A.

Corollary 2.9. Let (R, d) be any λ-differential k-algebra, and let A be any k-algebra. For any k-algebra
homomorphism f : R → A, there is a unique morphism of λ-differential k-algebras f̃ : (R, d) → (D A, ∂A)

such that εA ◦ V f̃ = f.

Proof. This follows from page 81, Theorem 2 in [22]. �

We next show that D A provides another example of differential Rota–Baxter algebras. Define

πA : D A → D A, (πA( f ))(n) = f (n − 1), n ≥ 1, (πA( f ))(0) = 0, f ∈ D A. (15)

Proposition 2.10. The triple (D A, ∂A, πA) is a differential Rota–Baxter algebra of weight λ.

Proof. Since

(πA(∂A( f )))(n) = (πA( f ))(n + 1) = f (n)

for f ∈ D A, we have πA ◦ ∂A = idD A. Thus we only need to verify that πA is a Rota–Baxter operator of weight λ.
Let H ∈ D A be defined by

H = πA( f )πA(g) − πA(πA( f )g) − πA( f πA(g)) − λπA( f g). (16)

By Proposition 2.7, we have ∂A(H) = 0. Thus H is of the form H : N → A with H(n) = 0, n > 0 and H(0) = k
for some k ∈ k. But by definition, πA(0) = 0. Thus H(0) = 0 and so H = 0. This shows that πA is a Rota–Baxter
operator of weight λ. �

3. Free commutative differential Rota–Baxter algebras

We briefly recall the construction of free commutative Rota–Baxter algebras in terms of mixable shuffles [16,17].
The mixable shuffle product is shown to be the same as the quasi-shuffle product of Hoffman [9,18,19]. Let A be a
commutative k-algebra. Define

X(A) =

⊕
k∈N

A⊗(k+1)
= A ⊕ A⊗2

⊕ · · · .

Let a = a0 ⊗ · · · ⊗ am ∈ A⊗(m+1) and b = b0 ⊗ · · · ⊗ bn ∈ A⊗(n+1). If m = 0 or n = 0, define

a � b =

(a0b0) ⊗ b1 ⊗ · · · ⊗ bn, m = 0, n > 0,

(a0b0) ⊗ a1 ⊗ · · · ⊗ am, m > 0, n = 0,

a0b0, m = n = 0.

(17)
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If m > 0 and n > 0, inductively (on m + n) define

a � b = (a0b0) ⊗ ((a1 ⊗ a2 ⊗ · · · ⊗ am) � (1 ⊗ b1 ⊗ · · · ⊗ bn) + (1 ⊗ a1 ⊗ · · · ⊗ am) � (b1 ⊗ · · · ⊗ bn)

+ λ(a1 ⊗ · · · ⊗ am) � (b1 ⊗ · · · ⊗ bn)) . (18)

Extending by additivity, we obtain a k-bilinear map

� : X(A) × X(A) → X(A),

called the mixable shuffle product on X(A). Define a k-linear endomorphism PA on X(A) by assigning

PA(x0 ⊗ x1 ⊗ · · · ⊗ xn) = 1A ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xn,

for all x0 ⊗ x1 ⊗ · · · ⊗ xn ∈ A⊗(n+1) and extending by additivity. Let jA : A → X(A) be the canonical inclusion
map.

Theorem 3.1 ([16,17]). The pair (X(A), PA), together with the natural embedding jA : A → X(A), is a free
commutative Rota–Baxter k-algebra on A of weight λ. In other words, for any Rota–Baxter k-algebra (R, P) and any
k-algebra map ϕ : A → R, there exists a unique Rota–Baxter k-algebra homomorphism ϕ̃ : (X(A), PA) → (R, P)

such that ϕ = ϕ̃ ◦ jA as k-algebra homomorphisms.

Since � is compatible with the multiplication in A, we will often suppress the symbol � and simply denote xy for
x � y in X(A), unless there is a danger of confusion.

Let (A, d0) be a commutative differential k-algebra of weight λ. Define an operator dA on X(A) by assigning

dA(x0 ⊗ x1 ⊗ · · · ⊗ xn) = d0(x0) ⊗ x1 ⊗ · · · ⊗ xn + x0x1 ⊗ x2 ⊗ · · · ⊗ xn + λd0(x0)x1 ⊗ x2 ⊗ · · · ⊗ xn

for x0 ⊗ · · · ⊗ xn ∈ A⊗(n+1) and then extending by k-linearity. Here we use the convention that when n = 0,
dA(x0) = d0(x0).

Theorem 3.2. Let (A, d0) be a commutative differential k-algebra of weight λ.

(a) (X(A), dA, PA) is a commutative differential Rota–Baxter k-algebra of weight λ. The k-algebra embedding

jA : A → X(A)

is a morphism of differential k-algebras of weight λ.
(b) The quadruple (X(A), dA, PA, jA) is a free commutative differential Rota–Baxter k-algebra of weight λ on

(A, d0), as described by the following universal property: For any commutative differential Rota–Baxter k-algebra
(R, d, P) of weight λ and any λ-differential k-algebra map ϕ : (A, d0) → (R, d), there exists a unique
λ-differential Rota–Baxter k-algebra homomorphism ϕ̃ : (X(A), dA, PA) → (R, d, P) such that the diagram

(A, d0)
jA //

ϕ
&&MMMMMMMMMM (X(A), dA)

ϕ̃

��
(R, d)

commutes in the category of commutative differential k-algebras of weight λ.
(c) Let X be a set and let k{X} be the free commutative differential algebra of weight λ on X. The quadruple

(X(k{X}), dk{X}, Pk{X}, jX ) is a free commutative differential Baxter k-algebra of weight λ on X, as described
by the following universal property: For any commutative differential Rota–Baxter k-algebra (R, d, P) of weight
λ and any set map ϕ : X → R, there exists a unique λ-differential Rota–Baxter k-algebra homomorphism
ϕ̃ : (X(k{X}), dk{X}, Pk{X}) → (R, d, P) such that ϕ̃ ◦ jX = ϕ.

Proof. (a). For any x = x0 ⊗ · · · ⊗ xm ∈ A⊗(m+1), by definition we have

dA(PA(x)) = dA(1 ⊗ x0 ⊗ · · · ⊗ xm) = x0 ⊗ · · · ⊗ xm .
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Thus dA ◦ PA is the identity map on X(A). So it remains to prove that for any m, n ∈ N+ and x = x0 ⊗ · · · ⊗ xm
∈ A⊗(m+1) and y = y0 ⊗ · · · ⊗ yn ∈ A⊗(n+1), we have

dA(x � y) = dA(x) � y + x � dA(y) + λdA(x) � dA(y). (19)

If m = 0 or n = 0, then the equation follows from the definition of dA. Now consider the case when m, n ∈ N+.
Denoting x+

= x1 ⊗ · · · ⊗ xm and y+
= y1 ⊗ . . . ⊗ ym , we have x = x0 � PA(x+), y = y0 � PA(y+) and Eq. (18)

can be rewritten as

x � y = (x0 y0) � (PA(x+) � PA(y+))

= (x0 y0) �
(
PA(x+

� PA(y+)) + PA(y+
� PA(x+)) + λPA(x+

� y+)
)

= (x0 y0) � PA(x+
� PA(y+) + y+

� PA(x+) + λ(x+
� y+)).

It follows from the definition of dA that, for any z0 ∈ A and z ∈ X(A),

dA(z0 � PA(z)) = d0(z0) � PA(z) + z0 � dA(PA(z)) + λd0(z0) � dA(PA(z))

= d0(z0) � PA(z) + z0 � z + λd0(z0) � z.

Then

dA(x � y) = dA((x0 y0) � PA(x+
� PA(y+) + y+

� PA(x+) + λ(x+
� y+)))

= d0(x0 y0) � PA(x+
� PA(y+) + y+

� PA(x+) + λ(x+
� y+))

+ (x0 y0) � (x+
� PA(y+) + y+

� PA(x+) + λ(x+
� y+))

+ λd0(x0 y0) � (x+
� PA(y+) + y+

� PA(x+) + λ(x+
� y+))

= (d0(x0)y0 + x0d0(y0) + λd0(x0)d0(y0)) � (PA(x+) � PA(y+))

+ (x0 y0) � (x+
� PA(y+) + y+

� PA(x+) + x+
� y+)

+ λ(d0(x0)y0 + x0d0(y0) + λd0(x0)d0(y0)) � (x+
� PA(y+) + y+

� PA(x+) + x+
� y+).

Also

x � dA(y) + y � dA(x) + λdA(x) � dA(y)

= (x0 � PA(x+)) � dA(y0 � PA(y+)) + (y0 � PA(y+)) � dA(x0 � PA(x+))

+ λdA(x0 � PA(x+)) � dA(y0 � PA(y+))

= (x0 � PA(x+)) �
(
d0(y0) � PA(y+) + y0 � y+

+ λd0(y0) � y+
)

+ (y0 � PA(y+)) �
(
d0(x0) � PA(x+) + x0 � x+

+ λd0(x0) � x+
)

+ λ
(
d0(x0) � PA(x+)x0 � x+

+ λd0(x0) � x+
)
�

(
d0(y0) � PA(y+)y0 � y+

+ λd0(y0) � y+
)
.

Comparing the last terms of the above two equations, we see that Eq. (19) holds.

The second statement follows directly from the definition of dA.

(b). Now let (R, d, P) be a commutative differential Rota–Baxter k-algebra of weight λ and let ϕ : (A, d0) → (R, d)

be a λ-differential k-algebra map. Then in particular ϕ is a k-algebra map. So by Theorem 3.1, there is a unique
Rota–Baxter k-algebra map ϕ̃ : (X(A), PA) → (R, P) such that

ϕ = ϕ̃ ◦ jA (20)

in the category of k-algebras. We next show that ϕ̃ is a differential k-algebra map.

For any x0 ⊗ x1 ⊗ · · · ⊗ xn ∈ A⊗(n+1), we have
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d(ϕ̃(x0 ⊗ x1 ⊗ · · · ⊗ xn)) = d(ϕ̃(x0 � PA(x1 ⊗ · · · ⊗ xn)))

= d(ϕ̃(x0)ϕ̃(PA(x1 ⊗ · · · ⊗ xn)))

= d(ϕ̃(x0)P(ϕ̃(x1 ⊗ · · · ⊗ xn)))

= d(ϕ̃(x0))P(ϕ̃(x1 ⊗ · · · ⊗ xn)) + ϕ̃(x0)d(P(ϕ̃(x1 ⊗ · · · ⊗ xn)))

+ λd(ϕ̃(x0))d(P(ϕ̃(x1 ⊗ · · · ⊗ xn)))

= d(ϕ̃(x0))ϕ̃(PA(x1 ⊗ · · · ⊗ xn)) + ϕ̃(x0)ϕ̃(x1 ⊗ · · · ⊗ xn)

+ λd(ϕ̃(x0))ϕ̃(x1 ⊗ · · · ⊗ xn).

Also

ϕ̃(dA(x0 ⊗ x1 ⊗ · · · ⊗ xn)) = ϕ̃(dA(x0 � PA(x1 ⊗ · · · ⊗ xn)))

= ϕ̃(dA(x0) � PA(x1 ⊗ · · · ⊗ xn) + x0 � dA(PA(x1 ⊗ · · · ⊗ xn))

+ λdA(x0) � dA(PA(x1 ⊗ · · · ⊗ xn)))

= ϕ̃(dA(x0) � PA(x1 ⊗ · · · ⊗ xn) + x0 � (x1 ⊗ · · · ⊗ xn)

+ λdA(x0) � (x1 ⊗ · · · ⊗ xn))

= ϕ̃(dA(x0))ϕ̃(PA(x1 ⊗ · · · ⊗ xn)) + ϕ̃(x0)ϕ̃(x1 ⊗ · · · ⊗ xn)

+ λϕ̃(dA(x0))ϕ̃(x1 ⊗ · · · ⊗ xn).

Since

d(ϕ̃(x0)) = d(ϕ̃( jA(x0))) = d(ϕ(x0)) = ϕ(d0(x0))

= ϕ̃( jA(d0(x0))) = ϕ̃(dA( jA(x0))) = ϕ̃(dA(x0)),

we have proved that

d(ϕ̃(x0 ⊗ x1 ⊗ · · · ⊗ xn)) = ϕ̃(dA(x0 ⊗ x1 ⊗ · · · ⊗ xn)).

This shows that ϕ̃ is a differential k-algebra homomorphism. Since ϕ and jA are differential k-algebra
homomorphisms, we see that Eq. (2) holds in the category of differential k-algebras.
(c). The forgetful functor from the category DRBλ to the category Set of sets is the composition of the forgetful
functors from DRBλ to Alg and from Alg to Set. By Theorem 1 in page 101 of [22], the adjoint functor of a composed
functor is the composition of the adjoint functors. This proves (c). �

4. Free noncommutative differential Rota–Baxter algebras

We now consider the noncommutative analog of Section 3.

4.1. Free noncommutative Rota–Baxter algebras

We first summarize the construction of free noncommutative Rota–Baxter algebras on a set X in terms of angularly
decorated planar rooted trees. See [11] (as well as [2]) for further details.

4.1.1. Rota–Baxter algebra on rooted trees
We follow the notations and terminologies in [8,28]. A free tree is an undirected graph that is connected and

contains no cycles. A rooted tree is a free tree in which a particular vertex has been distinguished as the root. A
planar rooted tree (also called an ordered rooted tree) is a rooted tree with a fixed embedding into the plane. For
example,

The depth d(T ) of a rooted tree T is the length of the longest path from its root to its leaves.
Let T be the set of planar rooted trees. A planar rooted forest is a noncommutative concatenation of planar rooted

trees, denoted by T1 t · · · t Tb with T1, . . . , Tb ∈ T. b = b(F) is called the breadth of F . The depth d(F) of F is
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the maximal depth of the trees Ti , 1 ≤ i ≤ b. Let F be the set of planar rooted forests. Then F is the free semigroup
generated by T with the product t, and k F with the product t is the free noncommutative nonunitary k-algebra on
the alphabet set T. We are going to define, for each fixed λ ∈ k, another product � = �λ on k F, making it into a
unitary Rota–Baxter algebra (of weight λ). We will suppress λ to ease notation.

For the rest of this paper, a tree or forest means a planar rooted tree or a planar rooted forest unless otherwise
specified. Let bT1 t · · · t Tbc denote the usual grafting of the trees T1, . . . , Tb by adding a new root together with an
edge from the new root to the root of each of the trees T1, . . . , Tb. If a tree F is the grafting of a forest, we denote that
forest by F . This is not the algebraic closure of a field F . Our notation should not cause any confusion since neither
fields nor algebraic closure will appear in this paper.

Let Fn , n ≥ 0, be the set of planar rooted forests with depth less than or equal to n. Then we have the depth
filtration F0 ⊆ F1 ⊆ · · · such that F = ∪n∈N Fn . By using the grafting and the filtration Fn , we recursively defined
in [11] a map

� : F × F → kF

with the following properties

(a) For trees F and F ′,

F � F ′
=


F, if F ′

= •,

F ′, if F = •,

bF � bF
′
cc + bbFc � F

′
c + λbF � F

′
c, if F = bFc, F ′

= bF
′
c.

(21)

(b) For forests F = T1 t · · · t Tb and F ′
= T ′

1 t · · · t T ′

b′ ,

F � F ′
= T1 t · · · t Tb−1 t (Tb � T ′

1) t T ′

2 · · · t Tb′ . (22)

Then � extends to a binary operation � on kF by bilinearity. As an example, we have

(23)

It was shown in [11] that (kF, �) is a Rota–Baxter k-algebra.

4.1.2. Free Rota–Baxter algebra on a set X
Let X be a non-empty set. Let F ∈ F with ` = `(F) leaves. Let X F denote the set of pairs (F; Ex) where Ex is in

X (`(F)−1). Such a pair (F; Ex) is called an angularly decorated rooted forest since (F; Ex) can be identified with the
forest F together with an ordered decoration of Ex on the angles of F . We use the convention that X•

= {(•; 1)}. For
example, we have

is denoted by in [11].
Let (F; Ex) ∈ X F . Let F = T1 t · · · t Tb be the decomposition of F into trees. We consider the corresponding

decomposition of decorated forests. If b = 1, then F is a tree and (F; Ex) has no further decompositions. If b > 1,
denote `i = `(Ti ), 1 ≤ i ≤ b, to be the number of leaves of Ti . Then

(T1; (x1, . . . , x`1−1)), (T2; (x`1+1, . . . , x`1+`2−1)), . . . , (Tb; (x`1+···+`b−1+1, . . . , x`1+···+`b ))

are well-defined angularly decorated trees when `(Ti ) > 1. If `(Ti ) = 1, then x`i−1+`i −1 = x`i−1 and we use the
convention (Ti ; x`i−1+`i −1) = (Ti ; 1). With this convention, we have,

(F; (x1, . . . , x`−1)) = (T1; (x1, . . . , x`1−1))x`1(T2; (x`1+1, . . . , x`1+`2−1))x`1+`2

· · · x`1+···+`b−1(Tb; (x`1+···+`b−1+1, . . . , x`1+···+`b )).

We call this the standard decomposition of (F; Ex) and abbreviate it as

(F; Ex) = (T1; Ex1)xi1(T2; Ex2)xi2 · · · xib−1(Tb; Exb) = D1xi1 D2xi2 · · · xib−1 Db (24)
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where Di = (Ti ; Exi ), 1 ≤ i ≤ b. So i j = `1 + · · · + ` j and

Ex j =

{
(x`1+···+` j−1+1, . . . , x`1+···+` j −1), ` j > 1,

1, ` j = 1.

For example,

Let k〈X〉 =
⊕

n≥0 k Xn be the noncommutative polynomial algebra on X . Denote its basis elements by vectors
and its product by vector concatenation: for Ex = (x1, . . . , xm), Ex ′

= (x ′

1, . . . , x ′
n), define

(Ex, Ex ′) = (x1, . . . , xm, x ′

1, . . . , x ′
n).

Define the k-module

XNC (X) =

⊕
F∈F

X F .

For D = (F; Ex) ∈ X F and D′
= (F ′

; Ex ′) ∈ X F ′

, define

D�D′
= (F � F ′

; (Ex, Ex ′)), (25)

where � is defined in Eqs. (21) and (22). For example, from Eq. (23) we have

(26)

Extending the product � bi-additively, we obtain a binary operation

� : XNC (X) ⊗ XNC (X) → XNC (X).

For (F; Ex) ∈ X F , define

PX (F; Ex) = b(F; Ex)c = (bFc ; Ex) ∈ X bFc, (27)

extending to a linear operator on XNC (X). Let

jX : X → XNC (X) (28)

be the map sending a ∈ X to (• t •; a). The following theorem is proved in [11].

Theorem 4.1. The quadruple (XNC (X), �, PX , jX ) is the free unitary Rota–Baxter algebra of weight λ on the set
X. More precisely, for any unitary Rota–Baxter algebra (R, P) and map f : X → R, there is a unique unitary
Rota–Baxter algebra morphism f̄ : XNC (X) → R such that f = f̄ ◦ jX .

4.2. Free noncommutative differential Rota–Baxter algebras

The following is the noncommutative analog of Theorem 3.2.

Theorem 4.2. Let (kNC
{X}, dNC

X ) = (k〈∆X〉, dNC
X ) be the free noncommutative differential algebra of weight λ on

a set X, constructed in Theorem 2.5. Let XNC (∆X) be the free noncommutative Rota–Baxter algebra of weight λ on
∆X, constructed in Theorem 4.1.

(a) There is a unique extension d̄NC
X of dNC

X to XNC (∆X) so that (XNC (∆X), d̄NC
X , P∆X ) is a differential

Rota–Baxter algebra of weight λ.
(b) The differential Rota–Baxter algebra XNC (∆X) thus obtained is the free differential Rota–Baxter algebra of

weight λ over X.
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Proof. (a). We define a λ-derivation d̄NC
X on XNC (∆X) as follows. Let F ∈ F and let D ∈ (∆X)F be the forest F

with angular decoration by Ey ∈ (∆X)`(F)−1. Let

D = (F; Ey) = (T1; Ey1)yi1(T2; Ey2)yi2 · · · yib−1(Tb; Eyb)

be the standard decomposition of D in Eq. (24). We define d̄NC
X by induction on the breadth b = b(F) of F . If b = 1,

then F is a tree so either F = • or F = bFc for a forest F . Accordingly we define

d̄NC
X (F; Ey) =

{
0, if F = •,

(F; Ey), if F = bFc.
(29)

We note that this is the only way to define d̄NC
X in order to obtain a differential Rota–Baxter algebra since • is the

identity and (F; Ey) = b(F; Ey)c.
If b > 1, then F = T1 t Ft for another forest Ft = T2 t · · · t Fb (t in Ft stands for the tail). So

D = (F; Ey) = (T1; Ey1)yi1(Ft ; Eyt ) = D1 yi1 Dt

where D1 = (T1; Ey1) and Dt = (T2; Ey2)yi2 · · · yib−1(Tb; Eyb). We then define

d̄NC
X (D) = d̄NC

X (T1; Ey1)yi1(Ft ; Eyt ) + (T1; Ey1)d(yi1)(Ft ; Eyt ) + (T1; Ey1)yi1 d̄NC
X (Ft ; Eyt )

+ λ
(

d̄NC
X (T1; Ey1)d(yi1)(Ft ; Eyt ) + d̄NC

X (T1; Ey1)yi1 d̄NC
X (Ft ; Eyt )

+ (T1; Ey1)d(yi1)d̄
NC
X (Ft ; Eyt )

)
+ λ2d̄NC

X (T1; Ey1)d(yi1)d̄
NC
X (Ft ; Eyt ), (30)

where d̄NC
X (T1; Ey1) is defined in Eq. (29) and d̄NC

X (Ft ; Eyt ) is defined by the induction hypothesis. Note that by
Eq. (22),

(T1; Ey1)yi1(Ft ; Eyt ) = (T1; Ey1) � (•yi1•) � (Ft ; Eyt ).

So if d̄NC
X were to satisfy the λ-Leibniz rule Eq. (2) with respect to the product �, then we must have

d̄NC
X (D) = d̄NC

X (T1; Ey1) � (•yi1•) � (Ft ; Eyt ) + (T1; Ey1) � d̄NC
X (•yi1•) � (Ft ; Eyt )

+ (T1; Ey1) � (•yi1•) � d̄NC
X (Ft ; Eyt ) + λd̄NC

X (T1; Ey1) � (•dNC
X (yi1)•) � (Ft ; Eyt )

+ λd̄NC
X (T1; Ey1) � (•yi1•) � d̄NC

X (Ft ; Eyt ) + λ(T1; Ey1) � (•dNC
X (yi1)•) � d̄NC

X (Ft ; Eyt )

+ λ2d̄NC
X (T1; Ey1) � (•dNC

X (yi1)•) � d̄NC
X (Ft ; Eyt ). (31)

Since d̄NC
X is to extend dNC

X : kNC
{X} → kNC

{X}, we have

d̄NC
X (•yi1•) = d̄NC

X ( j∆X (yi1)) = j∆X (dNC
X (yi1)) = •dNC

X (yi1) • .

So by Eq. (22), Eq. (31) agrees with Eq. (30). Thus d̄NC
X (D) is the unique map that satisfies the λ-Leibniz rule (2).

We also have the short-hand notation,

d̄NC
X (D) = d̄NC

X (D1)yi1 Dt + D1d̄NC
X (yi1 Dt ) + λd̄NC

X (D1)d̄NC
X (yi1 Dt ), (32)

where

d̄NC
X (yi1 Dt ) := dNC

X (yi1)Dt + yi1 d̄NC
X (Dt ) + λdNC

X (yi1)d̄
NC
X (Dt ).

Similarly, we can also write D = Dh yib−1 Db where Dh (h stands for the head) is an angularly decorated forest and
Db is an angularly decorated tree. Then

d̄NC
X (D) = d̄NC

X (Dh yib−1)Db + Dh yib−1 d̄NC
X (Db) + λd̄NC

X (Dh yib−1)d̄
NC
X (Db). (33)

In fact, write

D = v1v2 · · · v2b−1,
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where

v j =

{
D( j−1)/2, j odd,

yi j/2 , j even.

Then using Eq. (30) and an induction on b, we obtain the “general Leibniz formula” of weight λ with respect to the
concatenation product:

d̄NC
X (D) =

∑
I⊆[2b−1]

λ|I |−1vI,1vI,2 · · · vI,2b−1, (34)

where [2b − 1] = {1, . . . , 2b − 1} and

vI, j =


v j , j 6∈ I,
d̄NC

X (v j ), j ∈ I, j odd,

dNC
X (v j ), j ∈ I, j even.

We now prove that d̄NC
X is a derivation of weight λ with respect to the product �. Let D and D′ be angularly

decorated forests and write

D = (F; Ey) = (T1; Ey1)yi1(T2; Ey2)yi2 · · · yib−1(Tb; Eyb) = Dh yib−1 Db

and

D′
= (F ′

; Ey′) = (T ′

1; Ey′

1)y′

i1
(T ′

2; Ey′

2)y′

i2
· · · y′

ib′−1
(T ′

b′; Ey′

b′) = D′

1 y′

i1
D′

t

be as above with angularly decorated trees Db, D′

1, angularly decorated forests Dh , D′
t and yib−1 , y′

i1
∈ ∆X . Then by

Eq. (22) (see [11] for further details), D�D′ has the standard decomposition

D�D′
= (T1; Ey1)yi1 · · · yib−1

(
(Tb; Eyb)�(T ′

1; Ey′

1)
)

y′

i1
· · · y′

ib′−1
(T ′

b′; Ey′

b′)

= Dh yib−1(Db � D′

1)y′

i1
D′

t (35)

where

Db � D′

1 = (Tb; Eyb)�(T ′

1; Ey′

1)

=


(•; 1), if Tb = T ′

1 = • (so Eyb = Ey′

1 = 1),

(Tb, Eyb), if T ′

1 = •, Tb 6= •,

(T ′

1, Ey′

1), if T ′

1 6= •, Tb = •,

b(Tb; Ey)�(F
′

1; Ey′)c + b(Fb; Ey)�(T ′

1; Ey′)c

+λb(Fb; Ey)�(F
′

1; Ey′)c, if T ′

1 = bF
′

1c 6= •, Tb = bFbc 6= •.

(36)

By Eqs. (35) and (34), we have

d̄NC
X (D�D′) = d̄NC

X

(
(Dh yib−1)(Db�D′

1)(y′

i1
D′

b′)
)

= d̄NC
X (Dh yib−1)(Db�D′

1)(y′

i1
D′

b′) + (Dh yib−1)d̄
NC
X (Db�D′

1)(y′

i1
D′

b′)

+ (Dh yib−1)(Db�D′

1)d̄
NC
X (y′

i1
D′

b′) + λd̄NC
X (Dh yib−1)d̄

NC
X (Db�D′

1)(y′

i1
D′

b′)

+ λd̄NC
X (Dh yib−1)(Db�D′

1)d̄
NC
X (y′

i1
D′

b′) + λ(Dh yib−1)d̄
NC
X (Db�D′

1)d̄
NC
X (y′

i1
D′

b′)

+ λ2d̄NC
X (Dh yib−1)d̄

NC
X (Db�D′

1)d̄
NC
X (y′

i1
D′

b′). (37)

Using Eq. (36), we have

d̄NC
X (Db�D′

1) = d̄NC
X (Db)�D′

1 + Db�d̄NC
X (D′

1) + λd̄NC
X (Db)�d̄NC

X (D′

1). (38)

Applying this to Eq. (37), we find that the resulting expansion for d̄NC
X (D�D′) agrees with the expansion of

d̄NC
X (D)�D′

+ D�d̄NC
X (D′) + λd̄NC

X (D)�d̄NC
X (D′)

after applying Eq. (32) to d̄NC
X (D) and applying Eq. (33) to d̄NC

X (D′).
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As an example, from Eq. (26), we have

(39)

This agrees with

(b). The proof of the freeness of XNC (D(X)) as a free differential Rota–Baxter algebra of weight λ is the same as
the proof of the freeness of X(D(X)) in Theorem 3.2. �

5. Structure of a differential algebra on forests

We now give the structure of a differential Rota–Baxter algebra of weight λ to rooted forests without decorations.
It should be possible to derive this as a special case from a suitable generalization of the construction in Theorem 4.2.
To avoid making the process too complicated, we give a direct construction. See [15] for the work of Grossman and
Larson on differential algebra structures on their Hope algebra of trees.

Let (kF, �, bc) be the Rota–Baxter algebra of planar rooted forests defined in Section 4.1.1. Let F ∈ F be a
rooted forest. By Eq. (22), the unique decomposition F = T1 t · · · t Tb into rooted trees T1, . . . , Tb ∈ T gives the
decomposition

F = T1 � (• t •) � T2 � (• t •) � · · · � (• t •) � Tb. (40)

Denote this by

F = V1 � V2 � · · · � V2b−1, (41)

where

Vi =

{
T(i+1)/2, i odd,

(• t •), i even.

We call Eq. (41) the �-standard decomposition of F . This decomposition is unique since it is uniquely determined
by the unique decomposition of F into rooted trees.

We define a linear operator

dF : kF → kF. (42)

as follows. First let V be either • t • or a tree. Since a tree is of the form • or bV c for a forest V , it makes sense to
define

dF(V ) =


0, V = •,

1, V = • t •,

V , V = bV c.

(43)

Next let F ∈ F have the �-standard decomposition in Eq. (41). Define

dF(F) =

∑
∅6=I⊆[k]

λ|I |−1VI,1 � · · · � VI,k, (44)

where for I ⊆ [k],

VI,i =

{
Vi , i 6∈ I,
dF(Vi ), i ∈ I

(45)

with dF(Vi ) as defined in Eq. (43). Finally extend dF to kF by k-linearity.
It is clear that dF satisfies the recursive relation

dF(F) = dF(V1) � (V2 � · · · � Vk) + V1 � dF(V2 � · · · � Vk) + λdF(V1) � dF(V2 � · · · � Vk). (46)
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We give some examples. By the third case in Eq. (43), we have

(47)

Further, since , we have

(48)

Similarly,

(49)

As another example, from the �-standard decomposition

by Eqs. (23), (46) and (48) we have

Theorem 5.1. The triple (kF, dF, b c) is a differential Rota–Baxter algebra of weight λ.

Proof. By the third case of Eq. (43), dF ◦ b c = id. So we only need to show that dF is a differential operator of
weight λ, that is, dF satisfies the λ-Leibniz rule in Eq. (2):

dF(F � F ′) = dF(F) � F ′
+ F � dF(F ′) + λdF(F) � dF(F ′). (50)

This is not immediate since the �-standard decomposition of F � F ′ is not the product of the �-standard decomposition
of F and F ′.

First let F and F ′ be trees. Then F is either • or bFc for a forest F . Similarly for F ′. Since • is the unit, Eq. (2)
trivially holds if F = • or F ′

= •. If F = bFc and F ′
= bF

′
c. Then by the Rota–Baxter equation (4) and Eq. (45),

we have

dF(F � F ′) = F � F ′
+ F � F

′
+ λF � F

′
. (51)

This is Eq. (50).
In general, let F and F ′ be forests and let

F = V1 � · · · � V2b−1, F ′
= V ′

1 � · · · � V ′

2b′−1

be their �-standard decompositions from Eq. (40). Then

F � F ′
= V1 � · · · � V2b−2 � (V2b−1 � V ′

1) � V ′

2 � · · · � V ′

2b′−1

is the �-standard decomposition of F � F ′. Here V2b−1 � V ′

1 =
∑

k Z ′′

k is a tree or a linear combination of trees Z ′′

k
given in Eq. (21). As in Eq. (41), we rewrite it as

F � F ′
= W1 � · · · � W2(b+b′−1)−1.

In particular, W2b−1 = V2b−1 � V ′

1 =
∑

k Z ′′

k . Then by definition,

dF(F � F ′) =

∑
∅6=J⊆[2(b+b′−1)−1]

λ|J |−1WJ,1 � · · · � WJ,2(b+b′−1)−1 (52)
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with WJ, j defined in the same way as TI,i in Eq. (43) and dF(W2b−1) =
∑

k dF(Z ′′

k ). Depending on whether or not
2b − 1 ∈ J , we can rewrite Eq. (52) as

dF(F � F ′) =

∑
2b−1∈J⊆[2(b+b′−1)−1]

λ|J |−1WJ,1 � · · · � WJ,2b−2 � dF(W2b−1) � · · · � WJ,2(b+b′−1)−1

+

∑
2b−16∈J⊆[2(b+b′−1)−1]

λ|J |−1WJ,1 � · · · � WJ,2b−2 � WJ,2b−1 � · · · � WJ,2(b+b′−1)−1

=

 ∑
Ǐ⊆[2b−2]

λ| Ǐ |(VǏ ,1 � · · · � VǏ ,2b−2)

 � dF(V2b−1 � V ′

1) �

 ∑
Ǐ ′⊆{2,...,2b′−1}

λ| Ǐ ′
|V ′

Ǐ ′,2
� · · · � V ′

Ǐ ′,2b′−1


+

∑
Ǐ⊆{1,...,2b−2}

Ǐ ′⊆{2,...,2b′−1}

Ǐ 6=∅ or Ǐ ′ 6=∅

λ| Ǐ |+| Ǐ ′
|−1(VǏ ,1 � · · · � VǏ ,2b−2) � (V2b−1 � V ′

1) � (V ′

Ǐ ′,2
� · · · � V ′

Ǐ ′,2b′−1
). (53)

By Eq. (51),

dF(V2b−1 � V ′

1) = dF(V2b−1) � V ′

1 + V2b−1 � dF(V ′

1) + λdF(V2b−1) � dF(V ′

1).

Denote I ⊆ [2b − 1] and I ′
⊆ [2b′

− 1]. We can write the first sum in Eq. (53) as ∑
2b−1∈I

16∈I ′

+

∑
2b−16∈I

1∈I ′

+

∑
2b−1∈I

1∈I ′

 λ|I |+|I ′
|−1VI,1 � · · · � (VI,2b−1 � V ′

I ′,1) � · · · � V ′

I ′,2b′−1

=

 ∑
2b−1∈I

I ′=∅

+

∑
2b−1∈I
16∈I ′ 6=∅

+

∑
I=∅

1∈I ′

+

∑
2b−16∈I 6=∅

1∈I ′

+

∑
2b−1∈I

1∈I ′


λ|I |+|I ′

|−1VI,1 � · · · � (VI,2b−1 � V ′

I ′,1) � · · · � V ′

I ′,2b′−1. (54)

For the second sum in Eq. (53), we have ∑
2b−16∈I 6=∅

I ′=∅

+

∑
I=∅

16∈I ′ 6=∅

+

∑
2b−16∈I 6=∅

16∈I ′ 6=∅

 λ|I |+|I ′
|−1VI,1 � · · · � (VI,2b−1 � V ′

I ′,1) � · · · � V ′

I ′,2b′−1. (55)

The first sum on the right-hand side of Eq. (54) adding to the first sum in Eq. (55) gives∑
I 6=∅,I ′=∅

λ|I |+|I ′
|−1VI,1 � · · · � (VI,2b−1 � V ′

1) � · · · � V ′

2b′−1

=

∑
I 6=∅

λ|I |−1VI,1 � · · · � (VI,2b−1 � V ′

1) � · · · � V ′

2b′−1

= dF(F) � F ′.

Similarly, the third sum on the right-hand side of Eq. (54) added to the second term in Eq. (55) gives F � dF(F ′).
The remaining terms on the right-hand side of Eqs. (54) and (55) add to λdF(F) � dF(F ′). This proves the λ-Leibniz
rule (2). �
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