
Theoretical Computer Science 317 (2004) 147–165
www.elsevier.com/locate/tcs

Continuous-time computation with restricted
integration capabilities

Manuel Lameiras Campagnoloa;b;∗
aD.M./I.S.A., Universidade T�ecnica de Lisboa, Tapada da Ajuda, Lisboa 1349-017, Portugal

bC.L.C./D.M./I.S.T., Universidade T�ecnica de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal

Abstract

Recursion theory on the reals, the analog counterpart of recursive function theory, is an
approach to continuous-time computation inspired by the models of Classical Physics. In re-
cursion theory on the reals, the discrete operations of standard recursion theory are replaced by
operations on continuous functions such as composition and various forms of di-erential equa-
tions like inde0nite integrals, linear di-erential equations and more general Cauchy problems.
We de0ne classes of real recursive functions in a manner similar to the standard recursion theory
and we study their complexity. We prove both upper and lower bounds for several classes of
real recursive functions, which lie inside the elementary functions, and can be characterized in
terms of space complexity. In particular, we show that hierarchies of real recursive classes closed
under restricted integration operations are related to the exponential space hierarchy. The results
in this paper, combined with earlier results, suggest that there is a close connection between
analog complexity classes and subrecursive classes, at least in the region between FLINSPACE
and the primitive recursive functions.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Continuous-time computation; Recursion theory; Computational complexity; Exponential space
hierarchy; Di-erential equations; Numerical integration

1. Introduction

In recent years, there has been a renewed interest in analog computation, where the
internal states of a computer are continuous rather than discrete. In particular there is
an interest in continuous time computation, where the states of the computer evolve

∗ Corresponding author. D.M./I.S.A., Universidade T=ecnica de Lisboa, Tapada da Ajuda,
Lisboa 1349-017, Portugal.

E-mail address: mlc@math.isa.utl.pt (M.L. Campagnolo).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.12.009

mailto:mlc@math.isa.utl.pt

148 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

continuously. The main motivation for this is the belief that it is possible to use
the tools of computation theory to better classify the variety of continuous dynamical
systems we see in the world, or at least in its classical idealization. Previous e-orts
have had promising results but much remains to be done, especially with respect to
the complexity of analog computation [17].

Many proposed models of analog computation can be viewed as a general framework
where digital computation is simply embedded [3,4,6,15,20]. This suggests the two
following questions. First, one can ask if is it possible to compute beyond the Turing
model, i.e., are there functions non-computable by the Turing machine which can be
computed without violating the laws of Physics. Secondly, we can ask if the Turing
machine is an adequate model to describe the computations that occur in our physical
world. In this paper we prove some results that may be of interest with regard to the
latter issue.

Functions like sin; cos and log are extremely frequent in our models of physical
phenomena. Those functions are solutions of very simple di-erential equations. Al-
though their computation by digital means require fairly complex algorithms, they can
be computed eFciently as most common continuous mathematical functions. In this
paper we claim that there is in fact a close connection between classical recursion and
real recursion when we restrict the operators in both theories in a similar way, at least
for the region of the complexity hierarchy we consider.

In classical recursion theory, there is a signi0cant interest in various forms of so-
called bounded recursion [8]. We will see that we can build a very natural hierarchy
of continuous-time computable classes of functions, where each level is closed under
a bounded integration operator, and which is strongly related to the exponential space
hierarchy.

In [7] we explored the computational power of a real recursive class where only
linear di-erential equations could be solved. We showed that if such a model was
allowed to sense inequalities in a di-erentiable way, then it could compute exactly the
elementary functions, i.e., the set of functions computable in time or space bounded by
a tower of exponentials of arbitrary height. It is surprising that such systems, as opposed
to the highly non-linear ones that are commonly used to model physical phenomena,
have so much computational power. That result brings a new insight on how digital
computation implicitly reduces the complexity of our models of the physical world.

Here, we also explore an even more restricted model which, from a pool of basic
functions, can only calculate integrals of functions already de0ned and solve up to a
certain number of linear di-erential equations. We will show that this is still enough
to reach all the levels of the exponential space hierarchy.

We 0rst de0ne a restricted form of integration, we call bounded integration, where
the solution of the Cauchy problem is supposed to have an a priori bound, and we
describe an analog class B0. We show that B0 contains FLINSPACE, i.e., the class of
functions computable by a deterministic Turing machine in linear space. Then, we build
upon it a whole hierarchy of classes Bn which contains, level by level, the exponential
space hierarchy, EXPSPACEFn. We also show that functions in Bn are computable (in
the sense of Grzegorczyk and Lacombe) in space bounded by a tower of exponentials
of height n.

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 149

Next, we eliminate the explicit bounds in the de0nition of Bn and describe a hierarchy
of real recursive classes Sn which contains B0 as its set of basic functions, where
integration of functions already de0ned can be used freely and the nth level can be
reached if we allow the system to solve up to n linear di-erential equations. We show
that Sn⊂Bn and therefore that Sn has the same computable upper bounds as Bn. We
also show that all functions in EXPSPACEF n have extensions to the reals in Sn+1.

We end with some remarks and open questions.

2. Real recursive functions, B0, and upper and lower bounds

A function algebra

[B1; B2; : : : ;O1; O2; : : :]

is the smallest set containing basic functions {B1; B2; : : :} and closed under certain
operations {O1; O2; : : :}, which take one or more functions in the class and create new
ones. Although function algebras have been de0ned in the context of recursion theory
on the integers, they are equally suitable to de0ne classes of real valued recursive
functions. Moore [15] proposed the 0rst theory of recursive functions on the reals
in analogy with classical recursion theory, where primitive recursion is replaced by an
integration operator, and minimalization on the integers is extended to the reals. We 0rst
consider the following subclass of the real recursive functions, which is closed under
composition and under a restricted form of integration named bounded integration.

De�nition 1 (The class B0).

B0 = [0; 1;−1;+;×; U; �k ;COMP; BI];

where
• 0; 1;−1 are constant unary functions, + and × are the usual binary sum and product,

U denotes the set of projections {Ui; n = xi; n∈N; 0¡i6n}, and �k , for k¿2, 1 is
de0ned on R by �k(x) = xk , when x¿0 and �k(x) = 0 when x¡0.

• COMP denotes composition, i.e., given f1; : : : ; fp of arity n and g of arity p, then
h(x) = g(f1(x); : : : ; fp(x) is de0ned,
• BI denotes bounded integration, i.e., given functions f1; : : : ; fm of arity n; g1; : : : ; gm

of arity n + 1 + m, and b of arity n + 1, if h1; : : : ; hm is the unique function that
satis0es the equations

h(x; y) = f (x); @yh(x; y) = g(x; y; h(x; y)); ‖h(x; y)‖6 b(x; y)

on Rn+1, then h= h1 of arity n + 1, is de0ned.

In recursion theory on the reals arbitrary constants are not allowed. This is essential
to establish complexity upper bounds. In fact, if we allow arbitrary reals, then the

1 With this condition, all functions in B0 are twice continuously di-erentiable.

150 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

complexity of integration can be arbitrarily high [14]. We say that a constant a∈B0 if
there is a f∈B0 s.t. f(x) = a, for all x∈R.

Note that the basic functions of B0 are bounded by polynomials and COMP and
BI preserve this property. Therefore, all functions in B0 are polynomially bounded and
are total, i.e., they are de0ned on Rn. Moreover, they are of class Ck−1(Rn).

Many usual functions like sin; cos, polynomials with coeFcients in B0, and even a
function that matches log on [1;+∞) belong to B0. An example of a function that
is not in this class is exp :R→R+ since it is not bounded by a polynomial. Given
a class of continuous functions like B0, it is natural to ask what is its computational
complexity. Namely, we may want to know which discrete functions can be computed
in the class. We may also want to determine the computational resources necessary to
approximate (in the sense of computational analysis) all functions in the class.

Since we are only interested in elementary functions, we can characterize them in
terms of standard space or time complexity, and consider the Turing machine as the un-
derlying computational model. This approach di-ers from others, namely BSS-machines
[3] or information-based complexity [21], since it focus on e9ective computability and
complexity.

To compare the computational complexity of real recursive classes and standard
recursive classes we have to set some conventions. On one hand, we follow a straight-
forward approach to associate a class of integer functions to a real recursive class. We
simply consider the discretization of a real recursive class, i.e., the subset of functions
with integer values for integer arguments. More precisely,

De�nition 2. Given a real recursive class C; FN (C) = {f :N n→N s.t. f has an ex-
tension to the reals in C}. We say that C is closed under a certain operation O in a
weak sense if [f; g; : : : ∈FN (C)⇒O(f; g; : : :)∈FN (C)].

If FN (C) contains a certain complexity class C′, then we can consider C′ as a lower
bound for C.

On the other hand, we consider the computational complexity of real functions. We
use the notion of [13], whose underlying computational model is the function-oracle
Turing machine. Intuitively, the time (resp. space) complexity of f is the number
of moves (resp. the amount of tape) required by a function-oracle Turing machine
to approximate the value of f(x) within an error bound 2−n, as a function of the
argument x and the precision n.

Let us brieMy recall what a function-oracle Turing machine is (we give an infor-
mal description: details can be found in [12,13]). We write �→ x if �= {�(n)} is
a computable sequence s.t. for all n∈N ; ‖�(n) − x‖¡2−n. For any x in the domain
of f;� s.t. �→ x is the oracle. The machine is a Turing machine equipped with an
additional query tape, and two additional states. When the machine enters in the query
state, it replaces the current string s in the query tape by the string �(s), moves the
head to the 0rst cell of the query tape, and switches to the answer state. This is done
in one step of the computation. The generalization to functions of several variables
is straightforward. The input of the function-oracle TM M is a string 0n. Let M�(n)
denote its output. Then,

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 151

De�nition 3 (Computability and complexity of real computable functions). M comp-
utes f if for any x in the domain of f and for any �→ x; {M�(n)}→f(x), i.e.,
for all n; ‖M�(n)− f(x)‖¡2−n. We say that the time (resp. space) complexity of f
on its domain is a certain function b if there is a function-oracle TM M which, for all
n, outputs M�(n) in a number of steps (resp. amount of tape) bounded by b(x; n).

Intuitively, the computation of f by a function-oracle TM M with input 0n and
oracle � is done in two parts (cf. [13]): (1) M computes, from the output precision
2−n, the required input precision 2−m; (2) M queries the oracle to get �(m), with
‖�(m) − x‖¡2−m and outputs M (�(m)) such that ‖M (�(m)) − f(x)‖62−n. Here,
M (�(m)) denotes the output of M that runs on �(m) without entering in the query state.
Since we will need to evaluate the required input precision, we de0ne the following
notation.

De�nition 4 (Required input precision). Let �→ x. If there is a function-oracle TM
M that computes f and a function l s.t. for all x in the domain of f and all n,

m¿ l(x; n) ⇒ ‖M (�(m))− f(x)‖¡2−n;

then l(x; n) is called the required input precision to compute f(x) with precision 2−n.

For a certain function f :Rn→R; sf and lf will denote, respectively, the space com-
plexity and the required input precision for f.

Given the conventions above, we will now show lower and upper bounds for B0.
We will 0rst prove that all functions in FLINSPACE have extensions to the reals in
B0, i.e., FLINSPACE⊂FN (B0). Towards that end, we will use the following function
algebra for FLINSPACE given by Ritchie [18].

Lemma 5. FLINSPACE = [0; S;+;×; U ;COMP; BREC], where S is the successor
function, COMP denotes composition and BREC denotes bounded recursion, i.e.,
given f of arity n; g of arity n + 2 and b of arity n + 1, de>ne h as the unique
function of arity n + 1 such that, for all x and y,

h(x; 0) =f(x); h(x; y + 1) = g(x; y; h(x; y)); ‖h(x; y)‖6b(x; y): (1)

Lemma 6. B0 is closed under bounded recursion in a weak sense.

Proof. We will abuse notation by identifying f; g; h and b in Eq. (1) with their
extensions to the reals. We show that if h is de0ned by bounded recursion from
f; g; b∈FN (B0), then we can de0ne in B0 a real recursive extension of h. Our con-
struction is similar to [5]. We claim that the function h is the 0rst component of the
solution of the following di-erential equation that can be de0ned in B0.

@ty1 = Ck(g(x; s(t); r(y2))− y1)3c1(t);

@ty2 = Ck(r(y1)− y2)3c2(t) (2)

152 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

with y1(x; 0) =y2(x; 0) =f(x). The “control” function c1(t) is �k(sin 2't) and c2(t) is
�k(− sin 2't). Therefore, c2(t) = 0 for t∈[j; j+1=2], and c1(t) = 0 for t∈[j+1=2; j+1],
for all j integer. The functions s is de0ned by integration from c2, simply by s(0) = 0
and s′ =dkc2, where dk is a constant in B0 such that s(t) = j, whenever t∈[j; j + 1=2],
for all j integer. Finally, r is de0ned as r(t) = s(t +1=4), so r(t) = j, whenever t∈[j−
1=4; j + 1=4], for all j integer. Then, on [0; 1=2]; y2 is hold constant and the behavior
of y1 is given by

@ty1 = Ck(g(x; 0; f(x))− y1)3 sink 2't; (3)

with y1(x; 0) =f(x). From Eq. (1), g(x; 0; f(x)) = h(x; 1), which we will denote by
h1. Then, the solution of Eq. (3) satis0es

(h1 − y1(t))2 =
(
Ck

∫
[0;t] sink 2't′ dt′ + C

)−1
;

where C¿0. If we choose Ck large enough, then ‖h1−y1(x; 1=2)‖61=4 and therefore
r(y1(x; 1=2)) = h1. The same argument for y2 shows that r(y2(x; 1)) = h1.
Repeating this for subsequent intervals [j; j + 1], for all j integer, we conclude that
r(y1(x; j)) = r(y2(x; j)) = h(x; j), for all j∈N .

To show that the solution of Eq. (2) is bounded by a function in B0 we just note that
y1 and y2 are monotonic in each interval [j; j + 1=2] and [j + 1=2; j + 1] for j integer.
Since they are arbitrarily close to h(x; j) for j multiples of 1=2 and h is provably
bounded by a polynomial then both y1 and y2 are also bounded by a polynomial.

Proposition 7. FLINSPACE⊂FN (B0).

Proof. We use the recursive characterization of FLINSPACE given by Lemma 5. B0

contains 0 and 1 and is closed under addition. Therefore, it also contains the successor
function S(x) = x + 1. It is also closed under multiplication. Moreover, B0 contains
by de0nition the projection functions and is closed under composition. Finally, B0 is
closed under bounded recursion in the sense of Lemma 6. Therefore, all functions in
FLINSPACE have real extensions in B0.

Next we will set a bound on the space complexity of any function in B0. First we
need to set bounds on the derivatives of functions in B0.

Lemma 8. All functions in B0 and its >rst and second derivatives are bounded by
polynomials.

Proof. We already know that functions in B0 have polynomial bounds. We will show
next that this is also the case for the derivatives. Basic functions in B0 obviously have
0rst and second derivatives with polynomial bounds.

By induction hypothesis, f1; : : : ; fp; g and their derivatives are bounded by polyno-
mials. The 0rst and second derivatives of the composition g(f1; : : : ; fp) are given by
the chain rule. Therefore they are also bounded by polynomials.

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 153

If h is de0ned by bounded integration, then its 0rst derivative is

@yh(x; y) = g(x; y; h(x; y));

which is clearly bounded by a polynomial, or is given by the solution of

(@=@xi)h(x; 0) = (@=@xi)f(x); (@2=@xiy)h(x; y) = (@=@xi)g(x; y; h(x; y)): (4)

By the induction hypothesis, (@=@xi)f(x) is bounded by p1(x) and (@=@xi)g(x; y; z)
is bounded by p2(x; y; z), where the pi’s denote polynomials. Since h, which is in
B0, is bounded by a polynomial, then (@=@xi)g(x; y; h(x; y)), as a function of x and
y, is also bounded by a polynomial, say, p3(x; y).Therefore, by di-erential inequality
(cf. [10, p. 29]),

(@=@xi)h(x; y) 6 p1(x) +
∫

[0;y] p3(x; t) dt;

which is itself polynomial in x and y. We can use the same argument to prove that
the second derivatives of h are also bounded by polynomials.

Recall that we want to 0nd a bound on the space complexity of B0. We will proceed
by setting a bound for the basic functions and showing that both composition and
bounded integration preserve it. For simplicity, we will consider scalar functions de0ned
on [0;+∞). The lemma below follows directly from De0nition 4 of required precision
input.

Lemma 9 (Numerical composition). Let f and g be computable by f and g and h be
de>ned by h(x) = g(f(x)). Let � be an oracle for x and b a bound on f. Then h is
computable with precision 2−m by the following algorithm, with input m.
, ← �(1) + 1=2 approximate value for x, s.t. ,¿x
N ← lg(b(,); m) required precision on f(x) to compute g(f(x))
M ← lf(,; N) required precision on x to compute f(x)
h ← g(f (�(M))) output value

As it is widely known, given a bound on the error, the numerical integration of
ordinary di-erential equations by standard numerical analysis techniques (e.g. Euler’s
method) requires a number of steps exponential in the argument and in the second
derivative. However, the amount of tape grows at most polynomially when the ordinary
di-erential equation is de0ned in B0. Below, we give an algorithm to compute the
solution of an O.D.E..

Lemma 10 (Numerical integration). Let f and g be computable by f and g and
l= max{lf; lg}. Let h be the unique solution of the initial problem h(x; 0) =f(x)
and @th(x; t) = g(x; t; h(x; t)) on [0; y]. Let �x→ x and �y→y. If bL is a bound on
the Lipschitz constant for g w.r.t. its last argument and b1 and b2 are, respectively,
bounds on @yh and @yyh, then h is computable with precision 2−m by the following

154 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

algorithm, with input m. 2

, ← �x(1) + 1=2 approximate value for x s.t. ,¿x
- ← �y(1) + 1=2 approximate value for y s.t. -¿y
. ← m + 3 + 2-bL(-)
M ← l(,; .) required precision on x
h ← f (�x(M)) initial condition
N ← m + 3 + log b1(-) required precision on y
n ← -b2(-) exp[bL(-)-]2m+3 number of steps
/ ← �y(N)=n step size
t ← 0
for i← 1; : : : ; n

h← h + /g(�x(M); t; h)
t← t + /

Proof. Notice that ,; - are used just to set the required input precision and the number
of necessary steps. The numerical integration is carried on the interval [0; �y(N)],
where ‖�y(N)−y‖¡2−N . For convenience, we will consider in what follows y = - or
�y(N) when appropriate.

Suppose that, in the algorithm above, the arithmetical operations are performed ex-
actly, and the non-integers / and t are represented exactly. This is guaranteed if we
choose as the step size the dyadic rational just below /. Then, the total error of the
approximation is bounded by the sum of the error caused by the approximation of y by
�y(N), the discretization errors of the numerical integration, the approximation errors
both on the initial condition f(x) and on the values of the g(x; t; h) in each step.

By the mean value theorem, we know that ‖h(�y(N))− h(y)‖6b1(‖�y(N)− y‖).
Since we set N =m + 3 + log b1(y), then that error is at most 2−m−3.
Let us denote the computed value of h in each iteration of Euler’s method by hi,

and the value of t by ti. The error in each step is ei = h(x; ti) − hi. We follow [11].
Using Taylor’s formula on [ti; ti+1] for h(x; ti+1),

ei+1 = ei + /[g(x; ti; hi)− g(x; ti; h(x; ti)) + g(�x(M); ti ; hi)− g(x; ti; hi)]

+ /2=2@yyh(1);

where 1∈(ti; ti+1). Using the fact that ‖g(x; ti; hi)−g(x; ti; h(x; ti))‖6bL(y)‖hi−h(x; ti)‖
and @yyh(1)6b2(y), we obtain

‖ei+1‖6 (1 + /bL(y))‖ei‖+ /2=2b2(y) + /‖g(�x(M); ti ; hi)− g(x; ti; hi)‖:
The accumulated error is then bounded by (cf. [11, (1.13)])

‖en‖6 exp[n/bL(y)](‖e0‖+ /b2(y) + ‖g(�x(M); t; hi)− g(x; ti; hi)‖);
where e0 is the error on the initial condition. Since f(x) is computed with precision
.=m+3+2ybL(y), then ‖e0‖¡2−(m+3+2ybL(y)). Moreover, n=yb2(y) exp[bL(y)y]2m+3

and /≈y=n. Furthermore, the error on g(x; ti; hi) depends only on the precision on its

2 Without loss of generality we consider that bL; b1; b2 are increasing functions and are greater than 1.

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 155

0rst argument and is also bounded by 2−.. Therefore, the three terms on the right hand
side of the equation above have the following bounds:
exp[n/bL(y)]‖e0‖6 exp[ybL(y)]=2m+3+2ybL(y)62−m−3,
exp[n/bL(y)]/b2(y)6yb2(y) exp[ybL(y)]=(yb2(y) exp[ybL(y)]2m+3)62−m−3,
exp[n/bL(y)]‖g(�x(M); t; hi)− g(x; ti; hi)‖6 exp[ybL(y)]=2m+3+2ybL(y)62−m−3.

Then, the total error on the approximation of h(x; y) is less than 2−m, as claimed.

Finally, we set space complexity bounds for B0. The complexity is linear in terms
of the precision, and polynomial in terms of the argument of the function.

Proposition 11. If f∈B0, then its space complexity is sf(x; n)∈xO(1) + O(n).

Proof. We will also show that if f∈B0, then lf(x; n)∈xO(1) + O(n). We proceed by
induction, starting with the basic functions of B0, which are 0; 1;−1;+;×; U; �k . We
will prove our claim for × and �k . The other cases are left to the reader.

(×) The binary product can be computed with the following sequence of operations
and input n:
,←�x(1) + 1=2;
- ←�y(1) + 1=2;
N← n + 1 + log(, + -);
�x(N)�y(N).

Clearly, lx(‖(x; y)‖; n)∈‖(x; y)‖O(1) + O(n). Furthermore, the error satis0es

‖�x(N)�y(N)− xy‖¡ 2−N (, + -) + 2−2N

= 2−[n+1+log(,+-)](, + -) + 2−2[n+1+log(,+-)]:

A little algebra shows that this is less than 2−n as claimed. 3

(�k) This basic function is computed, with input n, by
, ← �x(1) + 1=2;
N ← n + 1 + k log ,;
�0← if (�x(N)¿0; �x(N); 0);
�0 × · · · × �0; k times.

Clearly, l�(x; n)∈xO(1) + O(n). The error is bounded by �k−1
0 (,) 2−N + · · ·+ 2−kN .

Again, assuming that ,¿1, we can check that this is bounded by 2−n.
Next, we show that the operation COMP and BI preserve the bounds on the re-

quired input precision and on the space complexity. Recall that if f∈B0, then there is
polynomial p, such that f¡p. Therefore, the size of f(x) is linear in x.

(Composition) By induction hypothesis, suppose that lf(x; n); lg(x; n)∈xO(1) + O(n).
We follow the algorithm in Lemma 9. The required precision on the input for g◦f is
lg◦f =M = lf(,; lg(p(,); m)), where f¡p, and still belongs to xO(1)+O(m) as claimed.
Now, let’s verify that the space complexity of h is in xO(1) + O(m). First, f(x) has
to be computed with precision 2−N . This can be done, by induction hypothesis, in

3 We assume that ,; -¿1.

156 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

space xO(1) + O(N). Since N∈xO(1) + O(m), then f (�(M)) can be computed in space
xO(1) + O(m). Finally, g(f(x)) has to be computed with precision 2−m. This can be
done, by induction hypothesis, in space f(x)O(1)+O(m). Since f¡p, then g(f (�(M)))
can also be computed in space xO(1) + O(m).

(Integration) Again, by induction hypothesis, suppose that l= max{lf(x; n); lg(x; n)}
∈ xO(1) + O(n). We follow now the algorithm in Lemma 10. The required precision on
the input is dominated by M = l(x; .), with .=m+3+2ybL(y). Since bL is polynomial,
M is polynomial in ‖(x; y)‖ and linear in m as claimed. For the space complexity, notice
that f(x) has to be computed with precision 2−.. By induction hypothesis this can be
done in space xO(1) + O(.) which is in ‖(x; y)‖O(1) + O(m). Likewise, and since t¡y
and h¡p, where p is some polynomial, the space needed to compute g(�x(M); t; h) is
also in ‖(x; y; p(x; y))‖O(1) + O(m)∈‖(x; y)‖O(1) + O(m). Finally, we have to write on
the tape n; /; t, which sizes are of the order of n=yb2(y) exp[bL(y)y]2m+3. Since b2

is a polynomial by Lemma 8, then the size of the number n is also polynomial in y
and linear in m as required.

3. Restricting composition and bounded integration

Now, we generalize the results of the previous section to the levels of the ex-
ponential space hierarchy, which ranges from the class of functions computable in
linear space to the class of functions computable in elementary time or, equivalently,
elementary space. This hierarchy is described in [16, p. 278], where its levels are
denoted by EXPSPACEF n. Notice that EXPSPACEF 0 =FLINSPACE . Moreover,⋃

n EXPSPACEF n =E, the set of elementary functions.

De�nition 12 (The exponential space hierarchy). Let f :Np→N ·f∈EXPSPACEF n

i-, for all x, f(x) is computable by a deterministic Turing machine in space 2[n](O(|x|)),
where 2[n] is the iterated exponential de0ned by 2[0](m) =m and 2[n+1](m) = 2[n](2m). 4

The hierarchy above cannot be closed under composition. Otherwise, it would
collapse for n¿1 since composing 2x, which belongs to EXPSPACEF 1, with itself,
would take us to any level of the hierarchy.

Thus, we will restrict composition and bounded integration similarly to [18]. Let
the degree of the function f with n arguments be a vector of length n, where each
component is either 0 or unde0ned.

We will see that, if degi f = 0, where degi f denotes the ith component of the degree
of f, then f grows at most polynomially w.r.t. its ith argument xi. With the restricted
operations we de0ne, only composition with functions of degree zero is allowed, and a
restricted form of bounded integration where the integrand function has to be of degree
0 w.r.t. to the solution is used.

We will sometimes use the more compact notation degf(x; y) = (degx f; degy f)
and deglast f = 0 when the last component of the degree is 0.

4 As usual, |x| denotes the size of the number x.

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 157

Next we describe the classes Bn, which basic functions are the functions in B0 and
the iterated exponential 2[n], and the composition and integration operators are restricted
according to the remarks above.

De�nition 13 (The hierarchy Bn). For all n¿1,

Bn = [B0; 2[n];RCOMP; RBI];

where
• All functions in B0 have degree 0,
• RCOMP denotes restricted composition, i.e. given f1; : : : ; fp of arity m and g of

arity p, with for all j = 1; : : : ; p and all i = 1; : : : ; m, deg gj = 0 or degi fj = 0, then
de0ne

h(x) = g (f1(x); : : : ; fp(x));

and degi h= 0 i- for all j = 1; : : : ; p, degj g=degi fj = 0,
• RBI denotes restricted bounded integration, i.e., given functions f1; : : : ; fm of arity

n; g1; : : : ; gm of arity n + 1 + m, with degz gi(x; y; z) = 0, and b of arity n + 1, if
(h1; : : : ; hm) is the unique function that satis0es the equations

h(x; 0) = f (x); @yh(x; y) = g(x; y; h(x; y)); ‖h(x; y)‖6 b(x; y)

on Rn+1, then h= h1 of arity n+ 1, is de0ned, and for i = 1; : : : ; n+ 1, degi h= 0 i-
degi f =degi g=degi b= 0 (for convenience, set degn+1 f = 0).

Note that the de0nition of Bn is very similar to B0. As a matter of fact, if a function
in Bn is de0ned without the basic function 2[n], then it belongs to B0. Moreover,

Lemma 14. If f∈Bn and degx f(x) = 0 then f∈B0 and, therefore, lf; sf ∈
xO(1) + O(n).

Proof. Let’s suppose that f =∈B0. So, 2[n] has to be in the recursive description of f.
Then, degf �= 0, which leads to a contradiction.

In this section we generalize Propositions 7 and 11 for Bn. First we show that
EXPSPACEF n⊂FN (Bn), for n¿1. The construction we give relies on the simula-
tion of deterministic Turing machines. Speci0cally, we use the arithmetization within
FLINSPACE of TMs that compute numerical functions, described by Ritchie [18].
Consider the following simulation functions:
• INITz(x1; : : : ; xn) is the (GQodel) number of the instantaneous description (i.d. for

short) of a TM z in its initial state which is scanning in standard position the input
(x1; : : : ; xn) on the tape,
• NEXTz(x) is the number of the i.d. which is the immediate result of i.d. number x

on TM number z,

158 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

• OUTPUTz(x) is the number represented by the tape of a TM z in a 0nal state with
i.d. number x,
• ACCEPTz(x) is true i- x is the number of an i.d. of a 0nal state in a TMz.

Lemma 15 (Ritchie’s arithmetization of TMs). If f is elementary, then there exist
functions INITz; NEXTz; OUTPUTz and ACCEPTz in FLINSPACE and an elementary
function bz s.t.

f(x) = OUTPUTz((Hz(x; 5y6bz(x) ACCEPTz(Hz(x; y)))); (5)

where Hz(x; y) is the number of the i.d. of the yth step of the computation of the
TMz on input x. Furthermore, Hz can be de>ned by bounded recursion as

Hz(x; 0) = INITz(x) Hz(x; y + 1) = NEXTz(Hz(x; y)); Hz(x; y) 6 bz(x): (6)

Moreover, it suAces that bz(x) be a bound on the number of di9erent i.d.s that can
occur on input x for the TM z.

If f∈EXPSPACEF n, then there is, by de>nition, a k such that f is computable
in space bounded by s(x) = 2[n](k|x|) for all x. Suppose that f is computed by a TM
with S internal states and an alphabet with m symbols. Then, the number of possible
i.d.’s is bounded by

bz(x) = ms(x)S|x|6 2[n+1](k ′|x|) 6 2[n](p(x));

where k ′ is a certain constant and p is some polynomial. Notice that
bz(x)∈EXPSPACEF n.

In the following lemma, we abuse notation by writing g∈FN (Bn) and deglast g= 0.
This means that g has an extension to the reals in Bn which has degree 0 w.r.t. its last
argument.

Lemma 16. If f; g; b∈FN (Bn) and deglast g= 0, then there is a h∈Bn s.t.
h(x; 0) =f(x); h(x; y + 1) = g(x; y; h(x; y)) and ‖h(x; y)‖6b(x; y).

Proof. The proof is as in Lemma 6. We only have to verify that Eq. (2) can be
solved with RBI and that the solution is bounded by a function in Bn. By hypothesis,
the function g in Eq. (2) has degree 0 w.r.t. its last component. Let us denote be g
the right hand side of Eq. (2). Since g is a composition of g with functions in B0,
then g has degree 0 w.r.t. y1 and y2. Therefore Eq. (2) can be solved with RBI. It is
straightforward to show that the solution of that equation is bounded in Bn using the
arguments at the end of the proof of Lemma 6.

Corollary 17. Bn is closed under bounded sums in a weak sense.

Proof. Let us suppose that u∈Bn and 7 = 2[n] ◦p is a bound on u. We wish to de0ne
h∈Bn such that h(x; y) =8t¡y u(x; t) for t; y∈N . We can do this with Lemma 16
setting f = 0 and g(x; y; z) = u(x; y)+z, where deglast g= 0. Then we can de0ne h∈Bn

s.t. h(x; 0) = 0; h(x; y + 1) = u(x; y) + h(x; y), and h(x; y)6y7(x; y).

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 159

Bounded minimalization and bounded quanti0ers can be derived from bounded sums
even in classes below FLINSPACE (cf. [19, p. 118]). The following lemma fol-
lows directly from the fact that Bn is closed under bounded sums and restricted
composition.

Lemma 18. If f; b∈FN (Bn), with deglast f =deglast b= 0 and g(x; y) =
5t6b(x;y)f(x; t), or g(x; y) =∀t6b(x;y)[f(x; t) = 0], or g(x; y) =∃t6b(x;y)[f(x; t) = 0],
then g∈FN (Bn) and deglast g= 0.

Next we generalize Proposition 7 to Bn.

Proposition 19. For all n∈N , EXPSPACEF n⊂FN (Bn).

Proof. We will show that we can de0ne Eq. (5) in Bn. First, notice that, with
Lemma 16 we can de0ne in Bn a function H that satis0es Eq. (6). The remarks after
Lemma 15 show that bz can be de0ned in Bn. Furthermore, deglast H = 0 since, in
Eq. (6), degNEXT = 0 and bz does not depend on y. Since ACCEPTz also has degree
0, then, from Lemma 18, 5y6bz(x)ACCEPTz(Hz(x; y)) can be de0ned in Bn, and its
degree w.r.t. y is 0. Therefore, with RCOMP, we can de0ne Hz(x; 5y6bz(x)ACCEPTz

(Hz(x; y))). Finally, we apply OUTPUTz, which has degree 0, as in Eq. (5).

Next we give a converse result, which generalizes Proposition 11. Speci0cally, we
show that every function in Bn is computable with precision 2−m in space 2[n](xO(1))+
O(m). But 0rst, in analogy with Lemma 8, we have to set bounds on the functions in
Bn and their derivatives.

Lemma 20. If f∈Bn then there is a polynomial p s.t. f and its >rst and second
derivatives are bounded by 2[n] ◦ p.

Proof. First, we need to show that if degi f = 0, then f grows at most polynomially
w.r.t. its ith argument. This has been already proved for basic functions in B0. If h(x)
is de0ned with RCOMP as g(f1(x); : : : ; fp(x)), it can only have degi h= 0 if for all
j = 1; : : : ; p; degj g=degi fj = 0. Therefore, by induction hypothesis, h grows at most
polynomially w.r.t. to xi. Finally, if h is de0ned with RBI then degi h= 0 only if
degi b= 0, where h¡b. Since b grows at most polynomially w.r.t. to xi by induction
hypothesis, the same is true for h.

It is clear that any f∈Bn is bounded by 2[n] ◦ p for some polynomial p since
the basic functions of Bn satisfy that bound and both RCOMP and RBI preserve it.
For the derivatives, we know from Lemma 8 that basic functions in B0 satisfy the
bound. The 0rst and second derivative of the basic function 2[n] are also bounded by
2[n] ◦ p.

The derivatives are given by the chain rule if a function is de0ned by restricted
composition. With RCOMP, g(f1(x); : : : ; fp(x)) can only be de0ned in Bn if for all
j and i, deg gj = 0 or degi fj = 0. Therefore, each term in the chain rule has to be the
product of a function bounded by a polynomial and a function bounded by 2[n] ◦p. So,

160 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

the 0rst derivative is bounded by 2[n] ◦p for some polynomial p. The same argument
holds for the second derivative.

For restricted bounded integration, we proceed as in the proof for B0. Once again,
by de0nition of RBI, deg zg(x; y; z) = 0 for g in Eq. (4). Then g(x; y; h(x; y)), as a
function of x and y, satis0es g¡2[n] ◦p for some p and its 0rst and second derivatives
also. Using once again di-erential inequalities, adjusting the polynomials in the bound,
and supposing that the result holds for the derivatives of f; g∈Bn, we can prove that
the derivatives of h de0ned by RBI also satisfy h¡2[n] ◦p for some p. This concludes
the proof.

Proposition 21. If f∈Bn, then its space complexity is s(x; m)∈2[n](xO(1)) + O(m).

Proof. Similarly to the proof of Proposition 11, we will also need to prove that if
f∈Bn, then lf(x; m)∈2[n](xO(1)) + O(m). We proceed by induction, starting with the
basic functions of Bn, i.e., B0 and 2[n]. From Proposition 11 we know that the result
is true for the functions in B0.

Let us then consider 2[n] and claim that s[n]
2 (x; m); l[n]

2 (x; m)∈2[n−1](xO(1)) + O(m),
where 2−m is the precision. We 0rst show that the exponential 2y is computable
with precision 2−m in space yO(1) + O(m) and that the required input precision ly2∈
yO(1) + O(m). Towards this end, we follow Lemma 10, when the di-erential equation
to be solved is h(0) = 1 and @yh(y) = (log 2)h(y) (log 2 can be de0ned in B0). Notice
that bL is bounded by a constant, and b1; b2¡2p for some polynomial p, and that the
initial condition is computed exactly. Therefore, the required input precision is given
by N =m + 3 + log b1, which is linear in m and polynomial in y. The largest number
that occurs is n= -b2(-) exp[bL(-)-]2m+3. Since bL is constant, then the size of n is
linear both in y and m.

Next, we compose g= 2[n] with f = 2x to de0ne 2[n+1]. We follow Lemma 9, where
f; b= 2x and g= 2[n]. Then, by induction hypothesis, N = lg(b(x); m)∈2[n](xO(1)) +
O(m) and M = lf(x; N)∈xO(1) + O(N)∈2[n](xO(1)) + O(m) as claimed. For the space
complexity, f(x) is computed with precision 2−N , i.e., in space xO(1) + O(N)∈2[n]

(xO(1)) + O(m). Finally, g(f(x)) has to be computed with precision 2−m and this can
be done in space in 2[n−1](f(x)O(1)) + O(m)∈2[n](xO(1)) + O(m) as claimed.

We still need to show that the operations RCOMP and RBI preserve the bounds
on the required input precision and on the space complexity. Recall that if f∈Bn, then
there is polynomial p, such that f;f′; f′′62[n] ◦ p.

For RCOMP, let us consider that h= g(f(x)), where deg g= 0 or degf = 0. If
degf = 0, then f(x) is computable with precision 2−m and sf; lf∈xO(1) + O(m) by
Lemma 14. By hypothesis, sg; lg∈2[n](xO(1)) + O(m). We can then proceed as we did
above for g= 2[n] and f = 2x, adjusting the bounds. If deg g= 0, the result is proved
similarly. We leave the details to the reader.

Finally, for RBI, let us suppose that sf; lf; sg; lg∈2[n](xO(1))+O(m), and consider the
di-erential equation h(x; 0) =f(x); @yh(x; y) = g(x; y; h). We follow Lemma 10, with
bL¡p, since deglast g= 0, and b1; b2¡2[n] ◦ p for some polynomial p by Lemma 20.
The required input precision is dominated by M = l(x; .), with .=m + 3 + 2ybL(y).
Since bL(y)∈yO(1), then M∈2[n](xO(1))+yO(1)+O(m). For the space complexity, notice

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 161

that f(x) has to be computed with precision 2−.. By induction hypothesis this can be
done in space 2[n](xO(1)) + O(.) which is still in 2[n](xO(1)) + yO(1) + O(m). Now, by
de0nition of RBI, deglast g= 0. Therefore, from Lemma 14, g(x; y; h) can be computed
in space polynomial in h. Since h¡2[n] ◦ p for some polynomial p, then the space
needed to compute g(�x(M); t; h) is in 2[n](‖(x; y)‖O(1))+O(m). Finally, to write n; /; t
on the tape, which are of the order of n=yb2(y) exp[bL(y)y]2m+3, we need space in
2[n−1](yO(1)) + O(m). This concludes the proof.

4. Inde�nite integrals and linear integration

The analog hierarchy described in the previous section is somewhat unsatisfactory
since it is based on bounded integration, which imposes bounds on the solutions of
the di-erential equations the system can solve. In fact, if the solution of the Cauchy
problem in De0nition 13 does not have a bound in the class, then it does not belong
to the class. It would be more natural to have, instead, an integration operator which,
given a pair of functions of appropriate arities and dimensions, would always de0ne a
solution for the corresponding Cauchy problem as, for instance, the linear integration
operator. We would also like to eliminate the a priori bound given by the basic function
2[n] in De0nition 13.

Incidentally, we note that the two modi0cations we suggest are similar to the ones
that lead, from the original de0nition of FPTIME by Cobham [9], to the predicative
de0nition of FPTIME by Bellantoni and Cook [2]. Cobham gave an arithmetic de0ni-
tion of FPTIME, which was closed under bounded recursion on notation. Bellantoni
and Cook gave an elegant and equivalent de0nition of FPTIME that avoids the ex-
plicit size bounds and the initial bounding function in Cobham’s de0nition, using a
more structured form of recursion called predicative or safe. In fact, several recursive
de0nitions of important computational complexity classes have been reworked using
predicativity [1,8]. Analogously, in the context of continuous-time computation, linear
integration can be considered a more structured form of integration than the general
integration operation.

We give our analog system the ability to integrate functions already de0ned and we
allow it to solve up to n nested linear di-erential equations in the nth level of the
hierarchy. We keep B0 as the pool of basic functions. Formally,

De�nition 22 (The hierarchy Sn). For all n¿1,

Sn = [B0;RCOMP; INT; n · LI];

where
• Basic functions have degree 0.
• INT denotes integral, i.e., given f of arity n + 1, de0ne g of arity n + 1 as

g(x; y) =
∫

[0;y] f(x; t) dt, with degi g= 0 i- degi f = 0.
• LI denotes linear integration, i.e., if the functions f1; : : : ; fm of arity n and g11; : : : ;

gmm of arity n + 1 are de0ned, then the function h= h1 of arity n + 1, where

162 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

h= (h1; : : : ; hm) satis0es the equations h(x; 0) = f (x) and @yh(x; y) = g(x; y)h(x; y),
is de0ned.

Note that even if the composition exp(exp(x)) is not permitted, the iterated expo-
nential exp[n] = exp ◦ · · · ◦ exp can be de0ned in Sn. Let ui(x; y) = exp[i](p(x; y)) for
i = 1; : : : ; n, where p is a polynomial. Then, the functions ui are de0ned by the set of
linear di-erential equations

@yu1 = u1@yp; : : : ; @un = unun−1 : : : u1@yp

with appropriate initial conditions. Thus un can be de0ned with up to n nested appli-
cations of LI and, therefore, exp[n] ◦p∈Sn.

Lemma 23. Sn is closed under bounded sums in a weak sense.

Proof. We de0ne a step function F which matches f on the integers, and whose values
are constant on the interval [j; j+1=2] for integer j. F can be de0ned as F(t) =f(s(t)),
where s is the function in the proof of Proposition 6. The bounded sum of f is then
easily de0ned by INT. Simply write g(0) = 0 and g′(t) = ckF(t)�k(sin 2't), where ck is
an appropriate constant. Then, whenever t∈[n−1=2; n], g(t) =8z¡nf(z) and, therefore,
the bounded sums of f are given by the above integral on [0; n].

Then, similarly to Bn (cf. Lemma 18), we have the following.

Lemma 24. If f; b∈FN (Sn), with deglast f=deglast b= 0 and g(x; y) = 5t6b(x;y)f(x; t),
or g(x; y) =∀t6b(x;y)[f(x; t) = 0], or g(x; y) =∃t6b(x;y)[f(x; t) = 0], then g∈FN (Sn) and
deglast g= 0.

We wish to prove an analogue to Proposition 19. However, since we do not know if
Sn is closed under bounded recursion, we cannot proceed as we did for Bn. We still use
the arithmetization of TM within FLINSPACE given by Lemma 15 but function H
in Eq. (5) has to be de0ned with bounded sums instead of bounded recursion. This is
a standard technique in recursion theory (cf. [19, p. 11]) which relies on prime coding
of the values of the function de0ned by bounded recursion. As a matter of fact, if h
is de0ned by h(x; 0) =f(x); h(x; y + 1) = g(x; y; h(x; y)), and h(x; y)6b(x; y), then
it can be written as

h(x; y) = 5t6b(x;y)∃m6B(x;y)[(x; y; m; t) = 0]: (7)

B(x; y) =:u6yp(u)b(x;u) and (x; y; m; t) = 0 i- (m)0 =f(x), ∀v¡y[(m)v+1 =
g(x; y; (m)v)] and (m)y = t, where (m)u returns the exponent of the uth prime p(u)
in the prime factorization of m. Note that (m)u is clearly computable in linear space
and therefore in B0, and the logical operations in the expression above are also [19].
The procedure above does the following: it checks for all values of m smaller than
B(x; y), and stops when it 0nds one m that codes the sequence {h(x; 0); : : : ; h(x; y)}.

Proposition 25. For all n∈N , EXPSPACEF n⊂FN (Sn+1).

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 163

Proof. The function H in Lemma 15 can be de0ned with Eq. (7) instead of the
recursion in Eq. (6). 5 To make things clearer, let us rewrite Eq. (7) for H :

H (x; y) = 5t6b(x)∃m6B(x)[(x; y; m; t) = 0]: (8)

and (x; y; m; t) = 0 i- (m)0 = INIT (x), ∀v¡y[(m)v+1 =NEXT ((m)v))] and (m)y = t.
From Lemmas 15 and 24, and the fact that logical operators belong to FLINSPACE,

we know that is in FN (B0). Therefore, deg = 0.
We can take for the bound b the function 2[n] ◦ p for a certain polynomial p, as

noticed in the remarks following Lemma 15. Since, for all x, b(x) is a bound on the
number N of steps of the computation, then we can set the following bound B on the
prime coding function of the sequence {H (x; 0); : : : ; H (x; N)}

2H (x;0) : : : pH (x;N)
N 6 2[n+1](p(x)) = B(x);

where p is some polynomial. Therefore, B belongs to FN (Sn+1). Let us see then how to
de0ne f∈FN (Sn+1) with Eq. (5). First, de0ne H as in Eq. (8) using Lemma 24. Since
b and B are independent of y then deglast H = 0. Now, we de0ne with RCOMP,
F1(x; y) =ACCEPT (H (x; y)), with still deglast F1 = 0. Therefore, we can apply the
bounded minimization operator to F1 to de0ne F2(x) = 5y6b(x)F1(x; y). Finally,

f(x) = OUTPUT (H (x; F2(x))):

We have then showed that any function in EXPSPACEF n has an extension to the
reals in Sn+1, as claimed.

Finally, we want to show that Sn⊂Bn and, therefore, Sn has the space complexity
upper bounds given by Proposition 21.

Proposition 26. For n¿1, Sn⊂Bn.

Proof. The initial functions of Sn belong to Bn. We just have to show that Bn is closed
under INT and LI. Linear integration, where @yh(x; y) = g(x; y)h(x; y), can be de0ned
by restricted bounded integration since the term on the right hand side has degree 0
with respect to h. The operation INT is just a particular case of linear integration.
Therefore, we just have to show that the functions LI and INT de0ne are bounded by
a function in Bn. It is easy to verify that all functions in Sn have bounds 2[n] ◦ p∈Bn,
since linear integration increases those bounds at most exponentially (cf. [7]) and, by
de0nition, only n nested uses of LI are allowed in Sn.

5. Final remarks

We established lower and upper bounds on the computational complexity of two
hierarchies of continuous time functions. In particular for the hierarchy Bn we showed
that: (1) for all n∈N , EXPSPACEF n⊂FN (Bn); and (2) for all f∈Bn, f(x) can be

5 To simplify notation, we will drop the indices in Hz , INITz , NEXTz , and bz .

164 M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165

computed with precision 2−m in space in 2[n](xO(1)) + O(m). For Sn we proved a
weaker lower bound, namely EXPSPACEF n⊂FN (Sn+1), and the same upper bound.
It seems surprising that the space complexity grows only linearly with the number of
bits of precision. For a polynomial-time computable function f, it is conjectured that
the solution of the problem y(0) = 0 and y′ =f(x; y) requires polynomial space [13].
However, we consider in this paper only functions with certain bounds on the Lipschitz
constant and on the derivatives.

As in [13], we de0ned space complexity of real functions as a measure depending on
two parameters: the argument of the function and the number of bits of precision. The
corresponding non-uniform complexity measure for functions de0ned on unbounded
intervals depends only on the precision. We say that the space complexity of f is
bounded by s(m) if sf(x; m)6s(m) for all x∈[−2m; 2m]. With such de0nition, the up-
per bound we proved on non-uniform space complexity of functions in Bn or Sn is
2[n+1](O(m)).

The following questions suggest themselves.
1. Is it possible to compute any function in B0 in space (log x)O(1) +O(n)? We saw this

is true for the basic functions of B0 and this is preserved by composition. However,
we were not able to get rid of the polynomial bound on the argument of the function
for the numerical integration. If the answer to this question happened to be true, then
tighter upper bounds for the hierarchy Bn would follow.

2. Can we remove bounded integration from the de0nition of the hierarchy Sn? This is
related to the following open problem in recursion theory: do we still obtain the same
class if we replace bounded recursion by bounded sums in the recursive de0nition
of FLINSPACE given by Lemma 5?

3. Can we decrease the upper bounds on the classes Sn? We believe that this is possible
since Sn is closed under inde0nite integrals and up to a certain number of linear
integrations. Therefore, simpler numerical procedures then Euler’s method can be
used to approximate the functions of those classes. We leave this as a problem to
the reader.

Our results are about space complexity of analog classes. What can we say about
time complexity? Using the standard Euler’s method as in Lemma 10, the bound on
the time complexity would increase with the length of the recursive description of a
function in Bn. We could do better if we consider only inde0nite integrals or linear
di-erential equations. However, our de0nition of Sn still includes bounded integration,
and, therefore, we were not able to derive time complexity bounds for the analog
classes we considered.

The results in this paper, combined with previous results in [7], give analog charac-
terizations of space complexity classes that range from FLINSPACE to the primitive
recursive functions and show that when integral systems have the ability to solve dif-
ferential equations of increasing generality their power increases along that range.

Acknowledgements

A previous version of this work appeared in the author’s PhD dissertation, sup-
ported by FCT via Laborat=orio de Modelos e Arquitecturas Computacionais and Grant

M.L. Campagnolo / Theoretical Computer Science 317 (2004) 147–165 165

PRAXIS XXI=BD=18304=98, and supervised by F=elix Costa and Cris Moore. I wish to
thank them both for their most valuable suggestions and remarks. I thank F=elix Costa
in particular for his collaboration on some proofs in this paper. I also wish to thank
Geo- Ostrin, Am=Slcar Sernadas and Vasco Brattka for useful discussions. This work
has been supported by FCT and FEDER via the Center for Logic and Computation
and the project ConTComp (POCTI=MAT=45978=2002).

References

[1] S. Bellantoni, Predicative recursion and the polytime hierarchy, in: P. Clote, J. Remmel (Eds.), Feasible
Mathematics, Vol. II, BirkhQauser, Basel, 1995, pp. 15–29.

[2] S. Bellantoni, S. Cook, A new recursion-theoretic characterization of the polytime functions, Comput.
Complex. 2 (1992) 97–110.

[3] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers:
NP-completness, recursive functions and universal machines, Bull. Amer. Math. Soc. 21 (1989) 1–46.

[4] O. Bournez, Complexit=e algorithmique des systUemes dynamiques continus et hybrides, Ph.D. Thesis,
Ecole Normale Sup=erieure de Lyon, 1999.

[5] M.S. Branicky, Universal computation and other capabilities of hybrid and continuous dynamical
systems, Theoret. Comput. Sci. 138 (1) (1995) 67–100.

[6] M.L. Campagnolo, C. Moore, J.F. Costa, Iteration, inequalities, and di-erentiability in analog computers,
J. Complex. 16 (4) (2000) 642–660.

[7] M.L. Campagnolo, C. Moore, J.F. Costa, An analog characterization of the Grzegorczyk hierarchy,
J. Complex. 4 (18) (2002) 977–1000.

[8] P. Clote, Computational models and function algebras, in: E.R. Gri-or (Ed.), Handbook of Computability
Theory, Elsevier, Amsterdam, 1999, pp. 589–681.

[9] A. Cobham, The intrinsic computational diFculty of functions, in: Y. Bar-Hillel (Ed.), Proc. 1964
Internat. Congress for Logic, Methodology, and the Philosophy of Science, North-Holland, Amsterdam,
1964, pp. 24–30.

[10] P. Hartman, Ordinary Di-erential Equations, 2nd ed., BirkhQauser, Basel, 1982.
[11] P. Henrici, Discrete Variable Methods in Ordinary Di-erential Equations, Wiley, New York, 1962.
[12] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[13] K.-I. Ko, Complexity Theory of Real Functions, BirkhQauser, Basel, 1991.
[14] W. Miller, Recursive function theory and numerical analysis, J. ACM 4 (1970) 465–472.
[15] C. Moore, Recursion theory on the reals and continuous-time computation, Theoret. Comput. Sci.

162 (1996) 23–44.
[16] P. Odifreddi, Classical Recursion Theory, Vol. II, Elsevier, Amsterdam, 2000.
[17] P. Orponen, A survey of continuous-time computation theory, in: D.-Z. Du, K.-I. Ko (Eds.),

Advances in Algorithms, Languages, and Complexity, Kluwer Academic Publishers, Dordrecht, 1997,
pp. 209–224.

[18] R.W. Ritchie, Classes of predictably computable functions, Trans. Amer. Math. Soc. 106 (1963)
139–173.

[19] H.E. Rose, Subrecursion: Functions and Hierarchies, Clarendon Press, Oxford, 1984.
[20] H. Siegelmann, Neural Networks and Analog Computation: Beyond the Turing Limit, BirkhQauser, Basel,

1999.
[21] J. Traub, A.G. Werschulz, Complexity and Information, Cambridge University Press, Cambridge, 1998.

	Continuous-time computation with restricted integration capabilities
	Introduction
	Real recursive functions, B0, and upper and lower bounds
	Restricting composition and bounded integration
	Indefinite integrals and linear integration
	Final remarks
	Acknowledgements
	References

