A MATROID GENERALIZATION OF A THEOREM OF MENDELSOHN AND DULMAGE*

Sukhamay KUNDU** and Eugene L. LAWLER
Department of Electrical Engineering and Computer Scientes and the Electronics Research Laboratory, Universily of Callforma, Berkeley, Callf. 95720, USA

Received 12 November 1971

Abstract

A matroxd generalization is given to a theorem of Mendelsohn and Delmage coneening assignments in bipartite graphs. The generalized theorem has applications in optimization theory and provides a simple proof of a theorem of Nash-Williams.

1. A theorem of Mendelsohn and Dulmage

A theorem of Mendelsohn and Dulmage [3] was originally proved for $(0,1)$ matrices. However, it can be regarded as a theorem on bipartite matchings and hence it is a special case (finite) of Banach's mapping the rem [1]. We first give a simple proof of this theorem using the concept of a matching.

Theorem 1.1 (Mendelsohn-Dulmage). Let $G(X . Y)$ be a bipartite graph. the two parts being X and Y. Let S, T be subsets of X, Y, respectively, such that each set has an assignment into the other part. Then there is an assignment between two subsets of X, Y which contains hoth S and T.

Proof. Let $f: S \rightarrow Y$ and $g: T \rightarrow X$ be the assignments. Write

$$
F=\{(x, f(x)): x \in S\}, \quad H=\{(g(y), y): y \in T\} .
$$

[^0]F and H are matchings in G and they cover respectively S and T. Form the symmetric difference $F \Delta H$. It consists of the five types of cycles and chains shown in Fig. 1. (Sume of these chains could be infinite in one or both directions if G is an infinite graph). In each case above ve can select a matching set of edges $M \subseteq F \Delta H$ such that it covers all the vertices of $X \cup Y$ covered by $F \Delta H$. Then $M \cup(F \cap H)$ is a matchil.g that covers $S \cup T$.

Remark. Banach's mapping theorem is the same as Theorem 1.1 for arbitrary $|X \cup Y|$, possibly infinite. For the other variations of Banach's theorem, see [4].

We proceed to prove our main theorem. We shall write a matroid as $M=(E, I)$, where E is the set of elements and I is the family of independent subsets of E.

Theorem 1.2. Let M_{1}, M_{2} be two matroids on E and I_{1}, I_{2} each be independent in both matroids. Then there exists a set $I \subseteq I_{1} \cup I_{2}$ independent in M_{1}, M_{2} such that

$$
\mathrm{sp}^{i}(I) \supseteq \mathrm{sp}^{i}\left(I_{i}\right), \quad i=1,2,
$$

where $\mathrm{sp}^{\boldsymbol{\prime}()}$) stands for span in matroid M_{i}.
To see how these two theorems are related, we take $E=$ set of edges of the graph $G(X, Y)$ and consider the natural partitions of E defined

Fig. 1. Components of $F \Delta \boldsymbol{H}$.
as follows: $P_{1}=\left\{E_{x}: x \in X\right\}, P_{2}=\left\{z_{y}: y \in Y \mid\right.$, where $A_{y}=$ of of edges incident with vertex v. Let $M_{1}, i=1,2$, be the parfilion mationda corresponding to P_{i}, i.e., a set $/$ is independent in M_{i} if and only If $\left|\left|\cap E_{x}\right| \leq 1\right.$ for all x (resp. $|\left|\cap E_{y}\right| \leq 1$ for all $\left.y\right)$. Then
$I_{1}=$ the edges of the assignment of S
$I_{2}=$ the edges of the assignment of T
$I=$ the edges of the assignment given ty the theorem

Proof of Theorem 1.2. If $\operatorname{sp}^{2}\left(I_{1}\right) \geq I_{2}$, there is nothing to prove. Let $e \in I_{2} \backslash \mathrm{sp}^{2}\left(I_{1}\right) ; I_{1}+e$ is in I_{2}. If $I_{1}+e$ belongs to I_{1}. let $I_{1}=I_{1}+c$ Otherwise, there exists an M_{1}-circuit C such that $e \in C \subseteq I_{1}+e$ Now $C-c \subseteq I_{1} \cap I_{2}$, since I_{2} is in I_{1}. Cheose $e^{\prime} \in C \cap\left(I_{1} \backslash I_{2}\right)$ and define $I_{1}^{\prime}=I_{1}-e^{\prime}+e$. We have $I_{1}^{\prime} \in I_{1}$ and $p^{\prime}\left(I_{1}^{\prime}\right)=s p^{\prime}\left(I_{1}\right)$ and ala, I_{1} is trivially independent in M_{2}. However, $\left|I_{1}^{\prime} \cap I_{2}\right|>\left|I_{1} \cap I_{2}\right|$. Thus we can apply the same procedure to define $I_{\}}^{(k)}, k=1,2, \ldots$ such that $\operatorname{sp}^{1}\left(I^{(k)}\right)=\operatorname{sp}^{1}\left(I_{1}\right), I_{1}^{(k)} \in I_{1} \cap I_{2}$ until $\operatorname{sp}^{2}\left(I^{(k)}\right) \geq I_{2}$. Then $I=\mu^{(k)}$ proves the theorem.

2. Application to optimization

Suppose θ_{1} and θ_{2} are two different criteria of optimality, such ihat

$$
\operatorname{sp}^{i}(A) \supseteq \mathrm{sp}^{i}(B)
$$

implies

$$
A \geq B \quad\left(\theta_{i}\right), \quad i=1,2
$$

i.e., A is to be preferred to B with respect to θ_{i}. Let I_{1}, I_{2} be sets in the famiiy $I_{1} \cap I_{2}$ which are maximal with respect to θ_{1}, θ_{2}, respectively. Then by Theorem 1.2 , there exists a set $I \in I_{1} \cap I_{2}$ which is maximal with respect to both θ_{1} and θ_{2}.

Specifically, let X, Y in the bipartite graph $G(X, Y)$ represent men and jobs to be matched, where the edges denote the compatibility relation. Suppose θ_{1} is a union-determined criterion of optimality based on
seniority of men and θ_{2} is a management-determined criterion of optimality based on priority of jobs. Let I_{1} be a subset of edges representing a union-optimal assignment of men to jobs, possibly as determined in [2], and let I_{2} be a management-optimal subset. Then by Theorem 1.2 (or 1.1), there exists an assignment $I \subseteq I_{1} \cup I_{2}$ which is simultaneously union-optimal and management-optimal.

3. Proof of a theorem of Nash-Williams

Theorem 1.2 provides a simple and direct proof of a theorem of NashWilliams [5].

Theorem 3.1. Let $M_{1}=\left(E, I_{1}\right)$ be a matroid and $h: E \rightarrow E_{0}$ be a mapping of E into E_{0}. Then $M_{0}=\left(E_{0}, I_{0}\right)$ is a matrond. where

$$
I_{0}=\left\{I_{0} \subseteq E_{0}: \text { for sume } I_{1} \in I_{1}, h\left(I_{1}\right)=I_{0}\right\}
$$

Proof. It is sufficient to show una: it I_{n}. I_{p+1} are two sets in I_{0}, respectively with p and $p+1$ elements, there . xists a set $h(j) \in I_{0}$ with $p+1$ or more elements such that $I_{p} \subseteq h(I) \subseteq I_{p} \cup \cup_{p}^{\prime}$, Let $M_{2}=\left(E . I_{2}\right)$ be a partition matroid, where

$$
I_{2}=\left\{I_{2} \subseteq E: \|_{2} \cap h^{-1}(e) \mid \leq I \text { for all } e \in E_{0}\right\}
$$

Let r_{p}, r_{p+1} be sets in l_{1}, respectively with p and $p+1$ elements, such that $h\left(I_{p}^{\prime}\right)=I_{p}$ and $h\left(I_{p+1}\right)=I_{p+1}$. The sets Γ_{p}. Γ_{p+1} are independent in M_{2} as well as M_{1}, and we can apply Theorem 1.2. Thus there is a set $I \in I_{1} \cap I_{2}$ such that

$$
\operatorname{sp}^{\prime}(I) \supseteq \mathrm{sp}^{\prime}\left(\Gamma_{p+1}\right),
$$

hence $|\mid \geq p+1$, and

$$
\operatorname{sp}^{2}(\Pi) \supseteq \operatorname{sp}^{2}\left(r_{p}\right) .
$$

from which it follows that

$$
h(\prime) \supseteq h\left(I_{p}^{\prime}\right)=I_{p}
$$

Also h is one-one on I and $I \subseteq I_{p}^{\prime} \cup I_{p+1}^{\prime}$, which implies that $|h(I)| \geq p+1$ and $h(I) \subseteq I_{p} \cup I_{p+1}$. Thus I_{0} defines the independent sets of a natroid.

References

[1] S. Banach, Un théorème sur les transformations biunivoques, Fund. Math. 6 (1924) 236 239.
[2| D. Gake, Optimal assignments in an ordered set; A.n application of matroid theory, J. Combinatorial Theory 4 (1968) 176-180.
[3] N.S. Mendelsohn and A.L. Dulmage, Some generalizations of the problem of ditinct representatives, Canad. J. Math. 10 (1958) 230-241.
[4] L. Mirsky, Transversal theory (Academic Press, New York, 1971).
[S] J.A. Nash-Williams, An application of matroids to graph theory. in: Theorie des Graphes, Journées Internationales d'Études, Rome (Dunod, Paris, 1966) 263-265.

[^0]: * Research sponsored by the Air Force Office of Scientific Research Grant AFOSR-71-2076. ** Present address: IBM T.J. Watson Research Center, Yorktown Heights, N. Y, USA.

