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Abstract. A matrwd generalization is given to a theorem of Mendrlsohn and Dulmape mnwn- 
ing assignments in bipartite graphs. The generalized theorem hat applications ilr optimiralkm 
theory and provides a simple proof of a theorem of Nash-Williams. 

1. A theorem of Mendelsohn and Dulmage 

A theorem of Mendelsohn and Dulmage I31 was originally proved for 
(0,l) matrices. However, it can be regarded as a theorem on bipartite 
matchings and hence it is a special case (finite) of Banach’s mapping 
thexem [ 11. We first give a simple proof of this theorem using the con- 
cept of a matching. 

Theorem 1.1 (Mendelsohn-Dulmage). Ler C(X. Y) be a bipurtite gruph, 
the two parts being X and Y, Let S, T be subsets of X, Y, respectively. 
such that each set has an assignment into the other part. Then there is 
an assignment between two .subsets of X. Y which contains both S und T. 

Roof. Let f: S + Y and g: T + X be the assignments. Write 

F= {(x,f(x)):xE Sl, H= ICgt_~),.v): YE Tl. 
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F and H are matchings in G and they cover respectively S and T. Form 
the symmetric difference F A If. It consists of the five types of cycles 
and chains shown in Fig, I. (Some of these chains could be infinite in 
one or both Cirections if G is an infinite graph). In each case above ,ue 
can select a matching set of edges M s F A H such that it covers all ihe 
vertices of X U Y covered by F A H. Then M U (F n H) is a matchhg 
that covers S IJ 7Y 

Remark. Banach’s mapping theorem is the same as Thecrem 1.1 for ar- 
bitrary IX u YI, possibly infinite. For the other variations of Banach’s 
theorem, see 141. 

We proceed to prove our main theorem. We shall write a matroid a3 
,IM = IE, Z ), where E is the set of elements and Z is the family of inde- 
pendent subsets of E 

Theorem 1.2. Ler M, , M2 be two matroids on E and I,, Z, each be in- 
dependent In both matroids. Then there exists a set I C I, u i2 inde- 
pendenr in M, , M, such that 

sp’(O 1, s$(l,), i = I,2 , 

where sp’( ) stands for span iv matroid Mi. 

To see how these two theo.-ems are related, we take E =; set of edges 
of the graph G(X, Y) and consider the natural partitions of E defined 

- Edges in F 

- Edyes in H 
0 Vertices in T 

l Vertices in S 

0 Other vertices 

Fig. 1. Components of F b H. 



D 2. Application to optimization rst 

a3 follows: P, =(E,:xEXl. P*‘lrQYE YI.WhGte~*~4fl,~ 

edges incident with vertex u. Let M,, L = I, 2, be the part~fbn mrtrM 
corresponding to P,, i.e., a set I is independent in M, if snd only rf 
llnEXIL 1 forallx(resp.IfnE,I~ I forally9,Then 

I, = the edges of the assignment of S , 
I2 = the edges of the assig:ment of T, 
I = the edges of the assignmen? given by the theorem 

Proof of Theorem 1.2. If sp*(l, 12 12, there is nothing to prove. Let 
eE12\sp2(II);IL +eisin Z2.1fII tebelongsto l,,lot/; */, +)F 
Oiherwise, there exists an M, -circuit C such that c E C F I, + (I NYW 
C-e C_ I, n 12, since f2 is in I, . Choose P’ E C n U, \I, 9 and def9~ 
1; = I, 4 + e. We have 1; E I, and .+p’ (/‘, ) = spf f/, 9 and ~!IJCJ P, k 
trivially independent in M2. However, I/‘, n /*I > I/, n lrl. Thus we 
can apply the same procedure to define /jk), k = I, 2, . . . such that 
SP*(/\~)) = sp’(I, 1, /f) E I, n I2 until sp*(/~~) r> I,. Then / = /‘*I 
proves the theorem. 

2. Application to optimization 

Suppose 8, and 8, are two different criteria of optimality, such rhat 

sp’(A) 1 sp’(B) 

implies 

A>_B (ei), i=1,2, 

i.e., A is to be preferred to B with respect to 0,. Let 1,. I2 be Rets in the 
family 7, n I2 which are maximal with respect to 8,. 02, respectively. 
Then by Theorem 1.2, there exists a set 1 E 1, n 72 which is maximal 
with respect to both 8, and 0,. 

Specitically, let X, Y in the bipartite graph G(X, Y) represent men 
and jobs to be matched, where the edges denote the compatibility rela- 
tion. Suppose fI1 is a union-determined criterion of optimality based on 



162 S Kundu. EL Ldu, Gcnentizatkm of # tham’tn of A&n&b& l d iMnw&e 

seniority of men and 8, is a management-determined criterion of opti- 
mality based on priority of jobs. Let I, be a subset of edges representing 
a union-optimal assignment of men to jobs, possibly as determined in 
[2], and let f2 be a management+ptimal subset. Then by Theorem 1.2 
(or 1. I), there exists an assignment f C_ 1, U I2 which is simultaneously 
union-optimal and management-optimal. 

3. Proof of a theorem of Nash-Willian& 

Theorem 1.2 provides a simple and dhxxt proof of a theorem of Nash- 
Williams [ 5 1 . 

Proof. It is sufficient to show Ir~e: iZ.$. &, arc two sets in to, rcspec- 
tively with p and p + I elements, then .-&ts a set h(r3 t’ IO with p + I or 

more elements such that IP C_ h(l) C_ IO* U .‘& , . Let Ma - (6 22) be a 

partition matroid, where 

Let $,. I;+, be sets in 2,. respecWdp with p and p + I elemenhi. such 
that h<$ I= /,, and 4 C&, ) * I,,, . nescts~.Pp, aleidcpendenrill 
M, as well as M, , and we can apply Theurem I .2 llw them is a set 
IE I, n I2 such that 

SP2(r) ;1 Jp’(l;) . 

from which it follows thaf 



R@?t?lWCS 163 

Also h is oneone on I and I C_ I;I U IL+, , which implies that 
lWN>p+l andWSI,, u$,+,. Thus I9 defines the independent 
sets of a natroid. 
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