© DISCRETE MATHEMATICS 4 (1973) 159-163. North-Holland Publishing Company

A MATROID GENERALIZATION OF A THEOREM OF MENDELSOHN AND DULMAGE*

Sukhamay KUNDU** and Eugene L. LAWLER

Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory. University of California, Berkeley, Calif. 95720, USA

Received 12 November 1971

Abstract. A matroid generalization is given to a theorem of Mendelsohn and Dulmage concerning assignments in bipartite graphs. The generalized theorem has applications in optimization theory and provides a simple proof of a theorem of Nash-Williams.

1. A theorem of Mendelsohn and Dulmage

A theorem of Mendelsohn and Dulmage [3] was originally proved for (0, 1) matrices. However, it can be regarded as a theorem on bipartite matchings and hence it is a special case (finite) of Banach's mapping theorem [1]. We first give a simple proof of this theorem using the concept of a matching.

Theorem 1.1 (Mendelsohn-Dulmage). Let G(X, Y) be a bipartite graph, the two parts being X and Y. Let S, T be subsets of X, Y, respectively, such that each set has an assignment into the other part. Then there is an assignment between two subsets of X, Y which contains both S and T.

Proof. Let $f: S \rightarrow Y$ and $g: T \rightarrow X$ be the assignments. Write

 $F = \{(x, f(x)): x \in S\}, H = \{(g(y), y): y \in T\}.$

^{*} Research sponsored by the Air Force Office of Scientific Research Grant AFOSR-71-2076.

^{**} Present address: IBM T.J. Watson Research Center, Yorktown Heights, N.Y., USA.

F and H are matchings in G and they cover respectively S and T. Form the symmetric difference $F \triangle H$. It consists of the five types of cycles and chains shown in Fig. 1. (Some of these chains could be infinite in one or both directions if G is an infinite graph). In each case above we can select a matching set of edges $M \subseteq F \triangle H$ such that it covers all the vertices of $X \cup Y$ covered by $F \triangle H$. Then $M \cup (F \cap H)$ is a matching that covers $S \cup T$.

Remark. Banach's mapping theorem is the same as Theorem 1.1 for arbitrary $|X \cup Y|$, possibly infinite. For the other variations of Banach's theorem, see [4].

We proceed to prove our main theorem. We shall write a matroid as M = (E, 1), where E is the set of elements and I is the family of independent subsets of E.

Theorem 1.2. Let M_1, M_2 be two matroids on E and I_1, I_2 each be independent in both matroids. Then there exists a set $I \subseteq I_1 \cup I_2$ independent in M_1, M_2 such that

$$\operatorname{sp}^{i}(I) \supseteq \operatorname{sp}^{i}(I_{i}), \quad i = 1, 2$$
,

where $sp^{i}()$ stands for span in matroid M_{i} .

To see how these two theorems are related, we take E = set of edges of the graph G(X, Y) and consider the natural partitions of E defined

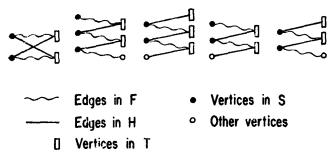


Fig. 1. Components of $F \triangle H$.

as follows: $P_1 = \{E_x : x \in X\}$. $P_2 = \{E_y : y \in Y\}$, where $E_y = \text{set of}$ edges incident with vertex v. Let M_i , i = 1, 2, be the partition matroids corresponding to P_i , i.e., a set I is independent in M_i if and only if $|I \cap E_x| \leq 1$ for all x (resp. $|I \cap E_y| \leq 1$ for all y). Then

> I_1 = the edges of the assignment of S. I_2 = the edges of the assignment of T. I = the edges of the assignment given by the theorem.

Proof of Theorem 1.2. If $sp^2(I_1) \supseteq I_2$, there is nothing to prove. Let $e \in I_2 \setminus sp^2(I_1)$; $I_1 + e$ is in I_2 . If $I_1 + e$ belongs to I_1 , let $I'_1 = I_1 + e$ Otherwise, there exists an M_1 -circuit C such that $e \in C \subseteq I_1 + e$ Now $C - e \subseteq I_1 \cap I_2$, since I_2 is in I_1 . Choose $e' \in C \cap (I_1 \setminus I_2)$ and define $I'_1 = I_1 - e' + e$. We have $I'_1 \in I_1$ and $sp^1(I'_1) = sp^1(I_1)$ and also I'_1 is trivially independent in M_2 . However, $|I'_1 \cap I_2| > |I_1 \cap I_2|$. Thus we can apply the same procedure to define $I'_1(k) = k = 1, 2, \dots$ such that $sp^1(I'_1) = sp^1(I_1), I'_1(k) \in I_1 \cap I_2$ until $sp^2(I'_1(k)) \supseteq I_2$. Then $I = I'^{(k)}$ proves the theorem.

2. Application to optimization

Suppose θ_1 and θ_2 are two different criteria of optimality, such that

$$sp^i(A) \supseteq sp^i(B)$$

implies

$$A \geq B$$
 $(\theta_i), i = 1, 2,$

i.e., A is to be preferred to B with respect to θ_1 . Let I_1 . I_2 be sets in the family $I_1 \cap I_2$ which are maximal with respect to θ_1 . θ_2 , respectively. Then by Theorem 1.2, there exists a set $I \in I_1 \cap I_2$ which is maximal with respect to both θ_1 and θ_2 .

Specifically, let X, Y in the bipartite graph G(X, Y) represent men and jobs to be matched, where the edges denote the compatibility relation. Suppose θ_1 is a union-determined criterion of optimality based on seniority of men and θ_2 is a management-determined criterion of optimality based on priority of jobs. Let I_1 be a subset of edges representing a union-optimal assignment of men to jobs, possibly as determined in [2], and let I_2 be a management-optimal subset. Then by Theorem 1.2 (or 1.1), there exists an assignment $I \subseteq I_1 \cup I_2$ which is simultaneously union-optimal and management-optimal.

3. Proof of a theorem of Nash-Williams

Theorem 1.2 provides a simple and direct proof of a theorem of Nash-Williams [5].

Theorem 3.1. Let $M_1 = (E, I_1)$ be a matroid and h: $E \rightarrow E_0$ be a mapping of E into E_0 . Then $M_0 = (E_0, I_0)$ is a matroid, where

$$I_0 = \{I_0 \subseteq E_0 : \text{ for some } I_1 \in I_1, h(I_1) = I_0\}$$
.

Proof. It is sufficient to show $\lim_{t \to 0^+} i \leq I_p$, I_{p+1} are two sets in I_0 , respectively with p and p+1 elements, there wists a set $h(i) \in I_0$ with p+1 or more elements such that $I_p \subseteq h(1) \subseteq I_p \cup I_{p-1}$. Let $M_2 = (E, I_2)$ be a partition matroid, where

$$I_2 = \{I_2 \subseteq E: |I_2 \cap h^{-1}(e)| \le 1 \text{ for all } e \in E_0\}.$$

Let I'_p , I'_{p+1} be sets in I_1 , respectively with p and p+1 elements, such that $h(I'_p) = I_p$ and $h(I'_{p+1}) = I_{p+1}$. The sets I'_p , I'_{p+1} are independent in M_2 as well as M_1 , and we can apply Theorem 1.2. Thus there is a set $I \in I_1 \cap I_2$ such that

$$sp^{1}(I) \supseteq sp^{1}(I'_{n+1})$$

hence $|l| \ge p + 1$, and

$$sp^2(I) \supseteq sp^2(I_n^*)$$
.

from which it follows that

References

$$h(I) \supseteq h(I'_p) = I_p.$$

Also h is one-one on I and $I \subseteq I'_p \cup I'_{p+1}$, which implies that $|h(I)| \ge p+1$ and $h(I) \subseteq I_p \cup I_{p+1}$. Thus I_0 defines the independent sets of a matroid.

References

- [1] S. Banach, Un théorème sur les transformations biunivoques, Fund. Math. 6 (1924) 236 239.
- [2] D. Gale, Optimal assignments in an ordered set; An application of matroid theory, J. Combinatorial Theory 4 (1968) 176-180.
- [3] N.S. Mendelsohn and A.L. Dulmage, Some generalizations of the problem of distinct representatives, Canad. J. Math. 10 (1958) 230-241.
- [4] L. Mirsky, Transversal theory (Academic Press, New York, 1971).
- [5] J.A. Nash-Williams, An application of matroids to graph theory. in: Theorie des Graphes, Journées Internationales d'Études, Rome (Dunod, Paris, 1966) 263-265.