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We present a sensor model comprised of a Timoshenko beam coupled with a linear viscoelastic substrate
via a distributed system of compliant elements. The system of governing equations includes the evolution
of the kinematic descriptors of the Timoshenko beam and of the interface between the coupling elements
and the viscoelastic substrate. This model is used to pose an inverse problem aimed at estimating the
constitutive parameters of the substrate from deformation measurements of the beam. The sensing
model is demonstrated by comparing its prediction with published experimentally obtained constitutive
parameters identifying standard linear viscoelastic material models, showing good agreement between
model estimations and experimental results.
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1. Introduction

We propose a model for a continuous deformable system that
can be used as a sensor to estimate constitutive parameters of a
substrate to which it is coupled. The sensor is comprised of a pla-
nar Timoshenko beam, and of a distributed system of compliant
elements that exert the coupling with the substrate. The system
is a sensor in the sense that kinematic quantities (that is, deflec-
tions and rotations along the axis of the beam) are acquired
through measurements; the model of the system allows then to
define a cost function that encodes least square residuals between
measurements and model displacements, including constitutive
parameters that can be estimated by minimizing the cost function.
This leads naturally to an inverse problem formulation, in which
the action or external forces (from the substrate) that determine
a given kinematics (measured) has to be found, as it is ultimately
related to the material response of the substrate and therefore to
the estimation of constitutive parameters. One important applica-
tion of this work is the estimation of material parameters for soft
biological tissues, which is demonstrated by comparison of the
predictions of the proposed model with published results.

Inverse problems is a branch of research whose scope can be
broadly defined as the inversion of models or data to find unknown
properties of a related system [1]. This framework applies to a wide
range of engineering and science applications, such as the estima-
tion of spatial and temporal-dependent external forces in dynami-
cal systems [2], the estimation of transient heat transfer rates in
thermal systems [3], the estimation of forced convection in parallel
plate channels [4,5], and the estimation of surface heat flux in ther-
mal problems [6]. An important class of applications that include
the work presented in this paper is the one concerning the estima-
tion of material parameters in constitutive relations of elastoplastic
and viscoelastic materials, often modeled in the framework of con-
tinuum mechanics. An algorithm to solve inverse problems in linear
elasticity is presented in [7], and an in inverse problem to estimate
constitutive parameters in elastoplastic solids in presented in [8].
Full-field measurements techniques are presented in [9,10] to esti-
mate elastic parameters in solids, and a model-based approach is
used in [11] to estimate viscoelastic response constitutive parame-
ters. A numerical technique based on finite elements method is pre-
sented in [12] to estimate material parameters from displacement
and force measurements. Applications to the estimation of material
parameters in geotechnical applications, that typically involve the
response of soils or similar substrates, are presented in [13]. This
work advances in the framework of inverse problems, by proposing
the model of a sensing system that allows to estimate the viscoelas-
tic response parameters of a layer coupled with a deformable body
through a distributed system of compliant elements. The system’s
model describes the evolution of the deformable body and of the
interface of the substrate, and material parameters are estimated
by finding the minimizers of a least square metric that encodes
the distance between measured kinematic quantities and corre-
sponding ones from the model.

Inverse problems for hyper redundant mechanisms with differ-
ent geometric and dynamic conditions include: dynamic modeling
of multi-link flexible robotic manipulators [14], calibration of
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model parameters of flexible manipulator [15], model reduction of
rigid-flexible manipulators [16], the approximation of state space
equations of flexible link manipulators [17], and modeling and tra-
jectory planning of mobile manipulators with flexible links [18,19].
For elongated hyper-redundant systems, models of one dimen-
sional continua with local Euclidean structure (beam models) are
often naturally adopted, due to their suitability in describing the
features associated with the slenderness. Many studies have been
dedicated to inverse problems applied to structural health moni-
toring, crack identification, or to the estimation of material proper-
ties of soils. Among all, micro-channel heater/evaporators for
thermal phase-change actuators have been presented in [20]; a
PM-PCF vibration sensor for structural health monitoring of com-
posite is presented in [21]; the inverse mode problem with appli-
cation to structural health monitoring is addressed in [22] by a
discretization approach, in [23] by a quadratic inverse eigenvalue
approach, and in [24] by a variational approach. Additional works
proposing methods to tackle nonlinear inverse problems in vibra-
tions are [25–27]. An inverse vibrations problem to monitor and
inspect the structural integrity of multi-story building is formulated
in [28], whereas an experimental approach based on vibration mea-
surements is presented in [29] for crack identification in structural
members. A crack detection technique based on a dynamic stiffness
inverse vibration formulation is presented in [30,31]; within the
same framework, a nonlinear inverse problem approach to estimate
the external forces in displacement-dependent parameters models
is presented in [32,33].

In inverse problem solutions, different optimization techniques
are used to estimate time dependent parameters, often related to
root searching iterative methods belonging to the family of steep-
est descent and scaled steepest descent methods. Textbook [34]
present general methods of solution of inverse problems for vibrat-
ing systems. Inverse vibration problems with parameter uncer-
tainty are studied in [35]; a symmetric inverse vibration problem
is presented in [36], and the application of different optimization
methods to the solution of inverse problems for linear and nonlin-
ear vibrating and static systems can be found in [37,38]. Within the
same framework, an anharmonic vibration inverse problem with
reconstruction of Hamiltonian terms is studied in [39]; shape
determination problems of structures by an inverse variational
principle is reported in [40]; conditions for the uniqueness of solu-
tion of a specific inverse vibration problem is presented in [41].

Additionally, the estimation of mechanical properties is crucial
in the investigation of stability, development, and remodeling of
biological tissues. The constitutive response of biomaterials can
be correlated to the physical structure of living tissues and with
eventual abnormalities, resulting into diagnosing techniques
[42,43]. The links between biomechanics and human diseases have
been the subject of considerable scientific research efforts [44–47].
Recent developments of the study of biological systems has
reached a point where it can benefit considerably from contribu-
tions from continuum mechanics, which have provided a frame-
work to analyze and predict the behavior of biomechanical
mechanisms without specifically modeling the properties at the
cellular and molecular levels [48–50].

For coupled system presented in this work, measured quantities
are strains and/or displacements along the body of the beam,
where the bending is the input in the corresponding inverse prob-
lem. More specifically, by modeling the material response of the
substrate with a simple linear viscoelastic model, we pose an esti-
mation problem in which, by measuring deformations and/or
stresses on the beam, we can infer the material properties of the
substrate. In this case, the overall coupled system is modeled as
a beam on a multi-layer foundation, where different layers have
different material responses. A least square distance between mea-
surements and displacements from the model allow to estimate
encoded material parameters through a standard minimization
procedure. This class of numerical optimization tools has been
used in [51,52] to estimate time dependent material parameters,
and in [53–55] to solve inverse problems in linear and non-linear
vibrating systems. Predictions of this sensor model are in good
agreement with published results, suggesting that the system can
be used in a versatile way as an autonomous agent operating in
a generic environment, and simultaneously as a sensor that could
inform the action of the system itself [56], or that could be used
to monitor the environment. The modeling work done in this study
opens can be implemented in engineering systems applied to envi-
ronmental monitoring and health applications, in which we envi-
sion the system to be used to estimate material properties of
living tissues, that can be correlated to the diagnosis of classes of
diseases.

The rest of paper is organized as follows. In Section 2 we present
the model of a linear Timoshenko beam coupled with a viscoelastic
foundation by a continuous distribution of compliant elements.
The viscoelastic foundation represents linear viscoelastic materials
for which we want to estimate constitutive parameters. This set-
ting allows to formulate the problem as the one of a beam on a
multi-layer foundation. A reduced order model for the beam on
viscoelastic foundation is then derived, to allow to solve the cou-
pled system of governing partial differential equations. In
Section 3 we formulate the inverse problem to estimate constitu-
tive parameters of the substrate. Results and discussions are pre-
sented in Section 4.
2. Mechanical model of the coupled system

In this section we present the mechanical model of a deform-
able body coupled with a viscoelastic substrate through a dis-
tributed system of deformable elements. The deformable body
along with the distributed system of coupling elements is inspired
by a class of organisms that move on unstructured substrates by
adapting the shape of their bodies to non-zero curvatures of the
substrates (shape morphing) and by forward locomoting through
a traveling wave-like motion transmitted by the legs in contact
with the substrate. These features have been used in [57,56] to
model and simulate shape morphing and forward locomotion.
Here, these ideas are extended to exploit the system’s features as
a sensor, in which case the shape morphing parameters are observ-
able (measured) and suitable characteristics of the substrate are
reconstructed based on the model presented below. Specifically,
we consider an elastic elongated body on a generalized foundation,
where the two layers of the foundation are provided by the cou-
pling system and by the substrate, see schematics in Fig. 1. The
governing equations of the system include the evolution of the
Timoshenko beam and of the interface between the substrate
and the coupling elements.
2.1. Sensor’s body model

We are interested in describing the kinematics of a deformable
body that can be considered as the limit of a sequence of rigid ele-
ments connected through soft elements acting as spherical joints.
This reproduces the salient characteristics of the bodies of milli-
pedes [58–60] that specifically characterizes their peculiar shape
morphing coupled with forward locomotion. In order to retain
the independent relative rotational motion between two contigu-
ous elements, it is natural to adapt a Timoshenko beam model that
is a one dimensional continuum (axis) with a local Euclidean struc-
ture describing the state of cross section [56]. We consider the
variation of the curvature of the substrate to be small, and the
mechanism to be locally parallel to the substrate, which implies



Fig. 1. Schematics of a planar Timoshenko beam coupled with a viscoelastic foundation, and detail of the free body diagram of a portion of the beam.
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that deformations are small [61]. Let fx; y; zg be a fixed rectangular
Cartesian frame with x 2 ½0; L� spanning the initially rectilinear axis
of the beam, and fy; zg spanning the beam’s cross section. By refer-
ring to Fig. 1, let u be the axial displacement, w be the rotation
angle of the cross section, and w be the transverse displacement.
The linear planar Timoshenko beam is then described by the fol-
lowing set of evolution equations

.A
@2u
@t2 þ cu

@u
@t
¼ @

@x
EA

@u
@x

� �
þ pu ð1aÞ

.A
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� �� �
þ pw ð1bÞ
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@w
@t
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@x
EI
@w
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@w
@x
� w

� �
þ pw ð1cÞ

where . is the volume mass density, A the area of the cross section, I
the moment of inertia, E and G respectively Young’s and shear elas-
tic moduli, k is the shear modulus (nondimensional parameter that
depends on the geometry), and pu;pw, and pw are distributed loads
(per unit length) in the axial and transverse directions and a dis-
tributed couple perpendicular to the plane of motion. Terms pro-
portional to the first time derivatives through coefficients cu; cw,
and cw model the structural damping as equivalent viscous damping
[62]. Structural damping accounts for hysteresis phenomena in
elastic materials undergoing cyclic loading [62,63], and therefore
it depends on the frequency of excitation. In equivalent viscous
damping models the dependency on the frequency of excitation �x
Fig. 2. (a) Three linear viscoelastic models and (b) stress-relaxation response of an s
is included through the proportional coefficients by the inverse
law cu ¼ �cu=ðp �xÞ (similarly for cw and c/) [63], where �cu is a
constant independent of �x.

We consider the following force (von Neumann) boundary
conditions

At x ¼ 0 : kAG
@w
@x
� w

� �
þ Q 0 ¼ 0; EI

@w
@x
þ T0 ¼ 0 ð2aÞ

At x ¼ ‘ : �kAG
@w
@x
� w

� �
þ Q ‘ ¼ 0; �EI

@w
@x
þ T‘ ¼ 0 ð2bÞ

where Q0;Q ‘ and T0; T‘ are respectively shear forces and
bending moments applied at the boundaries x ¼ 0 and x ¼ ‘, see
Fig. 1.

2.2. Substrate model

Fig. 1 shows a Timoshenko beam supported by a system of dis-
tributed compliant elements connected with a substrate with vis-
coelastic response. For linear viscoelastic materials, the relation
between stress and strain is a function of strain and strain rate.
With reference to Fig. 2, typical linear viscoelastic responses have
lumped representations described by Kelvin–Voigt, Maxwell, and
standard linear models. The standard linear model is used to
describe the linear viscoelastic response of a number of soft and
biological materials, among others. The constitutive relation for
the standard linear model is [64]

j1rþ l _r ¼ j1j2eþ l j1 þ j2ð Þ _e ð3Þ
tandard linear viscoelastic model with j1=2 Nm�1, j2 ¼1.5 Nm�1, l ¼20 Nsm�1.
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where r is the normal stress, e is the normal strain, a superimposed
dot means material time differentiation, and j1;j2, and l are stiff-
ness and damping parameters of the elements represented in Fig. 2,
having the physical dimensions of elastic and viscous moduli,
respectively. Here we defined normal stress and normal strain by
considering a continuous distribution of lumped elements. By refer-
ring to Fig. 1 we define the undeformed profile of the substrate to be
dðxÞ, and the deformation of the same profile with respect to the
undeformed configuration to be gðx; tÞ. The profile dðxÞ can be inter-
preted as the thickness of a viscoelastic layer with respect to the
depth of a layer that is not affected by the interaction with
the beam, so that the normal strain e in the viscoelastic model
can be expressed as e ¼ g=d. Considering pg as the normal force
per unit width of the substrate exerted by the viscoelastic layer,
we can rewrite the balance in (3) as

j1pg þ l _pg ¼ j1j2
g
d
þ l j1 þ j2ð Þ

_g
d

ð4Þ
2.3. Model of the coupled system

The sensing system modeled in this work is comprised of a
deformable body coupled with a substrate through a distributed
set of compliant elements. In order to describe the coupling
between the different parts we adopt a multi-layer foundation
model with a beam resting on it. Specifically, the foundation model
is comprised of two layers respectively representing the coupling
elements and the viscoelastic substrate. Following [65] we obtain
an evolution equation for the interface between the two layers that
is coupled with the evolution of the body described as a
Timoshenko beam. The solution of the evolution of the interface
describes the profile of the substrate to which the sensor is
deployed. Different elastic and viscoelastic foundation models
have been introduced to appropriately describe relevant scenarios
[65]. The simplest is the Winkler model, in which the foundation is
described as a system of independent springs reacting to the
deflection of the body [66,67]. Two parameters extensions of the
Winkler model have been proposed by Filonenko-Borodich [68]
and Pasternak [69–71] respectively by considering membrane like
interactions (with constant tension) and shear interactions among
springs. Alternatively to this family of models that are based on
interactions between mechanical elements, continuum medium
based model have been proposed based on variational formula-
tions that include assumed kinematics of the foundation elastic
medium [66,72]. The Vlasov model [73] is based on the assumption
that the in-plane displacement of the structure is identically zero,
and the displacement on the transverse direction is controlled by
the structure’s deflection through a shape function that expresses
the dependency on the depth of the elastic medium. A rigorous
derivation of the shape function of the Vlasov model is presented
in [72]. The generalized Vlasov-Jones model is presented in [74]
to account for non-vanishing in-plane structural displacements,
and adapted in [75] to describe the isotropic matrix material in
syntactic foams particulate composites. All two parameter models
are equivalent in the sense that they are described by the same
constitutive relation, except for the computation of the parameters
[76].

To describe the interaction between the coupling elements and
the body we adopt a generalized foundation model [76], in which
the coupling elements transfer a distributed force and a distributed
couple constitutively related to the kinematics of the Timoshenko
beam and to the interface deformation descriptor g. By introducing
the external body forces pb and external body couples pc we specify
the forces and couples in (1) by
pw ¼ pb � jwðw� gÞ; pw ¼ pc � jw w� @g
@x

� �
ð5Þ

where jw and jw (respectively with SI physical dimensions Nm-2

and Nm-1) are elastic constants associated to linear and rotational
distributed springs. Therefore the coupling elements relate the
profile g and its slope to the kinematics of the Timoshenko beam.
In the sensing framework pb and pc can be considered as inputs to
the system that allow to estimate constitutive parameters, as
specified below. The reactions �jwðw� gÞ and jwðw� @g=@xÞ are
measured with respect to the static reactions �jwd and jw@d=@x,
and therefore dðxÞ can be considered as the initial undisturbed pro-
file under static equilibrium conditions. Additionally, we assume
pu ¼ 0 as we consider only the deflection of the body. To obtain
the evolution of the interface we assume that only normal interac-
tions are transmitted through it, that is the coupling elements and
the substrate interact only through normal forces. More general
multi-layer foundations consider shear interactions as well [77].
The balance of normal forces at the interface gives

�jwðw� gÞ þ pg ¼ 0 ð6Þ

Substituting (6) into (4) we obtain the evolution equation for the
interface that has initial undisturbed profile dðxÞ

j1jwðw� gÞ þ ljwð _w� _gÞ � j1j2
g
d
� l j1 þ j2ð Þ

_g
d
¼ 0 ð7Þ
2.4. Nondimensional Governing Equations

We introduce the nondimensional variables

x̂ ¼ x
‘
; t̂ ¼ t

s
; ŵ ¼ w

‘
; p̂b ¼

pb

jw‘
; p̂c ¼

pc

jw‘
; ĝ ¼ g

‘
; d̂ ¼ d

‘

ð8Þ

where ‘ is the total length of the undeformed body, and s is the
characteristic time that is given by

s2 ¼ .‘2

kG
ð9Þ

By substituting (5) into (1b), (1c) and (7), we rewrite the governing
equations in nondimensional form as

@2w
@t2 þ

aw

xH

@w
@t
� @

2w
@x2 þ

@w
@x
þ a3w ¼ pb þ a3g ð10aÞ

a1
@2w

@t2 þ
aw

xH

@w
@t
� @

2w
@x2 þ a4w� a1a2

@w
@x
� w

� �
¼ pc þ a4

@g
@x
ð10bÞ

b1ðw� gÞ þ blð _w� _gÞ � b1b2
g
d
� bl b1 þ b2ð Þ

_g
d
¼ 0 ð10cÞ

Here we have dropped the hat to indicate nondimensional
quantities, and we have introduced the nondimensional groups

a1 ¼
kG
E
; a2 ¼

A‘2

I
; a3 ¼

jw‘
2

kAG
; a4 ¼

jw

EI
ð11aÞ

xH ¼ �xs; aw ¼
�cw‘

2

pkAG
; aw ¼

�cw‘
2

pEI
ð11bÞ

b1 ¼
j1

j‘
; b2 ¼

j2

j‘
; bl ¼

l
j‘s

: ð11cÞ

Therefore a1a2 is a measure of the shear stiffness versus the bend-
ing stiffness, a3 is a measure of the legs’ linear stiffness versus the
shear stiffness, a4 measures the leg’s bending stiffness with respect
to the bending stiffness of the body, and aw and aw are structural
damping factors.
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The nondimensional version of boundary conditions (2) is

At x ¼ 0 :
@w
@x
� wþ bQ 0 ¼ 0;

@w
@x
þ bT 0 ¼ 0 ð12aÞ

At x ¼ ‘ : � @w
@x
� w

� �
þ bQ 1 ¼ 0; � @w

@x
þ bT 1 ¼ 0 ð12bÞ

where nondimensional forces and torques bQ and bT are obtained
from the corresponding dimensional ones respectively by dividing
by kAG and by EI. Since no ambiguity arises, in the following we will
drop the hat for nondimensional boundary forces and torques. By
assuming that only the portion of the substrate in contact with
the sensor experiences deformation, we adopt the following bound-
ary conditions for the field g

gðx; tÞ ¼ 0 at x ¼ 0 and x ¼ 1: ð13Þ
2.5. Reduced Order Model

We obtain a reduced order model for the coupled system (10)
through Galerkin projections of the fields w;w, and g on suitable
bases. By separation of variables, the kinematic fields are expressed
as

wðx; tÞ ¼ �wTðxÞaðtÞ ð14aÞ
wðx; tÞ ¼ �wTðxÞbðtÞ ð14bÞ
gðx; tÞ ¼ �gðxÞcðtÞ ð14cÞ

where �w ¼ �w1 � � � �wnð ÞT; �w ¼ �w1 � � � �wn
� �T, and �g are spatial basis

functions. Basis functions �w and �w are obtained by solving the vec-
tor eigenvalues problem associated with a planar Timoshenko beam
with free end boundary conditions, see [56] and the Appendix for
details. Mode shapes are normalized with respect to the maximum
amplitude. Plots of the first three modes �w, and �w normalized with
respect to the maximum value are given in Fig. 3. The interface g is
considered as a small deformation with respect to the undeformed
profile dðxÞ, and the basis function �g is chosen to be a quadratic
polynomial satisfying homogeneous boundary conditions

�gðxÞ ¼ xðx� 1Þ ð15Þ

Coefficients a ¼ a1 � � � anð ÞT;b ¼ b1 � � � bnð ÞT and cðtÞ represent
unknown time dependent amplitudes. By introducing the matrices
(see Appendix B for more details)

M1¼
Z 1

0

�w �wTdx; M2¼
Z 1

0

�w�wTdx; M3¼
Z 1

0
�g2dx ð16aÞ

K1¼
Z 1

0

d �w
dx

d �wT

dx
dx; K2¼

Z 1

0

d�w

dx
d�wT

dx
dx; K3¼

Z 1

0

�g2

d
dx ð16bÞ

Kww¼
Z 1

0

d �w
dx

�wTdx; Kgw¼
Z 1

0
�g �wdx; Kwg¼

Z 1

0

�wT d�g
dx

dx ð16cÞ
Fig. 3. First three bending and rotational modes, normalized w
we obtain the reduced order model in the form of the following
coupled ordinary differential equations for the amplitudes
aðtÞ;bðtÞ and cðtÞ

M1€aðtÞþ aw

xH
M1 _aðtÞþ K1þa3M1ð ÞaðtÞ�KwwbðtÞ�a3KT

gwcðtÞ¼ FwðtÞ ð17aÞ

a1M2
€bðtÞþ aw

xH
M2

_bðtÞþðK2þ a1a2þa4ð ÞM2ÞbðtÞ�a1a2KT
wwaðtÞ

�a4KwgcðtÞ¼ FwðtÞ ð17bÞ
bl M3þðb1þb2ÞK3ð Þ _cðtÞþb1 M3þb2K3ð ÞcðtÞ

�Kgw b1aðtÞþbl _aðtÞ
� �

¼0 ð17cÞ

where forcing terms Fw and Fw are given by

Fw ¼ � Q 0 �wð0Þ þ Q1 �wð1Þð Þ þ
Z 1

0
pb �wdx ð18aÞ

Fw ¼ � T0
�wð0Þ þ T1

�wð1Þ
� �

þ
Z 1

0
pc

�wdx ð18bÞ

Forces and moments in (18) can be considered as inputs to the sen-
sor system, with corresponding deformations and internal forces
obtained by measurements.

3. Inverse Problem

In this section we present a procedure to use the model
described in Section 2 to estimate the material properties of the
viscoelastic layer, see Fig. 4. The model for the coupled system is
given by the set of Eqs. (10), which describe the coupled evolution
of the beam and of the interface between the substrate and the
coupling elements. We formulate an inverse problem based on
the model (10) to estimate the material parameters of the sub-
strate given displacement and/or force measurements of the beam.

The general structure of the inverse problem is schematized in
Fig. 5, where a least squares residuals cost function is build from
measurements and the model, and material parameters are
selected as minimizers of such cost function. As specified below,
different cost functions can be defined based on the nature of
measurements, for example by considering either a displacement
sensor or a force sensor.

3.1. Displacement sensor

When using the system as a displacement sensor, a time series
of displacements of the beam are taken at a set of observation
points x1; . . . ; xn along the axis of the beam. Such time series mea-
surements can be typically collected by a system of strain gauges
or other common strain sensors while the system responds to a
suitable excitation. In a current implementation being developed
at the University of Ottawa, the body of the sensor has been real-
ized with silicon, and strains at observation points along the body
will be measured by strain gauges. Because of the material of the
ith respect to the maximum value along the beam’s span.



Fig. 4. Schematic for the sensor system with set of observation points (s1; s2; � � � ; sn) along the beam axis.

Fig. 5. General flowchart of inverse problem.
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body and of its flexibility, specific attention needs to be put in
selecting the appropriate adhesive to glue the strain gauges. An
alternative, inexpensive solution is offered by flex sensor, that
are considerably less expensive than strain gauges. However, they
give qualitative measurements at best, and they can bias the
deflection of the beam as they can be quite long and invasive.
The choice of sensing devices mounted on the system ultimately
determine important parameters such as bandwidth and
resolution. Relatively inexpensive strain-gauges currently available
can be very high resolution. Sensing inaccuracies are numerically
investigated in the section dedicated to results, by considering
measurements with different, relatively high noise. At time t, the
spatial sets of displacements are denoted by the collections

~wðtÞ ¼ ~w1ðtÞ; . . . ; ~wnðtÞð ÞT ð19aÞ

~wðtÞ ¼ ~w1ðtÞ; . . . ; ~wnðtÞ
� �T

ð19bÞ

In order to estimate the material parameters corresponding to the
model (10) we define the least square residuals cost function by

RðĝÞ ¼ 1
2

XN

j¼1

~wðtjÞ �wðĝ; tjÞ
� �T ~wðtjÞ �wðĝ; tjÞ

� ��
þ ~wðtjÞ � wðĝ; tjÞ
� �T ~wðtjÞ � wðĝ; tjÞ

� ��
ð20Þ

where ĝ is a set of estimated parameters, that in this case include
the viscoelastic constitutive parameters of the substrate, that is
ĝ ¼ ðb̂f 1

; b̂f 2
; b̂lÞ;
wðĝ; tÞ ¼ wðx1; tÞ; . . . ;wðxn; tÞð ÞT; wðĝ; tÞ ¼ wðx1; tÞ; . . . ;wðxn; tÞð ÞT

ð21Þ

are n-collections obtained by evaluating at the observation points a
solution of (10) for a given set of parameters ĝ.

The cost function is minimized through a Nelder–Mead method
which is natively implemented in a Matlab� routine solver [78].
This method is based on an iterative technique to solve nonlinear
inverse problems for parameter estimation. By referring to Fig. 5
the routine stops when the residual R is smaller than a user
defined parameter, which in this work is set to 10�7. The default
value from the solver is 10�4.
4. Results and Discussions

4.1. Geometry and material parameters

We consider a beam with rectangular cross section. The struc-
tural damping parameters are set to aw ¼ aw ¼ 10, see Section 2
for details. The material is characterized by shear modulus ten
times smaller than the Young’s modulus, and therefore a1 ¼ 0:1.
Moreover, we consider the overall shear stiffness kGA‘2 to be one
hundred times larger than the bending stiffness EI, and therefore
a1a2 ¼ 100. Simulations do not require the specification of the
scaling time s; however, the choice of this parameter dictates the
density and the length of the device once the shear modulus is
given. Simulation scenarios are always set with measuring data
set for the vertical and rotational deflection of the system with
a3 ¼ 10, meaning that the stiffness of the coupling elements is
ten times larger than the shear stiffness of the body so that the
body of the sensor morphs according to the shape of the substrate,
see [56]. The undisturbed depth of the substrate is set to d ¼ 1. The
sensor model presented in this work was tested by estimating the
viscoelastic parameters of specimens tested in [79], where stan-
dard linear viscoelastic material parameters where obtained from
experimental data through material response fit.

Fields w and w in the reduced order model are both projected on
the first two bases functions; this choice is dictated by the neces-
sity to capture even and odd deformation modes (with respect to
x) of forcing terms, see Fig. 3.
4.2. Displacement sensor

In this section we present simulation results for the system
deployed as a displacement sensor. The implementation of this
scenario requires a set of N observation points along the axis of
the beam on which strain and/or displacement sensors are
installed (typically strain gauges). To induce a deformation of the
beam coupled with the substrate we consider two different force
inputs. In the first case we consider in (18) Q0 ¼ Q1 ¼ �Q , while



Table 1
Standard linear viscoelastic material parameters experimentally obtained in [79] for
different specimens.

Specimen b1 b2 l

PH45 0.68 0.39 2.14
PH56 0.56 0.48 5.54
PH76 0.80 0.19 3.76

Table 2
Estimated material properties of a standard linear viscoelastic substrate with step
input forces 24.

a3 a4 b1 b2 bl

10 1 0.81 0.19 3.77
10 10 0.79 0.22 3.72
10 20 0.78 0.22 3.71
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all the other forcing terms are zero. The forces are applied for 20
nondimensional time units, so that the forcing term becomes

FwðtÞ ¼ Qð �wð0Þ þ �wð1ÞÞðuðtÞ � uðt � 20ÞÞ ð22Þ

where u is the unit step function which evaluates to 1 whenever its
argument is greater than 0. In the second case we considered a dis-
tributed torque pc in (18), while the remaining forcing parameters
in (18) are zero. The distributed torque is nonzero in the nondimen-
sional time interval ½0;20�, so that the expression for pc is

pc ¼ �T uðxÞ � 2u x� 1
2

� �� �
ðuðtÞ � uðt � 20ÞÞ ð23Þ

where T is the nondimensional amplitude of the distributed torque.
Simulated measurements for the cost function (19) were gener-

ated by solving (17) for the deformation of the beam when a given
set of material parameters are assigned. Simulated measurements
are taken with sample rate 1Hz, and unless otherwise specified
white noise with standard deviation 4% is added. Material
parameters for the beam system are described above, whereas
for the substrate we adopted the ones published in [79] and
reported in Table 1 in nondimensional form. All numerical exam-
ples refer to a system with two observation points at the abscissas
x ¼ 0:5 and x ¼ 0:75 along the axis of the beam. The set of nondi-
mensional beam parameters is completed by considering three
cases with a4 ¼ ð1;10;20Þ, meaning that the rotational stiffness
of the coupling springs could be in the order of the bending stiff-
ness of the body or stiffer. When the displacement is projected
on the first two bases functions, the input force (22) with
Q0 ¼ Q 1 ¼ 1 is

Fw ¼
�3:16233

0

� �
ðuðtÞ � uðt � 20ÞÞ ð24Þ

Dots and solid lines in Fig. 6 show simulated measurements and
displacement solutions for vertical and rotational displacements
of the Timoshenko beam from the reduced order model, with
a3 ¼ 10 and a4 ¼ 10. The corresponding estimated material proper-
ties are shown in the first row of Table 2. These results are in good
agreement with the measurements from [79] reported in Table 1 in
nondimensional form for comparison. Corresponding deflection
Fig. 6. Simulated measurements (dots) and displacement solutions (solid line) of governi
(24), for (a) vertical displacement, and (b) rotational displacement.
gðxÞ of the substrate at x ¼ 0:5 is shown in Fig. 7(a) revealing a typ-
ical creep response due to a step load history; three snapshots
(t ¼ 16; t ¼ 20 and t ¼ 100) of the deflections of the beam and of
the substrate obtained as the solution of the reduced order model
are shown in Fig. 7(b), where the horizontal configuration corre-
sponds to unloaded specimen after 80 nondimensional time units
the force is released.

For the converged parameters in Table 2, time histories of dif-
ferences between time-contiguous values jbiðnþ 1Þ � biðnÞj
(i ¼ 1;2;l) are shown in Fig. 8. Plots show that within few itera-
tions the error drops considerably. Subsequent oscillations are
likely due to transients induced in the coupled system. All
parameters are fully converged after about 80 iterations.
Material parameters reported in Table 2 are considered to be con-
verged when the differences in Fig. 8 are less than or equal the
threshold 10�4. For the scenario simulated here, the number of
iterations is not a critical parameter as the sensing device does
not sense while also locomoting, that is, the device is coupled
to the substrate and measurements can continue until deforma-
tion transients in the coupled system are dissipated. For applica-
tions involving sensing and locomotion, it is crucial to tune
system’s parameters so that transients in the deformation that
affect sensing dissipate much faster than the characteristic rate
scale in the locomotion. The formalization of this aspect is the
object of current work.

For different values of the coupling elements stiffness
a4 ¼ ð1;10;20Þ and for a3 ¼ 10, the converged estimated viscoelas-
tic parameters are summarized in Table 2. Corresponding deflec-
tions of the substrate at x ¼ 0:5 are shown in Fig. 9(a), and
deformed shapes of the beam and of the substrate at t ¼ 20 are
shown in Fig. 9(b). For the simulated sensor system, increase in
a4 causes an increasing in the beam deflection and consequently
in the induced deflection viscoelastic substrate, but material
parameters estimation is not significantly affected. On the other
hand, increase in a3 means increasing the stiffness of the coupling
springs with respect to the stiffness of the beam, which implies
smaller deflections w and g for the same input force. At the limit,
for very large a3, the deflection of the beam would morph on the
profile dðxÞ, and therefore very stiff coupling elements would
ng equations of the coupled system (17) for a3 ¼ 10 and a4 ¼ 10 and step input force



Fig. 7. Plot of (a) time history of the deflection of the substrate at x ¼ 0:5; (b) beam and substrate deformed shapes at nondimensional times t ¼ 16; t ¼ 20; t ¼ 100, for
a3 ¼ 10 and a4 ¼ 10 and step input force (24).

Fig. 8. Time history of the differences jbiðnþ 1Þ � biðnÞj (i ¼ 1;2;l) between time-
contiguous values of estimated material parameters, versus iteration n.

Table 3
Estimated material properties of a standard linear viscoelastic substrate with step
input distributed torque (25).

a3 a4 b1 b2 bl

10 1 0.81 0.19 3.77
10 10 0.81 0.19 3.76
10 20 0.79 0.182 3.76
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compromise the functioning of the sensor deployed on an initially
flat substrate.

As a second example we consider the input torque (23). For
T ¼ 5, the projected input torque Fw in (18) is

Fw ¼
14:04

0

� �
ðuðtÞ � uðt � 20ÞÞ ð25Þ

Table 3 shows the corresponding converged estimated param-
eters for a3 ¼ 10 and a4 ¼ ð1;10;20Þ; also in this case the esti-
mated parameters are in good agreement with the ones
reported by [79], and no significant difference is observed with
respect to the input considered above. Dots and solid lines in
Fig. 10 show simulated measurements and displacement
Fig. 9. Plot of (a) Time history of the deflection of the substrate at x ¼ 0:5 ; (b) Beam a
a3 ¼ 10 and a4 ¼ ð1;10;20Þ and step input force (24).
solutions from the reduced order model, for a3 ¼ 10 and
a4 ¼ 10; as before, measurements are simulated with material
properties from Table 1, and time history of the displacement is
plotted with estimated material parameters from Table 3.
Corresponding deflection g of the substrate at x ¼ 0:5 is shown
in Fig. 11(a), and Fig. 11(b) shows three snapshots
(t ¼ 16; t ¼ 20 and t ¼ 100) of the deflections of the beam and
of the substrate obtained as solutions of the reduced order model.
Deflection of the substrate at x ¼ 0:5 for a3 ¼ 10;a4 ¼ ð1;10;20Þ,
and estimated parameters, which are summarized Table 3, are
shown in Fig. 12(a), and deflections of the beam and of the sub-
strate for the governing equations of the coupled system for
t ¼ 20 are shown in Fig. 12(b). Also in this case the displacements
are consistent with the expected creep response.

Simulation results were repeated by simulating strain measure-
ments with three different white noise levels and applying the
input force in (24), in order to check the robustness of the method
with respect to noise. Specifically, measurements were simulated
by adding to the model output displacement white noise terms
sampled from Gaussian distributions with 2%;6%, and 10% stan-
dard deviations. Noisy displacements for 6% and 10% cases are
shown as dots in Fig. 13, along with solid lines showing their
nd substrate deformed shapes at nondimensional times t ¼ 16; t ¼ 20; t ¼ 100, for



Fig. 10. Simulated measurements (dots) and displacement solutions (solid line) of governing equations of the coupled system (17) for a3 ¼ 10 and a4 ¼ 10 and step torque
(25), for (a) vertical displacement, and (b) rotational displacement.

Fig. 11. Plot of (a) time history of the deflection of the substrate at x ¼ 0:5 ; (b) beam and substrate deformed shapes at nondimensional times t ¼ 16; t ¼ 20; t ¼ 100, for
a3 ¼ 10 and a4 ¼ 10 and step torque (25).

Fig. 12. Plot of (a) time history of the deflection of the substrate at x ¼ 0:5 ; (b) beam and substrate deformed shapes at nondimensional time t ¼ 20, for a3 ¼ 10 and
a4 ¼ ð1;10;20Þ and step torque (25).

Fig. 13. Simulated measurements (dots) and displacement solutions (solid line) based on estimated parameters in Table 5 with step input force (24) for (a) noisy
measurements with standard deviation �6%, and (b) noisy measurements with standard deviation �10%.
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Table 4
Estimated material properties for the standard linear viscoelastic substrate with
respect different noise standard deviations for simulated measurements,
a3 ¼ 10;a4 ¼ 10, and step input force (24).

Noise standard deviation (%) b1 b2 bl

2 0.81 0.19 3.76
6 0.81 0.19 3.77
10 0.84 0.21 3.82

Table 5
Estimated material properties for different specimens in [79]. Simulated measure-
ments are obtained for a3 ¼ 10;a4 ¼ 10, and step input force (24).

Material b1 b2 bl

PH45 0.67 0.38 2.13
PH56 0.56 0.47 5.54
PH76 0.81 0.19 3.76

Fig. 14. Simulated substrate displacement at point x ¼ 0:5, based on estimated
parameters in Table 4 with step input force (24).
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common expected values. Estimated material parameters for the
three cases are shown in Table 4, revealing a close agreement
regardless of the different noises considered. Further increasing
of the noise would require the inclusion of noise elimination tech-
niques [80].

In order to check the consistence of the sensor with respect to
different specimens, the material property estimation has been
repeated by simulating strain measurements with three different
specimens presented in Table I of [79] (see Table 1 above).
Considering the input force (24) and for a3 ¼ 10 and a4 ¼ 10,
Table 5 presents the converged estimated parameters for three
specimens, that are in good agreement with the ones experimen-
tally obtained in [79]. Deflections g of these specimens at x ¼ 0:5,
corresponding to estimated parameters in Table 5, are shown in
Fig. 14.

5. Conclusion

We derived the initial boundary values problem governing the
evolution of a Timoshenko beam and of the profile of a linear vis-
coelastic substrate that are coupled through a system of compliant
elements. This system has been used as the model to pose an
inverse problem for the estimation of the constitutive parameters
of the viscoelastic substrate, with material response modeled as
standard linear viscoelastic. Material parameters are the minimiz-
ing set of a least square cost function encoding the residuals
between displacement measurements and model predicted
displacements.
Predictions of the sensing apparatus are obtained by simulating
the estimation of material parameters for specimens that have
been experimentally characterized. Simulated measurements are
based on the published values of constitutive viscoelastic parame-
ters. Predictions of the model accurately reproduce published
experimental characterizations of standard linear viscoelastic
materials, and they show robustness with respect to relatively high
white noise added to the simulated measurements.

Current and future work include the hardware realization of the
system proposed here, and the experimental testing on soft and
biological tissues that typically exhibit viscoelastic responses. The
sensor model is being merged with a locomotion and shape mor-
phing model for the same system, with the goal of realizing an
autonomous hyper-redundant robotic system that can be deployed
in non-structured environments and can be used for sensing, mon-
itoring, and exploring. Device miniaturization allow for sensing of
biological tissues with diagnosis related applications.
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Appendix A. Basis functions

To obtain the natural frequencies and associated eigenfunctions
for w and w we follow the approach in [81], which is based on the
solution of a vector eigenvalues problem for the system of two cou-
pled second order differential equations for the transverse dis-
placement and for the rotation of the cross section. For the
analytical expressions we follow the general procedure that con-
sists on the time-space separation of variables followed by substi-
tution in the homogeneous governing equations. The general
solution of the second and third Eqs. (10) with a3 ¼ a4 ¼ 0 (no
forcing terms and no coupling with the substrate) is therefore
assumed to be of the form

wðx; tÞ wðx; tÞð ÞT ¼ expðixtÞ WðxÞ WðxÞð ÞT

where x is the frequency of oscillation, i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary
unit, and WðxÞ;WðxÞ are functions in ½0;1� that express the depen-
dency on x. By separating the variables and considering the vector

evaluated function expðkxÞ W �W
� �T, where W and �W are con-

stants, in the spatial eigenvalue problem. Spatial eigenvalue func-
tion is a solution for some positive constant k if and only if

k2 þ b1 �k

b3k k2 þ b2

 !
W
�W

 !
¼

0
0

� �
with nondimensional parameters bi defined by

b1 ¼ x2; b2 ¼ a1 x2 � a2
� �

; b3 ¼ a1a2

In order the root of the characteristic polynomial
k4 þ ðb1 þ b2 þ b3Þk2 þ b1b2 ¼ 0 to be real it must be D > 0, which
is satisfied for b1b2 < c2=4, where c ¼ b1 þ b2 þ b3. The condition
D > 0 dictates x > 0; therefore it must be c > 0 since this is the
case when c is evaluated for x > 0. For D > 0 and c > 0 we have

k1 ¼ �ih; h2 ¼ c
2

ffiffiffiffi
D
p
þ 1

� �
For b1b2 < 0 we have

ffiffiffiffi
D
p

> 1 and

k2 ¼ �l; l2 ¼ c
2

ffiffiffiffi
D
p
� 1

� �
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For this case the general solution is therefore given by [81]

UðxÞ ¼ C1
sin hx

� b1�h2

h cos hx

 !
þ C2

cos hx
b1�h2

h sin hx

 !

þ C3

sinhlx
b1þl2

l coshlx

 !
þ C4

coshlx
b1þl2

l sinhlx

 !

Imposing the free end boundary conditions at x ¼ 0 we obtain

C1 ¼ C3
h
l

C2 ¼ �C4
b1 þ l2

b1 � h2

By imposing the free end boundary conditions at x ¼ 1 we obtain
the following linear algebraic relations involving C3 and C4

A
C3

C4

� �
¼

0
0

� �
with coefficients matrix A given by

A¼
h
l b1�h2� �

sinhþðb1þl2Þsinhl ðb1þl2Þ coshl�coshð Þ

�b1
l coshl �b1

l sinhl

 !

The nontrivial solutions of the system are obtained by investigating
the condition for rank deficiency of the coefficients matrix, which
translates to the determinant being zero

� cos h coshlþ hðh2 � b1Þ
lðl2 þ b1Þ

sin h sinhlþ 1 ¼ 0 ðA:1Þ

All parameters in the characteristic equation depend on x and on
the material and geometric parameters of the system. Therefore,
once the material and the geometry are defined the characteristic
equation is a nonlinear function of x only.

Appendix B. Galerkin projection

The Galerkin projection technique dictates the substitution of
(14) into the second and third Eqs. (10) and premultiplication by
the sets of test functions �w; �w, and �g respectively. Integration of
the domain of the projected governing equations and integration
by parts giveZ 1

0

�w �wT€aþ aw

xH
�wT _aþ a3 �wTa

� �
dx�

Z 1

0

d �w
dx

�wTbdxþ
Z 1

0

� d �w
dx

d �wT

dx
adx� �w

d �wT

dx
a� �wTb

� �				1
0
�
Z 1

0
a3 �w�gdx

¼
Z 1

0

�wpbdx ðB:1Þ

Z 1

0

�w �wT€bþ aw

xH

�wT _b� a1a2
d �wT

dx
a� �wTb

� �
� a4

d�wT

dx
b

� �
dx

þ
Z 1

0

d�w

dx
dwT

dx
bdx� �w

d�wT

dx
b
				1
0
þ
Z 1

0
a4

�w
@�g
@x

dx ¼
Z 1

0

�wpcdx ðB:2Þ

Z 1

0
�g ðbl�gþ blðb1 þ b2Þ

�g
d
Þ _cþ ðb1 �gþ b1b2

�g
d
Þc

� �
dx

�
Z 1

0
�g b1 �w _aþ b2 �wað Þdx ¼ 0 ðB:3Þ
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