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The management of melanoma has evolved owing to improved understanding of its molecular drivers. To
augment the current understanding of the prevalence, patterns, and associations of mutations in this disease, the
results of clinical testing of 699 advanced melanoma patients using a pan-cancer next-generation sequencing
(NGS) panel of hotspot regions in 46 genes were reviewed. Mutations were identified in 43 of the 46 genes on the
panel. The most common mutations were BRAFV600 (36%), NRAS (21%), TP53 (16%), BRAFNon-V600 (6%), and
KIT (4%). Approximately one-third of melanomas had 41 mutation detected, and the number of mutations per
tumor was associated with melanoma subtype. Concurrent TP53 mutations were the most frequent events in
tumors with BRAFV600and NRAS mutations. Melanomas with BRAFNon-V600mutations frequently harbored
concurrent NRAS mutations (18%), which were rare in tumors with BRAFV600 mutations (1.6%). The prevalence
of BRAFV600 and KIT mutations were significantly associated with melanoma subtypes, and BRAFV600 and TP53
mutations were significantly associated with cutaneous primary tumor location. Multiple potential therapeutic
targets were identified in metastatic unknown primary and cutaneous melanomas that lacked BRAFV600and NRAS
mutations. These results enrich our understanding of the patterns and clinical associations of oncogenic
mutations in melanoma.

Journal of Investigative Dermatology (2015) 135, 508–515; doi:10.1038/jid.2014.366; published online 25 September 2014

INTRODUCTION
According to the American Cancer Society estimates, 76,100
patients are expected to be diagnosed with melanoma and
9,710 patients are predicted to die from the disease in 2014
(Siegel et al., 2014). Melanoma is a complex, heterogeneous
disease with multiple signaling pathways implicated in its
molecular pathogenesis. A key advance in the understanding
and treatment of this disease was the discovery of frequent
recurrent somatic mutations that result in substitutions of the
valine at position 600 in the gene encoding the BRAF serine–
threonine kinase (BRAFV600 mutations) in the RAS-RAF-MEK-
ERK signaling pathway (Davies et al., 2002). Large single-
center studies, meta-analyses, and whole-exome sequencing
efforts have subsequently confirmed that BRAFV600 mutations
are the most common activating genetic events detected in
cutaneous melanomas (Hocker and Tsao, 2007; Hodis et al.,
2012; Jakob et al., 2012; Krauthammer et al., 2012). Studies
of clinically annotated specimens have identified significant
clinical associations with BRAFV600 mutations, including
melanoma subtype, primary tumor location, and prognosis
(Curtin et al., 2005; Bauer et al., 2011; Long et al., 2011;
Jakob et al., 2012). More recent studies have also identified
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significant differences in demographics, primary tumor features,
and clinical outcomes between patients with the two most
common BRAF substitutions observed in melanoma,
BRAFV600E and BRAFV600K (Menzies et al., 2012; Bucheit
et al., 2013). Significant clinical associations have also been
identified with oncogenic NRAS and KIT mutations (Handolias
et al., 2010; Jakob et al., 2012). These findings support the
concept that studies of mutations may not only help identify
therapeutic targets but also provide insights into the molecular
pathogenesis and natural history of melanoma. There is also
growing evidence that mutations correlate with differential
clinical benefit with approved systemic therapies for this
disease (Nathanson et al., 2013; Trunzer et al., 2013).
Notably, recent whole-exome sequencing (WES) studies have
demonstrated that melanoma has one of the highest rates of
somatic mutations among all cancers, and have identified
many additional genes that are mutated recurrently in this
disease (Berger et al., 2012; Hodis et al., 2012; Krauthammer
et al., 2012).

Owing to the approval and clinical testing of treatments that
target specific genetic mutations, molecular testing is now
performed routinely for patients with advanced melanoma.
The expansion of therapeutic options concurrent with techni-
cal advances has led to the development of a growing number
of clinical molecular testing platforms. Increasingly, panel-
based testing approaches are being used in order to maximize
the efficient use of both patient materials and clinical testing
infrastructure and resources. In addition to providing an
opportunity to identify therapeutic options for patients, the
data generated by such testing provide an opportunity to
improve our understanding of the molecular heterogeneity of
this disease. Such data can also be used to identify hypotheses
for prospective studies that may improve patient testing and/or
clinical management (Curtin et al., 2005; Curtin et al., 2006;
Woodman et al., 2012).

In this study, we reviewed our institution’s results from
clinical molecular testing by next-generation sequencing
(NGS) of commonly mutated regions in 46 genes using a
pan-cancer panel (AmpliSeq panel, Life Technologies, Carls-
bad, CA; Supplementary Table S1 online) in 699 consecutive
patients with advanced melanoma. These data have been
analyzed for the prevalence and overlap of mutations, and
their concordance in a subset of patients with testing on
multiple samples. The molecular data have also been analyzed
for associations with clinical subtypes (ie, cutaneous, acral,
mucosal, uveal, and unknown primary melanoma) and pri-
mary tumor location. The results of this study reinforce the
molecular complexity of this disease and identify clinical
associations for TP53 and BRAFNon-V600 mutations.

RESULTS
Mutation prevalence

The cohort (n¼ 699) included advanced melanoma patients
with known cutaneous (n¼484, 69%), acral (n¼54, 8%),
mucosal (n¼43, 6%), and uveal (n¼13, 2%) primary
melanomas. A subset of patients had metastatic disease
without a known primary tumor (referred to as ‘‘unknown
primary’’, n¼ 104, 15%). NGS of regions affected recurrently

by mutations in cancer identified at least one mutation in 43 of
the 46 tested genes in the full cohort of patients (Supple-
mentary Figures S1, S2 and Table S2 online). The most
prevalent mutations in the entire cohort were BRAFV600

(n¼ 251; 36% of all patients), NRAS (n¼ 150; 21%), TP53
(n¼ 110; 16%), BRAFNon-V600 (n¼ 39; 6%), and KIT (n¼ 27;
4%) substitutions.

The most common mutations in cutaneous melanomas
were BRAFV600 (41%), NRAS (22%), TP53 (17%), and BRAF-
Non-V600 (7%; Figure 1a). Metastatic melanomas without a
known primary tumor demonstrated a very similar mutation
spectrum (39% BRAFV600, 22% NRAS, 19% TP53, 4%
BRAFNon-V600; Figure 1b). The most common mutations in
acral melanomas were NRAS (24%), BRAFV600 (19%), KIT
(11%), and TP53 (6%; Figure 1c). The most common muta-
tions in mucosal melanomas were NRAS (21%), KIT (16%),
TP53 (9%), and BRAFV600 (7%; Figure 1d). The majority (92%)
of the small cohort of uveal melanomas had no mutations
detected in the 46 gene panel, which notably did not include
BAP1, GNAQ, or GNA11, which are mutated frequently in
this melanoma subtype.

Characteristics and overlap of detected mutations
There is evidence that different substitutions in individual
oncogenes correlate with distinct molecular and clinical
characteristics, including BRAF (Wan et al., 2004; Garnett
et al., 2005; Menzies et al., 2012; Bucheit et al., 2013). In this
cohort, the most common BRAFV600 substitutions were V600E
(76% of all V600 mutations; 28% of all patients), V600K
(17%; 6%), and V600R (2.4%; 0.8%; Supplementary Figure
S3a online). Mutations resulting in 20 different substitutions at
sites other than V600 in BRAF were also detected. The most
frequent BRAFNon-V600 substitutions were G469E (18% of
BRAFNon-V600mutations; 1% of all patients), G469R (13%;
0.7%), and K601E (11%; 0.5%; Supplementary Figure S3b
online). For NRAS, mutations affecting Q61 were the most
prevalent (77% of all NRAS mutations), followed by G12/13
(20%; Supplementary Figure S3c online). The most common
KIT mutations were L576P (27% of KIT mutations, 1% of all
patients), K642E (20%; 0.8%), and N822Y (10%; 0.4%;
Supplementary Figure S3d online). Possible UVR–related
mutations (C4T or G4A transitions; Berger et al., 2012)
were detected overall in 39 of the 43 mutated genes
(Supplementary Figure S4 online). Among the genes mutated
in 45% of the samples, TP53 displayed the highest frequency
of UVR signature mutations (66%). Likely UVR-associated
substitutions represented only 11% of detected NRAS muta-
tions, 8% of BRAF mutations, and none of the KIT mutations.
CC4TT substitutions, which also provide strong evidence of
UVR-induced DNA damage, were detected in 15 tumors, with
TP53 (n¼5) being the most frequently affected gene
(Supplementary Table S2 online).

Approximately one-third (n¼213) of the melanomas had
Z2 mutations. Concomitant mutations were present in 35% of
tumors with BRAFV600mutations, 55% of tumors with
BRAFNon-V600 mutations, and 50% of tumors with NRAS muta-
tions (Figure 2a–c). TP53 mutations were the most common
overlapping mutations in tumors with NRAS (17%) and
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BRAFV600 (12%) mutations (12% of V600E; 7% of V600K;
Supplementary Figure S5 online). The most frequent over-
lapping mutation in melanomas with BRAFNon-V600 mutations
was NRAS, which was mutated in 18% of these tumors. In
contrast, concurrent NRAS mutations were detected in only
1.6% of tumors with BRAFV600mutations. Mutations in TP53
(13%) and KRAS (10%) were also relatively common in tumors
with BRAFNon-V600 mutations. ATM (11%), NRAS (7%), and
CTNNB1 (7%) were the most prevalent concomitant muta-
tions in tumors with KIT mutations (Figure 2d) The rate of
co-occurring BRAF and NRAS mutations in tumors with rare
but potentially targetable mutations (ie, PI3K-AKT pathway,
EGFR, MET) are presented in Supplementary Table S3 online.

Associations with melanoma subtype and primary tumor location
The overall rate of mutations varied significantly by melanoma
subtype. Mucosal (44%) and acral (33%) melanomas were
more likely to have no mutations detected than cutaneous
(15%) and unknown primary (20%) melanomas (Po0.0001)
(Supplementary Figure S6 online). As mentioned previously,
no mutations were detected in the majority (92%) of the small
cohort of uveal melanomas.

BRAFV600, NRAS, TP53, BRAFNon-V600, and KIT mutations,
which were the most frequent events overall in the cohort,
were assessed for associations with clinically defined mela-
noma subtypes (Figure 3a). This analysis identified significant
associations for BRAFV600 (Po0.001) and KIT (Po0.001)
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Figure 1. Prevalence of detected gene mutations by melanoma subtype. Panels show the rate of gene mutations observed in (a) cutaneous melanomas (n¼484);

(b) unknown primary melanomas (n¼104); (c) acral melanomas (n¼ 54); and (d) mucosal melanoma (n¼43).
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mutations. BRAFV600 mutations were more frequent in
cutaneous and unknown primary melanomas, whereas KIT
mutations were more prevalent in acral and mucosal mela-
nomas. TP53 mutations were also more common in cutaneous
and unknown primary melanomas, but this differential dis-
tribution did not reach statistical significance (P¼0.059). The
prevalence of NRAS mutations varied very little by subtype.

Among nonacral cutaneous melanomas, the prevalence of
BRAFV600 (P¼0.001) and TP53 (P¼ 0.0002) mutations were
significantly associated with primary tumor location
(Figure 3b). The rate of BRAFV600mutations was higher in the
primary tumors of the trunk (49%) compared with the head/
neck (30%, P¼0.0004). TP53 mutations were more frequent
in primary tumors of the head/neck (26%) compared with
the trunk (16%, P¼ 0.03) or extremities (8%, Po0.0001).
BRAFNon-V600 mutations trended toward an association with
primary tumor location (P¼0.055), and were more common
in primary tumors of the head/neck (10%) compared with the
extremities (4%) on pairwise comparison (P¼0.025). NRAS
mutations were not significantly associated with the primary
tumor site.

Among the cutaneous and unknown primary melanomas,
113 tumors (19%) were wild type for both BRAFV600 and
NRAS mutations. The most common mutations in this cohort
were TP53 (n¼ 51; 45%), BRAFNon-V600 (n¼24; 19%), and
KIT (n¼ 13; 10%; Figure 4). Other potentially targetable genes
in which mutations were detected in this cohort included
EGFR (n¼7; 6%), ERBB4 (n¼7; 6%), CDKN2A (n¼ 5; 4%),

PIK3CA (n¼4; 3%), PDGFRA (n¼ 3; 2%), and PTEN (n¼2;
2%). Mutations in KRAS (n¼ 7; 7%) and HRAS (n¼ 5; 4%)
were also identified in the cohort.

Concordance of mutations

Thirty-seven patients had NGS data available for more than
one tumor, including 23 patients with paired primary tumors
and metastases. Highly concordant results were observed for
BRAF (100%) and NRAS (97%) among the matched primary
melanomas and metastases (Supplementary Figure S7 online).
One patient with two primary melanomas had discordant
BRAF testing results. However, this was not unexpected, as the
patient had a primary mucosal melanoma (BRAF wild type)
and a primary cutaneous melanoma (BRAFV600). Three
patients (8%) had discordant results for TP53. Two patients
had a TP53 mutation in the primary lesion that was not
detected in the metastasis (H179Y-WT; L194F-WT),
whereas the third patient had a wild-type TP53 in the primary
tumor and mutation in the metastasis (WT-R306*). One
patient each demonstrated discordance in PTEN, KRAS,
CTNNB1, APC, and FBXW7.

Mutation prevalence between primary (n¼248) and meta-
static (n¼486) samples overall demonstrated similar distribu-
tion. For both primary and metastatic samples, BRAFV600 (32%
primary; 37% metastatic), NRAS (18%; 23%), and TP53 (17%;
15%) were the most common gene mutations in descending
order. KIT (6%) was the next most common mutation in
primary tumors followed by BRAFNon-V600 (5%), whereas the
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reverse was true for metastatic tumors (BRAFNon-V600 6%; KIT
4%). Only STK11 showed a significant difference in preva-
lence between metastatic samples (2%) and primary tumors
(0%, P¼0.033). A total of 68 patients (10%) received

chemotherapy before the removal of the lesion that was used
for sequencing. Only 2 genes showed significant increases in
mutation rates in the post-chemotherapy tumors compared
with the chemotherapy-naı̈ve tumors (MLH1, 3% vs. 0.3%,
P¼0.05; RB1, 4% vs. 1%, P¼ 0.03).

DISCUSSION
Molecular testing is now performed routinely for patients with
advanced melanoma. In addition to guiding therapeutic deci-
sion-making, the information from such testing can also provide
insights into the molecular basis and heterogeneity of this
disease. In this study, we have reviewed the results of clinical
NGS of regions of 46 genes in a pan-cancer panel in a cohort of
699 melanoma patients. The results represent the largest cohort
of melanomas to date analyzed by multiplexed NGS and add
insights to some of the discoveries from recent WES efforts,
including, to our knowledge previously unreported, molecular
and clinical associations for TP53 and BRAFNon-V600mutations
(Hodis et al., 2012; Krauthammer et al., 2012). Although this
pan-cancer panel does not examine certain melanoma-specific
genes of interest, it does provide an opportunity to assess other
genes that are not commonly tested by focused, single-gene
approaches in this tumor type.

Mutations affecting the V600 site of BRAF and hotspots in
NRAS were the most frequent mutations observed in our
cohort of 699 patients who underwent NGS for regions of 46
genes. Despite the possible bias that could have occurred
owing to patients being selected for molecular testing in the
clinical setting, the mutation rates for both of these genes,
particularly in the cutaneous melanomas, are similar to other
large series and meta-analyses of melanoma patients tested for
these mutations (Hocker and Tsao, 2007; Jakob et al., 2012).
Hotspot mutations in BRAFV600 and NRAS were also the most
common mutations identified in two recent WES studies of
cohorts of 121 and 147 melanomas (Hodis et al., 2012;
Krauthammer et al., 2012), and in the preliminary publicly
available results reported for the melanoma component of the
Cancer Genome Atlas (TCGA) effort (TCGA; Research Network;
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm; sample
batches 180, 198, 206, and 240; accessed on 04/01/2014).
Although the rates of BRAFV600 mutations in the cutaneous
melanomas in the published WES studies were slightly higher
than those observed here, one of those studies included cell
lines, and both studies were limited by the requirement for
frozen tumors with sufficient DNA for WES. In addition,
patients with known BRAFV600E mutations detected by outside
testing before patients were seen at our institution may not have
undergone CMS46 analysis, thus potentially contributing to the
lower percentage of BRAFV600E mutations in this cohort.

Consistent with previous studies by ourselves and others,
BRAFV600mutations were more frequent in cutaneous mela-
nomas than in acral and mucosal melanomas (Hocker and
Tsao, 2007; Jakob et al., 2012). The rates of BRAFV600,
BRAFNon-V600, NRAS, and TP53 mutations in melanomas
with an unknown primary tumor were nearly identical to the
rates observed in cutaneous melanomas. This result is also
consistent with similar rates observed between unknown
primary melanomas and melanomas with a known cutaneous
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primary in our previous analysis of patients at our center who
underwent DNA pyrosequencing for BRAFV600mutations and
NRAS hotspot mutations only, and also consistent with a more
recent study that analyzed the mutational status of BRAF,
NRAS, and KIT in 44 patients with unknown primary
melanoma (Jakob et al., 2012; Egberts et al., 2014). The
additional data for the similar rates of BRAFNon-V600 and TP53
mutations provide further support for the hypothesis that the
majority of melanomas with an unknown primary tumor likely
had an occult cutaneous primary tumor.

In addition to position 600, our pan-cancer panel included
sequencing of multiple other residues in exons 11 and 15 of
BRAF, where most mutations in this gene have been identified
(Davies et al., 2002). Mutations that affected sites in the BRAF
protein other than V600 (BRAFNon-V600) were detected overall
in 6% of the patients in this study. BRAFNon-V600 mutations
were detected in 7% of cutaneous, 4% of unknown primary,
2% of acral, and 2% of mucosal melanomas. Among the
cutaneous and unknown primary tumors that did not have
BRAFV600 or NRAS mutations (n¼113), BRAFNon-V600 mutations
(19%) were the second most common mutations detected.
Dahlman et al. (2012) previously reported an 8% prevalence
of BRAFNon-V600 mutations in a smaller cohort (n¼49) of
patients without BRAFV600or NRAS mutations. A review of
publicly available preliminary data from the melanoma TCGA
effort, which is restricted to melanomas with a primary tumor
arising on nonglabrous skin but includes sequencing of all
exons of BRAF, identified 21 BRAFNon-V600 mutations in 266
melanomas (8%). Among the TCGA melanoma cases that
were wild type for BRAFV600 and NRAS mutations (n¼72),
the rate of BRAFNon-V600 mutations was 21%. As 10 of the 21
BRAFNon-V600 mutations detected in the TCGA were in exons
other than 11 or 15, it is possible that the actual prevalence of
BRAFNon-V600 mutations in our cohort was slightly higher,
although the functional significance of most of those mutations
is unknown. A portion of these mutations also co-occurred
with classic activating mutations in exon 15, and thus they are
not favored to be oncogenic. Preclinical studies have
demonstrated that BRAFNon-V600 mutations do not respond to
the Food and Drug Administration-approved BRAF inhibitors
vemurafenib and dabrafenib, which were selected for
development based on their specificity for BRAF proteins
with V600E substitutions. However, other agents may be
active in melanomas with BRAFNon-V600 mutations, including
MEK inhibitors and pan-RAF inhibitor sorafenib (Wan et al.,
2004; Garnett et al., 2005; Smalley et al., 2009; Dahlman
et al., 2012). Dramatic and durable clinical responses have
been reported in isolated metastatic melanoma patients with
BRAFNon-V600 mutations affecting the L597 residue in early-
phase clinical trials of the MEK inhibitors trametinib and TAK-
733 (Dahlman et al., 2012; Falchook et al., 2012; Kim et al.,
2013). Clinical trials have been planned to systematically
evaluate the activity of the MEK inhibitor trametinib in patients
with BRAFNon-V600 mutations.

BRAFNon-V600 mutations showed significant clinical and
molecular differences compared with BRAFV600mutations.
Although BRAFV600mutations were detected at higher rates
in melanoma patients with cutaneous and unknown primary

tumors, the prevalence of BRAFNon-V600 mutations was not
significantly associated with melanoma subtype. However, the
power to detect significant differences was limited by the
comparatively lower prevalence of the BRAFNon-V600 muta-
tions. More strikingly, the pattern of co-mutations was distinct
for BRAFV600 and BRAFNon-V600 mutations. In this large cohort,
only 1.6% of the melanomas with detected BRAFV600muta-
tions had a concurrent NRAS mutation. This prevalence is
similar to the rate observed in our previous pyrosequencing
study (Jakob et al., 2012). In contrast, concurrent NRAS (18%)
and KRAS (11%) mutations were frequent events in
melanomas with BRAFNon-V600 mutations. Previous in vitro
characterization of 15 BRAFNon-V600 mutations demonstrated
heterogeneous effects on the serine–threonine catalytic activ-
ity of the BRAF protein (Wan et al., 2004; Garnett et al.,
2005). Although some mutations increase the activity of BRAF
to a level comparable to that observed with V600 mutations,
other mutations are only partially activating, and some cause
the kinase activity to be decreased compared with the wild-
type protein. Experimental data support that the nonactivating
BRAF mutations still increase the activity of MAPK pathway
signaling through increased formation of multiprotein
complexes with CRAF and active RAS proteins (Wan et al.,
2004). The co-occurrence of BRAFNon-V600 mutations with
activating RAS mutations may therefore cooperate to activate
the MAPK pathway to a greater degree than that achieved with
either event alone.

One of the important insights from recent WES studies of
melanoma was the identification of frequent TP53 mutations.
Although previous studies had suggested that TP53 mutations
were quite rare in melanoma (Castresana et al., 1993; Albino
et al., 1994; Lubbe et al., 1994), a recent WES study identified
a rate of 19% (Hodis et al., 2012). Although we covered most
exons but did not fully sequence the TP53 gene, and thus may
underestimate their prevalence, we found a very similar rate of
TP53 mutations (16%) in this cohort. TP53 mutations were the
most common mutations identified after BRAFV600 and NRAS
mutations in both this study and the WES study, underscoring
their frequency and potential significance. TP53 mutations
strongly trended (P¼0.06) toward an association with
melanoma subtype, with lower prevalence in acral and
mucosal melanomas compared with cutaneous and
unknown primary melanomas. TP53 mutations were also
associated with primary tumor location, with higher
prevalence observed in melanomas with head/neck primary
tumor location. This result could reflect an etiological role for
UVR in TP53 mutations. Consistent with this hypothesis, 66%
of the observed TP53 mutations were associated with typical
UVR-induced changes. TP53 mutations were frequent in
melanomas with concurrent BRAFV600, BRAFNon-V600, and
NRAS mutations. As TP53 mutations have been signi-
ficantly associated with clinical outcomes and therapeutic
resistance in other cancers (Temam et al., 2000; Poeta
et al., 2007; Hoffmann et al., 2008; Lindenbergh-van
der Plas et al., 2011), future studies will test the predictive
and prognostic significance of these events in melanoma.
Notably, we did observe discordant results for TP53
mutation status in three patients (13%) who had molecular
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testing data for both primary tumors and metastases. This
suggests that testing of archival material alone may not be
adequate to accurately determine the significance of TP53
mutations as a predictive marker of response to systemic
therapies in patients with metastatic disease. However, the
analysis of the paired specimens did overall demonstrate
highly concordant results for this panel of genes mutated
recurrently in cancer.

Although BRAFV600and NRAS were the most frequent
mutations observed in our study, 19% of patients with
cutaneous and unknown primary melanomas had neither of
these mutations. The identification of therapeutic targets in
these patients is a key challenge and clinical need. The most
common genes in this cohort in which mutations were
detected by our panel were TP53 (45%), BRAFNon-V600

(19%), and KIT (10%). As described above, clinical responses
have been observed in early-phase clinical trials of the MEK
inhibitors trametinib and TAK-733 in metastatic melanoma
patients with BRAFNon-V600 mutations (Dahlman et al., 2012;
Falchook et al., 2012; Kim et al., 2013). A number of
nonrandomized clinical trials with the KIT inhibitor imatinib
have been conducted in advanced melanoma patients with
KIT mutations. The clinical response rates in these trials have
ranged from 16 to 29% (Carvajal et al., 2011; Guo et al.,
2011; Hodi et al., 2013). One imatinib study identified
the presence of a concurrent NRAS mutation, which we
observed in 7% of the KIT-mutant patients in this cohort, as
a predictor of resistance. Other genes that are potentially
actionable in which rare mutations were detected include
EGFR (6%), ERBB4 (6%), PIK3CA (3%), and PDGFRA (2%).
However, the functional and clinical significance of the
majority of the mutations detected in these genes is
currently unknown.

As described above, the AmpliSeq 46-gene panel can
provide important clinical information. Notably, the panel
allows for the consolidated evaluation of multiple important
cancer genes and oncogenic mutations in one assay, including
a number of clinically actionable aberrations. However, we
recognize that this pan-cancer panel has significant limitations
for this study. The panel includes a number of genes that
currently have unknown relevance to melanoma. The panel
also fails to include certain mutations that have been detected
in cutaneous melanomas in recent WES studies, such as TERT,
NF1, and RAC1, as well as mutations detected in other
melanoma subtypes (ie, BAP1, GNAQ, GNA11). The high
frequency of acral, mucosal, and uveal melanomas with no
mutations detected supports the need to consider other
molecular testing panels for those subtypes, or the augmenta-
tion of the panel with genes relevant for those subtypes. In
addition, the sequencing of only certain regions of many of the
genes may not be adequate to annotate certain genes,
particularly tumor suppressors that can be affected by frame-
shift mutations at many loci. For example, the observed
mutation rates for CDKN2A (2.4%) and PTEN (1.6%) in our
cohort are lower than those observed in recent WES studies.
The inclusion of only 46 genes also makes it technically
challenging to accurately quantify significant copy number
variation, which could have affected these and other genes in

the panel. This may further explain why tumor suppressors
that show frequent losses through deletions that are not
adequately detected by this platform, such as CDKN2A and
PTEN, were less prevalent in our study than those that are
more frequently affected by missense and frameshift muta-
tions, such as TP53. Exploratory studies are underway to
determine what copy number variations can be detected and
validated reliably using the AmpliSeq platform, and will be
reported in the future. Such copy number variation informa-
tion may also be forthcoming from panels that include
sequencing of all exons for genes of interest, and larger
numbers of genes. Currently, our pan-cancer panel is expand-
ing to include more comprehensive coverage of prevalent
cancer genes, including those that may prove to be clinically
relevant to melanoma. However, gene translocations, such as
those recently reported for BRAF (Botton et al., 2013;
Hutchinson et al., 2013), are not assessable using this panel.
Ultimately, the integration of multiple types of molecular data
that will be available in the near future from the melanoma
TCGA effort will likely provide additional molecular insights
into the mutations observed in this study. Subsequent studies
in which molecular data can be integrated with clinical
characteristics and outcomes will be critical to personalizing
and optimizing patient management.

In summary, our study presents the results for the largest
cohort to date of melanoma patients to be analyzed by clinical
multiplexed NGS. Consistent with previous studies, we found
that BRAFV600and NRAS hotspot mutations were the most
common molecular aberrations detected. We also observed
frequent TP53 mutations, consistent with recent data from
WES studies, with information about their associations with
melanoma subtypes and primary tumor location. In addition,
our study adds to the growing understanding of the prevalence
and molecular patterns of BRAFNon-V600 mutations, which
have emerged as a therapeutic target. These results provide a
basis for future focused studies of these molecular events, and
further supports the rationale for integrated analyses of clinical
molecular testing data from other centers.

MATERIALS AND METHODS
Mutation testing

Molecular testing was performed on DNA extracted from formalin-

fixed, paraffin-embedded tissues from melanoma primary tumors or

metastases for which molecular testing was clinically indicated. DNA

was extracted using standard methods, and was analyzed for muta-

tions using the AmpliSeq sequencing panel (Life Technologies), as

previously described (Singh et al., 2013). Detailed methodology is

provided in Supplementary Materials online. The regions analyzed for

mutations in each of the 46 genes in the panel are listed in

Supplementary Table S1 online.

Data analysis

This study was conducted according to the Declaration of Helsinki

Principles, and all analyses were performed under a protocol

approved by the Institutional Review Board. In accordance with this

protocol, all samples used were obtained from patients who gave

their written informed consent for the use of their archival tissue for

research purposes or from deceased patients who have samples stored
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in the Department of Pathology at MD Anderson Cancer Center.

Clinical NGS data, patient demographics, and disease characteristics

were obtained from institutional pathology and clinical databases.

Review of the publicly available TCGA melanoma samples (batches

180, 198, 206, and 240) was performed through the online TCGA

data matrix (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm;

accessed on 04/01/2014). Associations were evaluated using either

Fisher’s exact tests or Freeman–Halton tests using SAS v9.3 for

Windows. P-values less than 0.05 were considered statistically

significant.
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