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In our previous work oriented quantum algebras were motivated and introduced
in a very natural categorical setting within the context of knots and links, some
examples were discussed, and a rudimentary theory of oriented quantum algebras
was sketched. Invariants of knots and links can be computed from oriented quantum
algebras.

Here we continue the study of oriented quantum algebras. We view them from a
more algebraic perspective and develop a more detailed theory for them and their
associated invariants. We study a class of examples associated with the HOMFLY
polynomial in depth.  2001 Elsevier Science

INTRODUCTION

In our previous work [9] the notion of oriented quantum algebra was
introduced and motivated from a topological point of view. Oriented quan-
tum algebras give rise to regular isotopy invariants of oriented 1–1 tangles.
Twist oriented quantum algebras, which are oriented quantum algebras with
additional structure, give rise to regular isotopy invariants of oriented knots
and links. Twist oriented quantum algebras are important in that their asso-
ciated invariants include nearly all of the quantum links invariants known
at present.

In this paper we develop a general theory of oriented quantum algebras,
twist oriented quantum algebras, and their resulting invariants. Quantum
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algebras have oriented quantum algebra structures and twist quantum alge-
bras have twist oriented quantum algebra structures. Quasitriangular Hopf
algebras are examples of quantum algebras and ribbon Hopf algebras are
examples of twist oriented quantum algebras. Not every oriented quantum
algebra is accounted for by a quantum algebra. There are examples of twist
oriented quantum algebras on the algebra Mn�k� of n× n matrices over a
field k which we explore in depth related to the HOMFLY polynomial.

In this paper all invariants of knots and links are formulated in terms of
equivalence relations on diagrams (or correspondingly on morphisms in a
category of diagrams). These equivalence relations correspond to topolog-
ical equivalences of knots and links as follows. Invariance under all three
Reidemeister moves is the same (by Reidemeister’s classical theorem) as
ambient isotopy of knots and links in three-dimensional space. Regular iso-
topy of diagrams gives ambient isotopy information if the two links under
comparison have the same writhe and rotation number. Invariants of regu-
lar isotopy are often normalized to become invariants of ambient isotopy.
For more information on these relationships the reader can consult [5].

This paper is the second in a series of four on the theory of oriented
quantum algebras and related structures. In the third [10] we introduce the
notion of oriented quantum coalgebra and related concepts. The notion
of oriented quantum coalgebra is a bit more general than the dual of ori-
ented quantum algebra. A theory of oriented quantum coalgebras is devel-
oped along the lines of the theory of quantum coalgebras found in [13]. In
the fourth [11] paper of this series the connection between the state sum
description of many quantum link invariants and their formulation in terms
of oriented quantum algebras (and coalgebras) is discussed in great detail.

Throughout k is a field and all vector spaces are over k. The set of
non-zero elements of k is denoted by k∗, and all vector spaces over k.

1. PRELIMINARIES

For vector spaces U and V over k we will denote the tensor product U ⊗k

V by U ⊗ V and the identity map of V by 1V . If t is a linear endomorphism
of V then an element v ∈ V is t-invariant if t�v� = v. If A is an algebra
over k we shall let 1A also denote the unit of k. Then meaning 1V should
always be clear from context.

Let A be an algebra over the field k, and let ρ = ∑r
ı=1 aı ⊗ bı ∈ A⊗A.

We set

ρ12 =
r∑
ı=1

aı ⊗ bı ⊗ 1� ρ13 =
r∑
ı=1

aı ⊗ 1 ⊗ bı�
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and

ρ23 =
r∑
ı=1

1 ⊗ aı ⊗ bı�

The quantum Yang–Baxter equation for ρ is ρ12ρ13ρ23 = ρ23ρ13ρ12. There
is an important class of solutions to the quantum Yang–Baxter equation
for the algebra A = Mn�k� of all n × n matrices over k. For 1 ≤ ı,  ≤ n
let Eı ∈ Mn�k� be the n× n matrix which has a single non-zero entry, the
value 1 located in the ith row and jth column. Then 	Eı
1≤ı� ≤n is the
standard basis for Mn�k� and EıE�m = δ�Eım for all 1 ≤ ı� � ��m ≤ n.

Example 1. Let n ≥ 2, a, b�c ∈ k∗ satisfy a2 
= b�c, 1 and let

B = 	bı�1 ≤ ı <  ≤ n
� C = 	cı�1 ≤ ı <  ≤ n

be indexed subsets of k∗ such that bıcı = b�c for all 1 ≤ ı <  ≤ n. Then

ρa�B�C = ∑
1≤ı<≤n

(
a− b�c

a

)
Eı ⊗ Eı +

n∑
ı=1

aEıı ⊗ Eıı

+ ∑
1≤ı<≤n

�bıEıı ⊗ E + cıE ⊗ Eıı�

satisfies the quantum Yang–Baxter equation.

The notation for the scalar b�c is meant to suggest a product. That ρa�B�C
satisfies the quantum Yang–Baxter equation follows by [18, Lemma 4 and
(37)].

By Aop we mean the k-algebra whose underlying vector space is A and
whose multiplication is given by a · b = ba for all a� b ∈ A. An oriented
quantum algebra over the field k is a quadruple �A�ρ� td� tu�, which we
sometimes informally designate by A, where A is an algebra over k, ρ ∈
A⊗A is invertible, and td� tu are commuting algebra automorphisms of A,
such that

(qa.1) �1A ⊗ tu��ρ� and �td ⊗ 1A��ρ−1� are inverses in A⊗Aop,

(qa.2) ρ = �td ⊗ td��ρ� = �tu ⊗ tu��ρ�, and

(qa.3) ρ12ρ13ρ23 = ρ23ρ13ρ12.

In [9] the algebra automorphisms td and tu are denoted by D and U .
An oriented quantum algebra �A�ρ� td� tu� over k is standard if

td = 1A, and is balanced if td = tu. In the latter case we write �A�ρ� t�
for �A�ρ� td� tu�, where t = td = tu. Any oriented quantum algebra
�A�ρ� td� tu� over k gives rise to a standard one. For by applying the alge-
bra automorphisms tu ⊗ 1A and 1A ⊗ td of A ⊗Aop to both sides of the
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equations of (qa.1) one sees that:

Proposition 1. If �A�ρ� td� tu� is an oriented quantum algebra over k
then �A�ρ� tu ◦ td� 1A� and �A�ρ� 1A� td ◦ tu� are also.

The oriented quantum algebra �A�ρ� 1A� td ◦ tu� is the standard oriented
quantum algebra associated with �A�ρ� td� tu�.

Important examples of balanced oriented quantum algebras arise from
Example 1.

Example 2. Let n ≥ 2, a, b�c ∈ k∗ satisfy a2 
= b�c, 1 and suppose
ω1� � � � � ωn ∈ k∗ satisfy

ω2
ı =

(
a2

b�c
)ı−1

ω2
1

for all 1 ≤ ı ≤ n. Then �Mn�k�, ρa�B�C� t� is a balanced oriented quantum
algebra, where

t�Eı� =
(
ωı
ω

)
Eı

for all 1 ≤ ı,  ≤ n, and ρa�B�C is described in Example 1.

The assertions of Example 2 are justified by Theorem 5 of Section 5
which deals with a more extensive class of solutions to the quantum Yang–
Baxter equation.

The notion of balanced oriented quantum algebra is analogous to the
notion of quantum algebra as we shall see in the next section. To define
regular isotopy invariants of oriented knots and links we will use an oriented
quantum algebra with the additional structure of an invertible G ∈ A which
satisfies

td�G� = tu�G� = G and td ◦ tu�x� = GxG−1

for all x ∈ A. The quintuple �A�ρ� td� tu�G� is a twist oriented quantum
algebra over k, and the twist oriented quantum algebra �A�ρ� 1A� td ◦ tu�G�
over k is the twist standard oriented quantum algebra associated with
�A�ρ� td� tu�G�. When the underlying oriented quantum algebra struc-
ture of twist oriented quantum algebra over k is balanced we shall write
�A�ρ� t�G� for �A�ρ� td� tu�G�, where t = td = tu, and call �A�ρ� t�G� a
twist balanced oriented quantum algebra over k.

Balanced, or standard, oriented quantum algebras have a twist structure
in an important case. Let A =Mn�k� and suppose t is an algebra automor-
phism of A. By the Noether–Skolem theorem there is an invertible G ∈ A
such that t�x� = GxG−1 for all x ∈ A. See the corollary to [3, Theorem
4.3.1]. Observe that G is unique up to scalar multiple since the center of A
is k1.
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Lemma 1. Any balanced or any standard oriented quantum algebra struc-
ture �A�ρ� td� tu� on A = Mn�k� extends to a twist oriented quantum alge-
bra structure �A�ρ� td� tu�G� over k. Furthermore G is unique up to scalar
multiple.

The reader can check that �Mn�k�� ρa�B�C� t�G� is a twist balanced ori-
ented quantum algebra, where G = ∑n

ı=1ω
2
ı Eıı and �Mn�k�� ρa�B�C� t� is

the balanced oriented quantum algebra of Example 2.

2. ORIENTED QUANTUM ALGEBRAS AND
QUANTUM ALGEBRAS

Let A be an algebra over k, let ρ = ∑r
ı=1 aı ⊗ bı ∈ A⊗A be invertible

with inverse described by ρ−1 = ∑s
=1 α ⊗ β, and suppose that td� tu are

algebra automorphisms ofA. We begin this section by reformulating (qa.1)–
(qa.3) in terms of these descriptions of ρ and ρ−1.

We first observe that (qa.1) can be expressed

r∑
ı=1

s∑
=1

aıtd�α� ⊗ βtu�bı� = 1 ⊗ 1 =
s∑
=1

r∑
ı=1

td�α�aı ⊗ tu�bı�β (1)

and (qa.2) is the same as

r∑
ı=1

aı ⊗ bı =
r∑
ı=1

td�aı� ⊗ td�bı� =
r∑
ı=1

tu�aı� ⊗ tu�bı�� (2)

Axiom (qa.3), which says that ρ satisfies the quantum Yang–Baxter equa-
tion, is the familiar

r∑
ı� � �=1

aıa ⊗ bıa� ⊗ bb� =
r∑

� ı� �=1

aaı ⊗ a�bı ⊗ b�b� (3)

Let �A�ρ� td� tu� be an oriented quantum algebra. Using (1) and (3) it
is not hard to see that �Aop� ρ� td� tu� is an oriented quantum algebra over
k, which we denote by Aop as well. Since p is invertible and satisfies the
quantum Yang–Baxter equation it follows that p−1 does also. Let t = td or
t = tu. Since t ⊗ t is an algebra automorphism of A⊗A and ρ = �t ⊗ t��ρ�
we have ρ−1 = �t ⊗ t��ρ−1�. Applying t−1

d ⊗ t−1
u to both sides of the equa-

tions of (1) we conclude that �A�ρ−1� t−1
d � t−1

u � is an oriented quantum
algebra over k. Observe that �A�ρop� t−1

u � t−1
d � is an oriented quantum alge-

bra over k, where ρop = ∑r
ı=1 bı ⊗ aı. If K is a field extension of k then

�A ⊗ K�ρ ⊗ 1 ⊗ 1� td ⊗ 1K� tu ⊗ 1K� is an oriented quantum algebra over
K, where we make the identification ρ⊗ 1 ⊗ 1 = ∑r

ı=1�aı ⊗ 1� ⊗ �bı ⊗ 1�.
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Suppose that �A′� ρ′� t ′d� t
′
u� is also an oriented quantum algebra over k

and write ρ′ = ∑r ′
ı′=1 a

′
ı′ ⊗ b′ı′ ∈ A′ ⊗A′. Then �A⊗A′� ρ′′� td ⊗ t ′d� tu ⊗ t ′u� is

an oriented quantum algebra over k, which we refer to as the tensor product
of �A�ρ� td� tu� and �A′� ρ′� t ′d� t

′
u�, where ρ′′ = ∑r

ı=1
∑r ′
ı′=1�aı ⊗ a′ı′ � ⊗ �bı ⊗

b′ı′ �. Note that �k� 1⊗ 1� 1k� is a balanced oriented quantum algebra over k.
A morphism f � �A�ρ� td� tu� −→ �A′� ρ′� t ′d� t

′
u� of oriented quantum alge-

bras is an algebra map f � A −→ A′ which satisfies ρ′ = �f ⊗ f ��ρ�, t ′d ◦ f =
f ◦ td, and t ′u ◦ f = f ◦ tu. Oriented quantum algebras together with their
morphisms under composition form a monoidal category.

Suppose that I is an ideal of A and td�I� = tu�I� = I. Then there is a
unique oriented quantum algebra structure �A/I� ρ̄� t̄d� t̄u� on the quotient
algebra A/I such that π� �A�ρ� td� tu� −→ �A/I� ρ̄� t̄d� t̄u� is a morphism,
where π� A −→ A/I is the projection. Furthermore, if f � �A�ρ� td� tu� −→
�A′� ρ′� t ′d� t

′
u� is a morphism of oriented quantum algebras and f �A −→ A′

is onto, then �A/ ker f� ρ̄� t̄d� t̄u� and �A′� ρ′� t ′d� t
′
u� are isomorphic oriented

quantum algebras.
An oriented quantum subalgebra of �A�ρ� td� tu� is an oriented quantum

algebra �B� ρ′� t ′d� t ′u� over k, where B is a subalgebra ofA, and the inclusion
ı� B −→ A determines a morphism ı� �B� ρ′� t ′d� t ′u� −→ �A�ρ� td� tu�. In this
case ρ′ = ρ and td�B� = tu�B� = B. The inverse of ρ′ in B⊗B is necessarily
ρ−1; thus ρ−1 ∈ B ⊗ B. Conversely, suppose that B is a subalgebra of A
such that ρ, ρ−1 ∈ B ⊗ B and td�B� = tu�B� = B. Then �B� ρ� td�B� tu�B� is
an oriented quantum subalgebra of �A�ρ� td� tu�.

The notion of minimal oriented quantum algebra is theoretically impor-
tant in connection with regular isotopy invariants of oriented knots and
links. A minimal oriented quantum algebra over k is an oriented quantum
algebra with exactly one oriented quantum subalgebra. We will show that
any oriented quantum algebra has a unique minimal oriented quantum sub-
algebra. Our proof is based on a bit of linear algebra.

Suppose that V is a vector space over k, ρ ∈ V ⊗ V and let V�ρ� =
	�u∗ ⊗ 1V ��ρ� + �1V ⊗ v∗��ρ� � u∗� v∗ ∈ V ∗
. If t is a linear endomorphism
of V which satisfies ρ = �t ⊗ t��ρ� then t�V�ρ�� = V�ρ�.

To see this, we may assume that ρ 
= 0 and write ρ = ∑r
ı=1 uı ⊗ vı, where

r is as small as possible. Then 	u1� � � � � ur
, 	v1� � � � � vr
 are linearly inde-
pendent and the uı’s together with the vı’s span V�ρ�. Since ρ = �t ⊗ t��ρ�,
or equivalently

∑r
ı=1 t�uı� ⊗ t�vı� = ∑r

ı=1 uı ⊗ vı, it follows that the sets
	t�u1�� � � � � t�ur�
 and 	t�v1�� � � � � t�vr�
 are also linearly independent. It
is easy to see now that 	u1� � � � � ur
, 	t�u1�� � � � � t�ur�
 have the same
span and that 	v1� � � � � vr
, 	t�v1�� � � � � t�vr�
 have the same span. Thus
t�V�ρ�� = V�ρ�.

By the definition of V�ρ� if U is a subspace of V such that ρ ∈ U ⊗ U
then V�ρ� ⊆ U .
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Lemma 2. An oriented quantum algebra �A�ρ� td� tu� over the field k has
a unique minimal oriented quantum subalgebra �Aρ� ρ� td�Aρ

� tu�Aρ
�. Further-

more, if �B�R� td�B� tu�B� is any oriented quantum subalgebra of �A�ρ� td� tu�
then Aρ ⊆ B.

Proof. Let t = td or t = tu. Since ρ = �t ⊗ t��ρ� and ρ−1 = �t ⊗ t��ρ−1�
we conclude that t�A�ρ�� = A�ρ� and t�A�ρ−1�� = A�ρ−1� by the preceding
remarks. Let Aρ be the subalgebra of A generated by A�ρ� +A�ρ−1�. Then
t�Aρ� = Aρ and ρ, ρ−1 ∈ Aρ ⊗ Aρ. Therefore �Aρ� ρ� td�Aρ

� tu�Aρ
� is an

oriented quantum subalgebra of �A�ρ� td� tu�. If �B� ρ� td�B� ρ� tu�B� is any
oriented quantum subalgebra of �A�ρ� td� tu� then ρ, ρ−1 ∈ B ⊗ B. Thus
A�ρ��A�ρ−1� ⊆ B, and hence Aρ ⊆ B.

Quantum algebras arise in the study of regular isotopy invariants of
unoriented 1–1 tangle, knot, and link diagrams; see [2, 5, 7, 12–14]. A
quantum algebra over k is a triple �A�ρ� s�, where A is an algebra over k,
ρ ∈ A⊗A is invertible, and s� A −→ Aop is an algebra isomorphism, such
that

(QA.1) ρ−1 = �s ⊗ 1A��ρ�,
(QA.2) ρ = �s ⊗ s��ρ�, and

(QA.3) ρ12ρ13ρ23 = ρ23ρ13ρ12.

See [13, Sec. 3] in particular.
Let �A�ρ� s� be a quantum algebra over k. Then �A�ρ� s� has a unique

minimal quantum subalgebra �B� ρ� s�B�, and B is generated by A�ρ� +
A�ρ−1� = A�ρ� as an algebra. Suppose that �A�ρ� td� tu� is an oriented quan-
tum algebra over k. Using (qa.2) we see that td�A�ρ�� = tu�A�ρ�� = A�ρ�.
Therefore td�B� = tu�B� = B and �B� ρ� td�B� tu�B� is an oriented quantum
subalgebra of �A�ρ� td� tu�.

Good sources of quantum algebras are the quasitriangular Hopf algebras.
A quasitriangular Hopf algebra �A�ρ� with antipode s over the field k has
a quantum algebra structure �A�ρ� s�, and �A�ρ� s� is a minimal quantum
algebra if and only if �A�ρ� is a minimal quasitriangular Hopf algebra. See
[17, Sec. 2].

Our next result characterizes all standard oriented quantum algebra
structures on A of the type �A�ρ� 1A� t� when �A�ρ� s� is minimal.

Proposition 2. Let �A�ρ� s� be a quantum algebra over the field k. Then:

(a) �A�ρ� 1A� s−2� is a standard oriented quantum algebra.

(b) Suppose that �A�ρ� s� is minimal and �A�ρ� 1A� t� is a standard
oriented quantum algebra over k. Then t = s−2.
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Proof. Write ρ = ∑r
ı=1 aı ⊗ bı. We first show part (a).

Since �A�ρ� s� is a quantum algebra (qa.3) holds for ρ and (qa.2) holds
for ρ and s−2. The fact that ρ−1 = ∑r

ı=1 s�aı� ⊗ bı translates to

r∑
ı� =1

s�aı�a ⊗ bıb = 1 ⊗ 1 =
r∑

� ı=1

as�aı� ⊗ bbı�

Applying s ⊗ 1A to both sides of these equations yields
r∑

� ı=1

s�a�s2�aı� ⊗ bıb = 1 ⊗ 1 =
r∑

ı� =1

s2�aı�s�a� ⊗ bbı�

Since ρ = �s2 ⊗ s2��ρ� is follows that

r∑
� ı=1

s�a�aı ⊗ s−2�bı�b = 1 ⊗ 1 =
r∑

ı� =1

aıs�a� ⊗ bs
−2�bı�

which is to say that �1A ⊗ s−2��ρ� and ρ−1 are inverses in A⊗Aop. There-
fore �A�ρ� 1A� s−2� is an oriented quantum algebra over k.

To show part (b), suppose that A = Aρ and �A�ρ� 1A� t� is a standard
oriented quantum algebra over k. Now �1A⊗ s−2��ρ� is an inverse of ρ−1 in
A⊗Aop by part (a). Thus �1A ⊗ s−2��ρ� = �1A ⊗ t��ρ�. Since t is one–one
and �t ⊗ t��ρ� = ρ = �s−2 ⊗ s−2��ρ� we have �t ⊗ 1A��ρ� = �s−2 ⊗ 1A��ρ�
also. Thus

r∑
ı=1

aı ⊗ t�bı� =
r∑
ı=1

aı ⊗ s−2�bı�

and
r∑
ı=1

t�aı� ⊗ bı� =
r∑
ı=1

s−2�aı� ⊗ bı�

Assume that r is as small as possible. Then 	a1� � � � � ar
, 	b1� � � � � br
 are
linearly independent. By virtue of the last two equations t�bı� = s−2�bı� and
t�aı� = s−2�aı� for all 1 ≤ ı ≤ r. Thus t and s−2 agree on A�ρ� which gener-
ates Aρ = A as an algebra. Consequently t = s−2 and part (b) follows.

By Proposition 2 a minimal quantum algebra �A�ρ� s� has a unique stan-
dard oriented quantum algebra structure of the form �A�ρ� 1A� t�. Not
every standard oriented quantum algebra over k arises in this fashion by
virtue of Proposition 1 and the following example.

Example 3. Let n > 2, and let �Mn�k�, ρa�B�C� t� be the balanced ori-
ented quantum algebra described by Example 2. There is no quantum alge-
bra of the form �Mn�k�� ρa�B�C� s�.
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The assertion of the example follows by [8, Proposition 1]. By Proposition
1 and part (b) of Proposition 2:

Corollary 1. Suppose that �A�ρ� s� is a minimal quantum algebra over
k. If �A�ρ� td� tu� is an oriented quantum algebra over k then td ◦ tu = s−2.

Let �A�ρ� s� be a minimal quantum algebra over k. Then �A�ρ� s−2� 1A�
and �A�ρ� 1A� s−2� are oriented quantum algebras over k by Propositions 1
and 2. There may be no other oriented quantum algebras of the type
�A�ρ� t�.

For example, suppose that the characteristic of k is not 2. Then
Sweedler’s four-dimensional Hopf algebra A = A2�−1 over k admits a
family of minimal quasitriangular Hopf algebra structures �A�ρα� where
α ∈ k∗. As an algebra A is generated over k by symbols a and x which
satisfy the relations

a2 = 1� x2 = 0� and xa = −ax�
The coalgebra structure of A is determined by

*�a� = a⊗ a and *�x� = x⊗ a+ 1 ⊗ x�

Consequently the antipode s of A satisfies s�a� = a and s�x� = ax. Thus
s2�x� = −x which means s2 
= 1A. For each α ∈ k the element

ρα = 1
2
�1 ⊗ 1 + 1 ⊗ a+ a⊗ 1 − a⊗ a�

+ α

2
�x⊗ x+ x⊗ ax+ ax⊗ ax− ax⊗ x�

gives A the structure of a quasitriangular Hopf algebra �A�ρα� and every
quasitriangular structure on A is of this form. We remark that �A�ρα� is
minimal quasitriangular if and only if α 
= 0. For the details which justify
these assertions the reader is referred to [17, Sec. 2].

Example 4. For A = A2�−1 defined over a field k of characteristic
not 2 the minimal quasitriangular Hopf algebra �A�ρα� for all α ∈ k∗

admits only the oriented quantum algebra structures �A�ρα� 1A� s−2� and
�A�ρα� s−2� 1A�.

To see this, let t be an algebra automorphism of A which satisfies ρ =
�t ⊗ t��ρ�. We will show that t�a� = a and t�x� = ±x. The assertion of the
example will therefore follow by Corollary 1.

It is easy to see that t�a� is in the span of a� x� ax, and that t�x� is in
the span of x� ax. Thus ρ = �t ⊗ t��ρ� if and only if t�a� = a and t�x� =
ωx + ρax, where ω�ρ ∈ k and satisfy ω2 + ρ2 = 1, ω2 − ρ2 + 2ωρ = 1,
and ρ2 −ω2 + 2ωρ = −1. These equations hold if and only if ω2 = 1 and
ρ = 0. Therefore f �a� = a and f �x� = ±x.
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A quantum algebra �A�ρ� s� over k can be used to define a regular iso-
topy invariant of 1–1 tangles. With the additional structure of an invertible
G ∈ A which satisfies s�G� = G−1 and s2�x� = GxG−1 for all x ∈ A a
regular isotopy invariant of knots and links can be defined. The quadruple
�A�ρ� s�G� is called a twist quantum algebra [8, Sec. 2]. For the remainder
of this section we shall be concerned with minimal quasitriangular Hopf
algebras which admit a balanced oriented quantum algebra structure.

Corollary 2. Let �A�ρ� be a minimal quasitriangular Hopf algebra with
antipode s over the field k, and suppose that t is a Hopf algebra automorphism
of A.

(a) �A�ρ� t� is a balanced oriented quantum algebra if and only if ρ =
�t ⊗ t��ρ� and t2 = s−2.

(b) Suppose that �A�ρ� s�G� is a twist quantum algebra, and �A�ρ� t�
is a balanced oriented quantum algebra. If t�G� = G then �A�ρ� t�G−1� is a
twist balanced oriented quantum algebra.

(c) Suppose that �A�ρ� s2m� is a balanced oriented quantum algebra
for some m ≥ 0. Then s2 has odd order.

(d) Suppose that s2 has order 2m+ 1 for some m ≥ 0. Then �A�ρ� s2m�
is a balanced oriented quantum algebra.

Proof. Part (b) follows from part (a). Since ρ = �s ⊗ s��ρ� and s2 is a
Hopf algebra automorphism of A, parts (c) and (d) follow from part (a)
also. Noting that 1A ⊗ t is an algebra automorphism of A⊗Aop, part (a)
follows by Corollary 1.

Many of the finite-dimensional analogs of the quantized enveloping alge-
bras have a Hopf algebra automorphism t which satisfies t2 = s−2.

Now let A be any finite-dimensional Hopf algebra with antipode s over
k and consider the quantum double D�A� defined in [1]. As a coalgebra
D�A� = A∗cop ⊗A. The multiplicative identity for the algebra structure on
D�A� is ε⊗ 1, and multiplication is determined by

�p⊗ a��q⊗ b� = p�a�1� ⇀ q ↼ s−1�a�3��� ⊗ a�2�b

for all p� q ∈ A∗ and a� b ∈ A; the functional a ⇀ q ↼ b ∈ A∗ is defined
by �a ⇀ q ↼ b��c� = q�bca� for all c ∈ A. Our description of the quantum
double follows [17].

Let 	a1� � � � � ar
 be a linear basis for A and let 	a1� � � � � ar
 be the dual
basis for A∗. Then �D�A�� ρ� is a minimal quasitriangular Hopf algebra,
where ρ = ∑r

ı=1�ε⊗ aı� ⊗ �aı ⊗ 1�. The definition of ρ does not depend on
the choice of basis for A. The square of antipode for D�A� is �s∗�−2 ⊗ s2.
We leave the proof of the following implication of part (a) of Corollary 2
to the reader.
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Corollary 3. Suppose that A is a finite-dimensional Hopf algebra
over the field k, and t is a Hopf algebra automorphism of A. Then
�D�A�� ρ� �t−1�∗ ⊗ t� is a balanced oriented quantum algebra if and only if
t2 = s−2.

Since the quantum double �D�A�� ρ� of a finite-demensional Hopf alge-
bra A over k is minimal quasitriangular, �D�A�� ρ� 1D�A�, �s∗�2 ⊗ s−2� is the
unique standard oriented quantum algebra of the form �D�A�� ρ� 1D�A�� t�.

Taft’s examples [20, 21], which we denote by An�ω, are generalizations
of Sweedler’s example and are made to order for producing Hopf alge-
bra automorphisms t which satisfy the condition of Corollary 3 when k is
an algebraically closed field of characteristic 0. Generally An�ω is an n2-
dimensional Hopf algebra over k and is defined as follows. Suppose n ≥ 2,
and ω ∈ k is a primitive nth root of unity. As a k-algebra An�ω is generated
by a and x subject to the relations

an = 1� xn = 0� and xa = ωax�

The coalgebra structure of An�ω is determined by

*�a� = a⊗ a� and *�x� = x⊗ a+ 1 ⊗ x�

and the antipode s of An�ω is determined by s�a� = a−1, and s�x� = −xa−1.
Thus s2�a� = a and s2�x� = axa−1 = ω−1x.

Now suppose β ∈ k∗ is a square root of ω and let t be the Hopf alge-
bra automorphism of An�ω determined by t�a� = a and t�x� = βx. Then
t2�a� = s−2�a� and t2�x� = s−2�x� which means t2 = s−2. A straightforward
calculation shows that �D�An�ω�� ρ� �t−1�∗ ⊗ t, η⊗ a�� is a twist balanced
oriented quantum algebra, where 0 ≤ � < n and η� An�ω −→ k is the alge-
bra homomorphism determined by η�a� = ω−��+1� and η�x� = 0.

3. INVARIANTS ASSOCIATED WITH ORIENTED AND TWIST
ORIENTED QUANTUM ALGEBRAS

We begin with an overview of the discussion of [9] regarding the regular
isotopy invariants of oriented 1–1 tangles determined by “bead sliding,” an
adaptation of this technique for the construction of regular isotopy invari-
ants of oriented knots and links. We then develop a general theory of these
invariants. In particular we show that these invariants can be computed
from standard oriented quantum algebras.
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3.1. Invariants of Oriented 1–1 Tangles Arising from Oriented Quantum
Algebras

To describe the 1–1 tangle invariants we begin with oriented diagrams.
We represent oriented 1–1 tangles as oriented diagrams in the plane with
respect to the vertical direction, for example

which we refer to as Tcurl and Top
curl, respectively. The arrow heads indicate

orientation. Generally we require 1–1 tangle diagrams to be completely
contained in a box except for two protruding line segments as indicated in
the two examples below.

Oriented 1–1 tangle diagrams consist of some or all of the following
components:

• oriented crossings;

• oriented local extrema;
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and

• oriented “vertical” lines.

The orientations of adjoining components of the tangle must be compatible.
View the crossings above. In the first set (called under crossings) the line

from lower right to upper left crosses under the line from lower left to
upper right. The reverse is the case for the second set.

If an oriented 1–1 tangle diagram (respectively ) can be decom-

posed into two oriented 1–1 tangle diagram (respectively ) then we
write T = T1 0 T2.

Let Tang be the set of all oriented 1–1 tangle diagrams with respect to
the given vertical. For T ∈ Tang we let Top denote T with its orientation
reversed.

Now suppose that �A�ρ� td� tu� is an oriented quantum algebra over k
and let T ∈ Tang. We will construct an element w�T� ∈ A which has the
property w�T� = w�T′� whenever T, T′ ∈ Tang are regularly isotopic. Thus
the function wA� Tang −→ A defined by

wA�T� = w�T�
for all T ∈ Tang determines a regular isotopy invariant of oriented 1–1
tangles.

To construct w�T� we will first construct a formal word W �T� as follows.
If T has no crossings set W �T� = 1. Suppose that T has n ≥ 1 crossings.
Decorate the crossings of T according to the conventions of [9, Sec. 2.1],
namely

which one can view as diagrammatic representations of the formal expres-
sions ρ = e⊗ e′, ρ−1 = E⊗E′, �1A⊗ t��ρ� = e⊗ t�e′�, and �t⊗ 1A��ρ−1� =
t�E� ⊗ E′, where t = td or t = tu. In practice we let e ⊗ e′, f ⊗ f ′,
g⊗ g′ · · · denote copies of ρ, and we let E ⊗ E′, F ⊗ F ′, G⊗G′ · · · denote
copies of ρ−1. Our labeled crossings are to be interpreted as flat diagrams
of [9, Sec. 2.1] where the crossing type before decoration is indicated.
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Think of the oriented tangle as a rigid wire and think of the decorations
as labeled beads which slide freely around the wire. Starting at the begin-
ning of the tangle diagram (in terms of orientation), traverse the diagram
pushing the labeled beads along the wire so that the result is a juxtaposi-
tion of labeled beads at the end of the diagram. As a labeled bead passes
through a local extremum its label is altered according to conventions of
[9, Sec. 2.1]:

and

for clockwise motion;

and

for counterclockwise motion. We refer to the oriented local extrema

as having type �u−�, �u+�, �d+�, and �d−�, respectively. Reading the juxta-
posed labeled beads in the direction of orientation results in a formal word
W �T�. Substituting copies of ρ and ρ−1 into their formal representations in
W �T� results in an element w�T� ∈ A.

The oriented 1–1 tangle diagram Ttrefoil depicted below on the left is
a good example to use for understanding the procedure for constructing
w�T�.
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Traversal of the 1–1 tangle diagram Ttrefoil results in the juxtaposition of
labeled beads

Thus

W �Ttrefoil� = ��tu ◦ td��e′����tu ◦ td��f ���tu�g′��ef ′�t−1
d �g��

from which we obtain after substitution

ω�Ttrefoil� =
r∑

ı� � �=1

��tu ◦ td��bı����tu ◦ td��a���tu�b���aıb�t−1
d �a����

where ρ = ∑r
ı=1 aı ⊗ bı ∈ A ⊗A. Generally, the formal word W �T� can

be viewed as merely a device which encodes instructions for defining an
element

ρ�1 ⊗ · · · ⊗ ρ�n ∈ A⊗ · · · ⊗A �2n tensorands��

where �ı = ±1 for all 1 ≤ ı ≤ n, and describing the multilinear operations
(permuting and applying powers of td� tu to tensorands) before the multi-
plication map A⊗ · · · ⊗A −→ A �a1 ⊗ · · · ⊗ a2n −→ a1 · · · a2n� is applied
which results in w�T�.

Let t = td or t = tu. The axioms ρ = �t⊗ t��ρ� and ρ−1 = �t⊗ t��p−1�, or
symbolically e⊗ e′ = t�e� ⊗ t�e′� and E ⊗ E′ = t�E� ⊗ t�E′�, respectively,
justify the rules

W �T� = · · · tp�x� · · · tq�y� · · · = · · · tp+��x� · · · tq+��y� · · ·

for all integers �, where x⊗ y or y ⊗ x represents either ρ or ρ−1. In light
of these rules we may reformulate w�Ttrefoil� as

w�Ttrefoil� =
r∑

ı� � �=1

��tu ◦ td��bı����tu ◦ td��a����tu ◦ td��b��� aıba��
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As a minor exercise the reader is encouraged to show that

w
(
Top

trefoil

) = r∑
�� � ı=1

((
t−2
u ◦ t−1

d

)�a��)((t−1
u ◦ t−1

d

)�b�)((t−1
u ◦ t−1

d

)�aı�)

× (
t−1
u �b��

)
abı

=
r∑

�� � ı=1

a�baı��tu ◦ td��b�����tu ◦ td��a����tu ◦ td��bı���

and also that

w�Tcurl� =
r∑
ı=1

aı��tu ◦ td��bı�� and w
(
Top

curl

) = r∑
ı=1

��tu ◦ td��bı��aı�

We now describe more precisely the procedure by which W �T� is cal-
culated for the oriented 1–1 tangle diagram T with n ≥ 1 crossings. The
formal word W �T� is the product of 2n factors, where each crossing con-
tributes two factors in the manner described below.

Traverse the diagram T in the direction of orientation, labeling the cross-
ing lines of the diagram 1� � � � � 2n in the order encountered. Denote by
ud��� the number of local extrema which of type �d+� minus the number
of type �d−� which are encountered in the part of the traversal of T from
the line labeled � to the end of the diagram. Define uu��� in the same
manner, where �u+� and �u−� replace �d+� and �d−�, respectively.

Let χ be a crossing, and suppose that its lines are labeled ı and , where
ı < , and let x and y be the decorations on the crossing lines ı and ,
respectively. Then the contribution which χ makes to W �T� is

W �T� = · · · tud�ı�d ◦ tuu�ı�u �x� · · · tud��d ◦ tuu��u �y� · · · �

where the indicated factors are the ıth and th respectively of the product.
Let T, T′ ∈ Tang. To show that wA�T� = wA�T′� whenever T�T′ are

regularly isotopic is a matter of showing that wA�T� is unaffected when a
local portion of T is replaced by its equivalent according to
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and

and (M.2rev–M.4rev), which are (M.2)–(M.4) respectively with overcross-
ing lines replaced by under crossing lines and vice versa. Observe that the
“twist” equivalences described below are consequences of (M.1) and (M.4).

These twist equivalences, and their counterparts derived from (M.1) and
(M.4rev), are sometimes useful for the calculation of wA�T� in that we may
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assume all crossing lines are pointed in the same direction—up, down, to
the right, or to the left.

Let 1 ≤ � ≤ 2n, and let d��� be the Whitney degree of the portion of the
diagram T traversed from line � to the end. If this traversal starts and ends
in the same direction then ud��� = uu��� = −d���. For denote the number
of local extrema of the type �d+�, �d−�, �u+�, and �u−� encountered on the
traversal from line � to the end of T by d+�T � ��, d−�T � ��, u+�T � ��, and
u+�T � �� respectively. Then

d−�T � �� + u−�T � �� − d+�T � �� − u+�T � �� = 2d����
Since the traversal of T from line � starts and ends in the same direction it
follows that d+�T � �� + u−�T � �� = d−�T � �� + u+�T � ��. Consequently

d��� = d−�T � �� − d+�T � �� = u−�T � �� − u+�T � ��
and thus ud��� = uu��� = −d���.

The reader may have noticed that w�Top� is w�T� with its factors reversed
when T = Ttrefoil and T = Tcurl.

Proposition 3. Let A be an oriented quantum algebra over the field k.
Then wA�Top� = wAop�T� for all T ∈ Tang.

Proof. We assume that T has n ≥ 1 crossings. Let χ be a crossing of
T, let ı and , where ı < , be the labels for the lines of χ which result
from a traversal of T in the direction of orientation, and let x and y be
the decorations on the crossing lines labeled ı and  respectively. Then χ
contributes factors tud�ı�d ◦ tuu�ı�u �x� and t

ud��
d ◦ tuu��u �y� to W �T� which are

located in positions ı and  respectively.
Observe that the lines labeled ı and  in the traversal of T are labeled

2n+ 1 − ı and 2n+ 1 −  respectively in the traversal of Top. Let sd be the
number of local extrema of T of type �d+� minus the number of type �d−�
and let su be the number of type �u+� minus the number of type �u−�.
Then uop

d �2n+ 1 − �� = uu��� − su and uop
u �2n+ 1 − �� = ud��� − sd for all

1 ≤ � ≤ 2n. Thus

W �Top� = · · · tu
op
d �2n+1−�

d ◦ tu
op
u �2n+1−�

u �y� · · · tu
op
d �2n+1−ı�

d ◦ tu
op
u �2n+1−ı�

u �x� · · ·
= · · · tuu��−sud ◦ tud��−sdu �y� · · · tuu�ı�−sud ◦ tud�ı�−sdu �x� · · ·
= · · · tuu��d ◦ tud��u �y� · · · tuu�ı�d ◦ tud�ı�u �x� · · · �

where the factors are in positions 2n + 1 −  and 2n + 1 − ı, respectively.
Now to prove the proposition we may assume that all crossings of T are
directed upward. In this case ud��� = uu��� for all 1 ≤ � ≤ 2n and which
establishes wA�Top� = wAop�T�.
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Proposition 4. Suppose that f �A −→ B is a morphism of oriented quan-
tum algebras. Then f �wA�T�� = wB�T� for all T ∈ Tang.

The proposition, the proof of which is easy, makes an interesting state-
ment about regular isotopy invariants of the type wA. Whenever A and B
are oriented quantum algebras related by a morphism f � A −→ B then
wA dominates wB; that is, if T�T′ ∈ Tang satisfies wA�T� = wA�T′� then
wB�T� = wB�T′�.

We shall also write InvA for wA to be consistent with the notation of the
next section. If T ∈ Tang can be written T = T1 0 T2, note that wA�T� =
wA�T1�wA�T2� or equivalently InvA�T1 0 T2� = InvA�T1�InvA�T2�.

By virtue of the next result the 1–1 tangle invariants described in this
section are computed by standard oriented quantum algebras.

Theorem 1. Let A be an oriented quantum algebra over the field k and
suppose that As is the associated standard oriented quantum algebra. Then
InvA�T� = InvAs

�T� for all T ∈ Tang.

Proof. Let T ∈ Tang. To show that InvA�T� = InvAs
�T� we may assume

that T has at least one crossing and that all crossings of T are directed
upward. Let χ be a crossing of T with line labels ı and , where ı < . Then

W �T� = · · · tud�ı�d ◦ tuu�ı�u �x� · · · · · · tud��d ◦ tuu��u �y� · · ·
= · · · �td ◦ tu�−d�ı��x� · · · �td ◦ tu�−d���y� · · · �

3.2. Invariants of Oriented Knots and Links Arising from Twist Oriented
Quantum Algebras

Let Knot (respectively Link) denote the set of oriented knot (respectively
link) diagrams with respect to a fixed vertical in the plane. Throughout this
section �A�ρ� td� tu�G� is a twist oriented quantum algebra over the field
k. Notice that �Aop� ρ� td� tu�G

−1� is an oriented quantum algebra over k,
which we denote by Aop.

If B is any algebra over k then tr ∈ B∗ is a tracelike element if tr�ab� =
tr�ba� for all a� b ∈ B. For any tracelike element tr ∈ A∗ which is t∗d� t

∗
u-

invariant, that is, which satisfies tr ◦ td = tr ◦ tu = tr, we construct a function
InvA� tr� Link −→ k with the property that L�L′ ∈ Link regularly isotopic
implies InvA� tr�L� = InvA� tr�L′�. Thus InvA� tr determines a regular isotopy
invariant of oriented links. To begin we define InvA� tr�K� for K ∈ Knot.

Let K ∈ Knot. To define InvA� tr�K� we first construct an element w�K� ∈
A. If K has no crossings we set w�K� = 1.

Suppose that K has n ≥ 1 crossings. Decorate the crossings of K accord-
ing to the conventions of Section 3.1 and choose a point P on a vertical
line in the knot diagram K. (There is no harm, under regular isotopy, in
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inserting a vertical line at the end of a crossing line or local extrema—thus
we may assume that K has a vertical line.)

Traverse the knot diagram K, starting at P and moving in the direction
of the orientation back to P , and label the crossing lines 1� � � � � 2n in the
order encountered. Let W �K� be a formal product with 2n factors, where
each crossing contributes two factors according to the algorithm described
in Section 3.1 for oriented 1–1 tangle diagrams, and let w�K� be obtained
from W �K� in the same manner that w�T� was obtained from W �T� in
Section 3.1, where T ∈ Tang. Here “to the end of the (tangle) diagram” is
replaced by “back to P in the direction of orientation.”

Let d be the Whitney degree of the oriented knot diagram K. Then 2d is
the number of local extrema with clockwise orientation minus the number
of extrema with counterclockwise orientation. We will show that the scalar
tr�Gdw�K�� does not depend on the starting point P .

Consider a new starting point Pnew which follows P in the orientation of
K. Let Wnew�K� and wnew�K� for Pnew be the analogs of W �K� and w�K�
respectively for P . There are two cases to consider.

Suppose first of all that traversal of the diagram K from P to Pnew in
the direction of orientation passes through exactly one local extremum
and no crossing lines. By examining the four local extremum types one
sees that there are rd� ru ∈ 	−1� 0� 1
 such that ud� new��� = ud��� + rd
and uu� new��� = uu��� + ru for all 1 ≤ � ≤ 2n. Since ρ = �td ⊗ td��ρ� =
�tu ⊗ tu��ρ� it follows that W �Knew� = W �K� and thus w�K� = wnew�K�.

Suppose that traversal of the diagram K from P to Pnew in the direction
of orientation passes through m ≥ 1 crossing lines and no local extrema.
Observe that ud��� = uu��� = −d for all 1 ≤ � ≤ m; see the discussion
preceding Proposition 3. Let x1� � � � � x2n be the crossing line decorations.
Since t−dd ◦ t−du is an algebra automorphism of A, and td� tu commute, we
can make the substitution �td ◦ tu�−d�x1 · · ·xm� for �t−dd ◦ t−du ��x1� · · · �t−dd ◦
t−du ��xm�. Thus we have

W �K� = �td ◦ tu�−d�x1 · · ·xm��tud�m+1� ◦ tuu�m+1���xm+1�
· · · (tud�2n�d ◦ tuu�2n�u

)�x2n�
and
Wnew�K� = (

t
ud�m+1�
d ◦ tuu�m+1�

u
)�xm+1� · · ·

(
t
ud�2n�
d ◦ tuu�2n�u

)�x2n�x1 · · ·xm�
Since

tr
(
Gd�td ◦ tu�−d�a1 · · · am�

(
t
ud�m+1�
d ◦ tuu�m+1�

u
)�am+1�

· · · (tud�2n�d ◦ tuu�2n�u
)�a2n�

)
= tr

(
Gd�G−da1 · · · amGd

(
t
ud�m+1�
d ◦ tuu�m+1�

u
)�am+1�

· · · (tud�2n�d ◦ tuu�2n�u
)�a2n�

)
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= tr
(
a1 · · · amGd

(
t
ud�m+1�
d ◦ tud�m+1�

u
)�am+1� · · ·

(
t
ud�2n�
d ◦ tuu�2n�u

)�a2n�
)

= tr
(
Gd

(
t
ud�m+1�
d ◦ tuu�m+1�

u
)�am+1� · · ·

(
t
ud�2n�
d ◦ tuu�2n�u

)�a2n�a1 · · · am
)

for all a1� � � � � a2n ∈ A it follows that tr�Gdw�K�� = tr�Gdwnew�K�� in the
second case. Thus tr�Gdw�K�� does not depend on the starting point in any
event and therefore

InvA� tr�K� = tr�Gdw�T�� (4)

is well defined for all K ∈ Knot. We regard (4) as defining a function from
Knot to k which we refer to as InvA� tr by slight abuse of notation. For the
same reasons that w�T� is not affected by regular isotopy moves w�K� is
unaffected by regular isotopy moves since we may assume that the starting
point is not in a local area of the diagram K under consideration.

Notice that the oriented knot diagram K is regularly isotopic to an ori-
ented knot diagram K�T�, where K�T� is one of

where

are oriented 1–1 tangle diagrams. Since the Whitney degree is a regular
isotopy invariant of oriented knot diagrams, the Whitney degrees of K and
K�T� are the same.

The reader may have noticed that the definition of InvA� tr�K� for K ∈
Knot does not require the full use of the axioms for a twist oriented quan-
tum algebra.

Theorem 2. Let �A�ρ� td� tu� be an oriented quantum algebra over the
field k, suppose that G ∈ A is invertible and satisfies td ◦ tu�a� = GaG−1 for
all a ∈ A, let tr ∈ A∗ be a tracelike element, and let InvA� tr� Knot −→ k be
the function defined by (4).

(a) Suppose that K�K′ ∈ Knot are regularly isotopic. Then InvA� tr
�K� = InvA� tr�K′�.
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(b) Suppose that K ∈ Knot and that K is regularly isotopic to K�T� for
some T ∈ Tang. Then

InvA� tr�K� = tr�GdwA�T���
where d is Whitney degree of K.

(c) InvA� tr�Kop� = InvAop� tr�K� for all K ∈ Knot.
(d) Suppose that As is the standard oriented quantum algebra associ-

ated with A. Then InvAs� tr�K� = InvA� tr�K� for all K ∈ Knot.

Proof. We have established parts (a) and (b). As for part (c), we may
assume that K = K�T� for some T ∈ Tang. Using part (b) and Proposition 3
we see that

InvA� tr�Kop� = tr�G−dwA�Top�� = tr�wAop�T�G−d� = InvAop� tr�K��
Part (d) follows by part (b) and Theorem 1. This concludes our proof.

We now turn to links. Let L ∈ Link be an oriented link diagram with
components L1� � � � �Lr . To construct InvA� tr�L� we modify slightly the steps
of the construction of InvA� tr�K�, where K ∈ Knot.

Decorate the crossings of L according to the conventions of Section 3.1.
For each 1 ≤ � ≤ r let d� denote the Whitney degree of the component
L� and choose a point P� on a vertical line of L�. (As in the case of knot
diagrams we can always assume that each component of L has a vertical
line.) Traverse L� in the direction of the orientation, beginning at P�, and
label the crossing lines (if any) contained in L� by �� � 1�� �� � 2�� � � � � �� � m�
in the order encountered. For 1 ≤ ı ≤ m let ud�� � ı� denote the number of
local extrema which are of type �d+� minus the number of type �d−� which
are encountered in the part of the traversal of L� from the line labeled ı
back to the starting point P�. Define uu��� in the same manner, where �u+�
and �u−� replace �d+� and �d−�, respectively. Let x�� � ı� be the decoration
on the line labeled �� � ı�.

We next define a formal word W �L�� as follows. If L� contains no crossing
lines we set W �L�� = 1; otherwise we set

W �L�� = t
ud�� � 1�
d ◦ tuu�� � 1�u �x�� � 1�� · · · tud�� �m�

d ◦ tuu�� �m�
u �x�� �m���

Now let w�L1� ⊗ · · · ⊗ w�Lr� ∈ A ⊗ · · · ⊗ A be obtained by substituting
copies of ρ and ρ−1 into the formal tensor W �L�1

� ⊗ · · · ⊗W �L�r �. In light
of our discussion InvA� tr�K�, where K ∈ Knot, it is a small exercise to show
that the scalar

InvA� tr�L� = tr�Gd1w�L1�� · · · tr�Gdrw�Lr�� (5)

does not depend on the particular choice of P1� � � � � Pr and is not affected
by regular isotopy moves. We note that the equation ud�ı� = uu�ı� for all
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1 ≤ ı ≤ m holds when the crossing lines in L� are directed upward and
traversal of L� begins in the upward direction; see the discussion preceding
Proposition 3.

Theorem 3. Suppose that �A�ρ� tt� tu�G� is a twist oriented quantum
algebra over the field k, let tr ∈ A∗ be a t∗d� t

∗
u-invariant tracelike element, and

let InvA� tr� Link −→ k be the function defined by (5).

(a) Suppose that L�L′ ∈ Link are regularly isotopic. Then InvA� tr�L� =
InvA� tr�L′�.

(b) Suppose that As is the standard twist oriented quantum algebra
associated with A. Then InvAs� tr�L� = InvA� tr�L� for all L ∈ Link.

We next consider the relationship between invariants of the type
InvA� tr�L� and morphisms of twist oriented quantum algebras. We define
a morphism f � �A�ρ� td� tu�G� −→ �A′� R′� t ′d� t

′
u�G

′� of twist oriented
quantum algebras to be a morphism f � �A�ρ� td� tu� −→ �A′� R′� t ′d� t

′
u� of

oriented quantum algebras which satisfies f �G� = G′.

Proposition 5. Suppose that f � �A�ρ� td� tu�G� −→ �A′� R′� t ′d� t
′
u�G

′�
is a morphism of twist oriented quantum algebras over k and that tr′ ∈ A′∗

is a t ′∗d � t
′∗
u -invariant tracelike element. Then tr ∈ A∗ defined by tr = tr′ ◦ f is

a t∗d� t
∗
u-invariant tracelike element and InvA� tr�L� = InvA′� tr′ �L� for all L ∈

Link.

There are interesting connections between the invariants described in
[13] for quantum algebras and the invariants described here for oriented
quantum algebras. Let Tangu (respectively Knotu, Linku) be the set of unori-
ented 1–1 tangle (respectively knot, link) diagrams situated with respect to
a fixed vertical. When �A�ρ� s� is a quantum algebra then the function
InvA� Tangu −→ A defined in [13, Sec. 6.1] determines a regular isotopy
invariant of 1–1 tangles since whenever T�T′ ∈ Tangu are regularly isotopic
then InvA�T� = InvA�T′�. We note that InvA was implicitly defined in [4,
Sec. IV].

Now suppose that �A�ρ� s�G� is a twist quantum algebra and tr ∈ A∗

is an s∗-invariant tracelike element. Then the function InvA� tr� Linku −→
k defined in [13, Sec. 8] determines a regular isotopy invariant of knots
and links since whenever L� L′ ∈ Linku are regularly isotopic InvA� tr�L� =
InvA� tr�L′�. We note that InvA� tr was explicitely defined in [4, Sec. IV].

The calculations of InvA�T�, where the initial vertical line of T is oriented
upward, and InvA� tr�L� are made in the same manner as the calculations of
their counterparts InvA�T� and InvA� tr�L� for oriented quantum algebras
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and oriented twist quantum algebras, respectively. The decorated crossings

and

in oriented diagrams are replaced by

and

respectively. Traversal in the unoriented case begins on a vertical line and
proceeds in the upward direction. The rules for traversal of local extrema
in the unoriented case are the rules in the oriented case where s replaces
td and tu.

Let u�D� denote an oriented diagram D with its orientation removed.
The relationship between the invariants associated with a quantum algebra
�A�ρ� s� and the invariants associated with the oriented quantum algebra
�A�ρ� 1A� s−2� of part (a) of Proposition 2 are described in our next result.

Theorem 4. Let �A�ρ� s� be a quantum algebra over k. Then:

(a) The equations

Inv�A�ρ� 1A� s−2��T� = Inv�A�ρ−1� s−1��u�T��
and

Inv�A�ρ� s��u�T�� = Inv�A�ρ−1� 1A� s2��T�
hold for all T ∈ Tang whose initial vertical line is oriented upward.

(b) Suppose further �A�ρ� s�G−1� is a twist quantum algebra and tr ∈
A∗ is an s∗-invariant tracelike element. Then

Inv�A�ρ� 1A� s−2�G�� tr�L� = Inv�A�ρ−1� s−1�G�� tr�u�L��
and

Inv�A�ρ� s�G−1�� tr�u�L�� = Inv�A�ρ−1� 1A� s2�G−1�� tr�L�
for all L ∈ Link.

Proof. We need only establish the first equations in parts (a) and (b).
Generally to calculate a regular isotopy invariant of oriented 1–1 tangle,
knot, or link diagrams we may assume that all crossing lines are directed
upward, and we may assume that diagrams have vertical lines oriented in
the upward direction. We can assume that traversals begin on such lines.

Write ρ = e⊗ e′ and ρ−1 = E ⊗ E′. Since ρ−1 = �s ⊗ 1A��ρ� it follows
that e⊗ e′ = s−1�E� ⊗E′. Thus in the diagrams preceding the statement of
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the theorem, the oriented crossing decorations representing e⊗ e′ and E ⊗
E′ are the unoriented crossing decorations representing s−1�E� ⊗ E′ and
E ⊗ E′, respectively, that is, the decorations associated with the quantum
algebra �A�ρ−1� s−1�.

For a crossing decoration representing x⊗ y, traversal of the 1–1 tangle
or link diagram results in the modification

t
ud
d ◦ tuuu �x� ⊗ t

u′d
d ◦ tu′uu �y� = s−2uu�x� ⊗ s−2u′u�y�

with �A�ρ� 1A� s−2� and results in the modification

s−�ud+uu��x� ⊗ s−�u′d+u′u��y� = s−2uu�x� ⊗ s−2u′u�y�
with �A�ρ−1� s−1�; the last equation holds by our assumptions on the cross-
ings and traversal.

We end this section with a simple example, the oriented Hopf link LHopf
depicted below left with components L1 and L2, reading left to right. The
symbol ◦ denotes a starting point for component traversal.

Observe that d1 = −1, d2 = 1, and

InvA� tr�LHopf� =
r∑
ı=1

r∑
=1

tr�G−1aıb�tr�Gbıa��

4. ORIENTED QUANTUM COALGEBRAS AND
T -FORM STRUCTURES

In this very brief section we define the coalgebra counterparts of ori-
ented quantum algebras and twist oriented quantum algebras. We describe
a very important connection between the coalgebra structures defined in
this section and T -form structures [6, Sec. 3]. In [10] a general theory of the
coalgebra structures discussed below is developed along the lines of [13].

Let �C�*� ε� be a coalgebra over the field k. We denote the coproduct
*�c� ∈ C ⊗ C symbolically by *�c� = c�1� ⊗ c�2�. Let b� b′� C × C −→ k be
bilinear forms. Then b′ is an inverse of b if

b�c�1�� d�1��b′�c�2�� d�2�� = ε�c�ε�d� = b′�c�1�� d�1��b�c�2�� d�2��
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for all c� d ∈ C. If b has an inverse then its inverse is unique and we denote
it by b−1.

A strict oriented quantum coalgebra over k is a quadruple �C� b� Td� Tu�,
where C is a coalgebra over k� b� C × C −→ k is an invertible bilinear
form, and Td� Tu are commuting coalgebra automorphisms of C, such that

(qc.1) b�c�1�� Tu�d�2���b−1�Td�c�2��� d�1�� = ε�c�ε�d� and
b−1�Td�c�1��, d�2��b�c�2�� Tu�d�1��� = ε�c�ε�d�,

(qc.2) b�c� d� = b�Td�c�� Td�d�� = b�Tu�c�� Tu�d��, and

(qc.3) b�c�1�� d�1��b�c�2�� e�1��b�d�2�� e�2��
= b�c�2�� d�2��b�c�1�� e�2��b�d�1�� e�1��
for all c� d� e ∈ C.

The notion of strict oriented quantum coalgebra is dual to the notion
of oriented quantum algebra. To see this, let A be a finite-dimensional
algebra over k. Then the linear dual A∗ is a coalgebra over k where ε�a∗�
and *�a∗� are computed for a∗ ∈ A∗ by

ε�a∗� = a∗�1� and *�a∗� =
r∑
ı=1

a∗ı ⊗ b∗ı ∈ A∗ ⊗A∗ = �A⊗A�∗�

where a∗�ab� = ∑r
ı=1 a

∗
ı �a�b∗ı �b� for all a� b ∈ A∗.

Let ρ ∈ A⊗A, suppose that b� A×A −→ k is the bilinear form defined
by b�a∗� b∗� = �a∗ ⊗ b∗��ρ� for all a∗� b∗ ∈ A∗, and let td� tu be linear auto-
morphisms of A. It is a straightforward exercise to show that �A∗� b� t∗d� t

∗
u�

is a strict oriented quantum coalgebra over k if and only if �A�ρ� td� tu� is
an oriented quantum algebra over k.

An oriented quantum coalgebra over k is a quadruple �C� b� Td� Tu�, where
C is a coalgebra over k� b� C × C −→ k is an invertible bilinear form,
and Td� Tu are commuting coalgebra automorphisms of C with respect to
	b� b−1
, such that (qc.1)–(qc.3) hold. A linear automorphism T of C is a
coalgebra automorphism with respect to 	b� b−1
 if ε ◦ T = ε,

b′�T �c�1��� d�b′′�T �c�2��� e� = b′�T �c��1�� d�b′′�T �c��2�� e� and

b′�d� T �c�1���b′′�e� T �c�2��� = b′�d� T �c��1��b′′�e� T �c��2��

for all b′� b′′ ∈ 	b� b−1
 and c� d� e ∈ C. An oriented quantum coalgebra
�C� b� Td� Tu� over k is standard if Td = 1C and is balanced if Td = Tu, in
which case we write �C� b� T � for �C� b� Td� Tu�, where T = Td = Tu.

Suppose that �C� b� T � is a balanced oriented quantum coalgebra over k.
Since T is a coalgebra automorphism with respect to 	b� b−1
 and b�c� d� =
b�T �c�� T �d�� for all c� d ∈ C, it follows that b−1�c� d� = b−1�T �c�� T �d��
for all c� d ∈ C and that T−1 is a coalgebra automorphism with respect



oriented quantum algebras 279

to 	b� b−1
. Thus (qc.1) may be reformulated

b�T−2�c�1��� d�2��b−1�c�2�� d�1�� = ε�c�ε�d�
= b−1�c�1�� T−2�d�2���b�c�2�� d�1��

for all c� d ∈ C; that is, �C� b� T−2� is a T−2-form structure. More
precisely:

Proposition 6. Let C be a coalgebra over the field k, let b� C ×C −→ k
be an invertible bilinear form, and suppose that T is a coalgebra automorphism
of C with respect to 	b� b−1
. Then the following are equivalent:

(a) �C� b� T � is a balanced oriented quantum coalgebra.

(b) �C� b� T−2� is T−2-form structure over k.

This proposition establishes a fundamental connection between regular
isotopy invariants of oriented knots and links computed by the methods
of Section 3 and regular isotopy invariants of unoriented knots and links
computed by the methods of [6, 7, 13]. The connection is discussed in great
detail in [10].

We end this section with the definition of twist oriented quantum coalge-
bra, a structure which is the counterpart of twist oriented quantum algebra.
For a coalgebra C over k recall that the linear dual C∗ is an algebra over k.

A twist oriented quantum coalgebra over k is a quintuple �C� b� Td� Tu�G�,
where �C� b� Td� Tu� is a strict oriented quantum coalgebra over k�G ∈ C∗

is invertible, and

T ∗
d �G� = T ∗

u �G� = G and

Td ◦ Tu�x� = G−1 ⇀ x ↼ G = �G−1 ⇀ x�↼G

for all x ∈ C, where c∗ ⇀ c = c�1� < c∗� c�2� > and c ↼ c∗ = < c∗� c�1� >
c�2� for all c∗ ∈ C∗ and c ∈ C. When the underlying oriented quantum
coalgebra structure of a twist oriented quantum coalgebra �C� b� Td� Tu�G�
over k is balanced we shall write �C� b� T�G� for �C� b� Td� Tu�G�, where
T = Td = Tu, and we call �C� b� T�G� a twist balanced oriented quantum
coalgebra over k.

Twist oriented quantum coalgebras over k give rise to regular isotopy
invariants of oriented knots and links [10]. As one might suspect, the notion
of twist oriented quantum coalgebra is dual to the notion of twist oriented
quantum algebra.



280 kauffman and radford

5. PARAMETERIZED FAMILIES OF ORIENTED QUANTUM
ALGEBRA STRUCTURES ON Mn�k�

In this section we study the balanced oriented quantum algebra struc-
tures �A�ρ� t� on A = Mn�k� where t is the automorphism of Example 2.
The description of ρ involves an ordering on 	1� � � � � n
 which is usually not
the standard one. Thus for conceptual reasons at the outset we will regard
A = MS�k� as the k-algebra with basis of symbols 	Eı 
ı� ∈S which satisfy
Eı E�m = δ �Eım for all ı� � ��m ∈ S, where S is an n-element set with no
a priori ordering.

Let ωi ∈ k∗ for all ı ∈ S. The linear automorphism t of A determined by

t�Eı � =
(
ωı
ω

)
Eı 

for all ı�  ∈ S is an algebra automorphism. Let ρ ∈ A⊗A and write

ρ = ∑
ı� � �m∈ S

ρı � mEı  ⊗ E�m�

where ρı � m ∈ k. Observe that ρ = �t ⊗ t��ρ� if and only if

ρı � m =
(
ωıω�
ωωm

)
ρı � m

for all ı� � ��m ∈ S. Thus (qa.2) holds for ρ and t if

ρı � m 
= 0 implies 	ı� �
 = 	�m
� (6)

We note that (qa.2) is equivalent to (6) when the ωı’s are algebraically
independent over the prime field of k. Notice that (6) is satisfied in
Example 2.

Suppose that (6) holds. Then �A�ρ� t� is a balanced oriented quantum
algebra if and only if

ρı � ı � 
= 0 for all ı� � ∈ S� (7)

ρı � � ı = 0 or ρ� ı ı � = 0 for all distinct ı� � ∈ S� (8)

ρıuu ı
ρı ı ı ı

= δıu +
∑
�
=ı

(
ρı � � ıρ�uu �
ρı � ı �ρ� ı � ı

)(
ωı
ω�

)2

for all ı� u ∈ S� (9)

∑
u� v�w∈T

ρıku vρup wρvw �q =
∑

u� v�w∈T
ρuv  �ρıwuqρkpvw (10)
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for all ı� k� p� � �� q ∈ T , where T is any 2-element subset of S, and for all
distinct ı� �� k ∈ S,

ρıkk ıρı � � ı = ρı � � ıρ�kk � + ρıkk ıρk � �k� (11)

ρıkk ıρ�kk � = ρı � � ıρ�kk � + ρıkk ıρ� ı ı � (12)

and

�ρıkkı�2ρk��k+ρıkıkρkıkıρı��ı=�ρk��k�2ρıkkı+ρk�k�ρ�k�kρı��ı� (13)

A rather tedious calculation shows that the set of equations (10)–(13) is
equivalent to (qa.3) under the assumption that (6) and (7) hold. By pass-
ing to the dual coalgebra Cn�k� =Mn�k�∗, one sees that this equivalence is
established in [18, Lemma 4]. Using Proposition 6 and retracing the proof
of [18, Theorem 2 ] we can conclude that the set of statements (7)–(9) is
equivalent to ρ is invertible and (qa.1) holds for ρ and t under the assump-
tion that (6) holds. For the sake of completeness we will sketch a proof that
(7)–(9) are collectively equivalent to ρ is invertible and that (qa.1) holds
for ρ and t under the assumption that (6) holds.

Suppose that ρ is invertible and (6) holds. Let Q = ρ−1 and write Q =∑
ı� � ��m∈ S Qı � mEı  ⊗ E�m where Qı� m ∈ k. Since A ⊗ A is a finite-

dimensional algebra over k and the set of elements of A⊗A which satisfy
(6) is a subalgebra of A ⊗A, it follows that Qı� m 
= 0 implies 	ı� �
 =
	�m
. Also since A⊗A is finite dimensional, (qa.1) for t and ρ is equiv-
alent to

��t ⊗ 1A��ρ−1����1A ⊗ t��ρ�� = 1 ⊗ 1

in A⊗Aop. This equation can be expressed as

∑
� �∈ S

(
ωı
ω

)(
ωv
ω�

)
Qı� mρ v u � = δıuδvm (14)

for all ı� u� v�m ∈ S.
Suppose that ρ is invertible, and (6) and (14) hold. We will show that

(7)–(9) follow by considering the cases ı 
= m and ı = m.
Assume first of all that ı 
= m. Since 	ı� �
 = 	�m
 if and only if ı = 

and � = m, in this case (14) boils down to Qımımρı v um = δıuδvm for all
u� v ∈ S. This equation holds if and only if Qımımρım ım = 1.

Assume that ı = m. Then (14) is

∑
�∈S

(
ωı
ω�

)2

Qı� � ıρ� v u � = δıuδv ı
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for all ı� u� v ∈ S. If u 
= v then both sides of this equation are zero. Thus
(14) is equivalent to

∑
�∈S

(
ωı
ω�

)2

Qı� � ıρ�uu � = δıu (15)

for all u ∈ S when ı = m.
To complete our analysis of the case ı = m we examine what it means for

Q and ρ to be inverses in light of the relation Qı� ı �ρı � ı � = 1 for distinct
ı� � ∈ S. Since (6) holds, Q and ρ are inverses if and only if Qı ı ı ıρı ı ı ı = 1
for all ı ∈ S and the matrices(

ρı � ı � ρı � � ı
ρ� ı ı � ρ� ı � ı

)
and

(
Qı� ı � Qı � � ı

Q� ı ı � Q� ı � ı

)

are inverses when ı� � ∈ S are distinct.
Suppose that ı 
= � and let d be the determinant of the matrix on the left

above. Then d 
= 0, and the calculation

ρı � ı �ρ� ı � ı − ρı � � ıρ� ı ı � = d = dQı� ı �ρı � ı � = ρ� ı � ıρı � ı �

shows that ρı � � ıρ� ı ı � = 0. Since dQı� � ı = −ρı � � ı we have

Qı� � ı = −ρı � � ı/�ρı � ı �ρ� ı � ı��
At this point (9) is easily deduced from (15).

We have shown that ρ invertible and that (6) and (qa.1) for t and ρ imply
(7)–(9). It is a straightforward exercise to show that (6) and (7) imply ρ is
invertible. Now it is easy to see that (6)–(9) imply that ρ is invertible and
that (qa.1) holds for t and ρ.

Before continuing we record a description of ρ−1 = Q:

Qı� m 
= 0 implies 	ı� �
 = 	� m
�

Qı � ı � =
1

ρı � ı �
for all ı� � ∈ S�

and
Qı� � ı = − ρı � � ı

ρı � ı �ρ� ı � ı
when ı� � ∈ S are distinct�

We now determine all invertible ρ ∈ A⊗A which satisfy (9)–(13), given
that (6)–(8) hold.

Suppose that (6)–(8) hold. We have noted that (6) and (7) imply ρ is
invertible. Now ρı � ı � 
= 0 for all ı� � ∈ S, and all of the other ρı � m’s are
zero with the possible exception of coefficients of the form ρı � � ı where
ı 
= �. Our analysis of ρ is based on whether or not ρı � � ı is zero.
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We define an ordering on S as follows:

ı ≺ � if and only if ı 
= � and ρı � � ı 
= 0�

Observe that the pair of statements (11) and (12) is equivalent to the pair
of statements

ı ≺ � and � ≺ k implies ı ≺ k

and ρı � � ı = ρ�kk � = ρıkk ı (16)

and

ı ≺ � and ı ≺ k� or � ≺ ı and k ≺ ı�

implies � ≺ k or k ≺ � (17)

when ı� �� k ∈ S are distinct. Given (16), and hence given (16) and (17),
observe that (13) is equivalent to

ı ≺ � implies ρık ı kρk ı k ı = ρ�k �kρk�k � (18)

when ı� �� k ∈ S are distinct.
We will call a subset T of S an ρ-component if (a) for any two ı�  ∈ T

either ı ≺  or  ≺ ı and (b) if T ′ is a subset of S which satisfies (a) and
T ⊆ T ′ then T = T ′. It is clear that every element of S is contained in an
ρ-component.

Suppose that (11)–(13) hold, or equivalently that (16)–(18) hold, in addi-
tion to (6)–(8). By (16) and (17) if T� T ′ are ρ-components then either
T = T ′ or T ∩ T ′ = �. Thus the ρ-components partition S.

Observe that each ρ-component is well ordered by ı �  if and only if
ı =  or ı ≺ . Note that (16) and (17) also imply that if ı and  belong
to different ρ-components then ı 
≺  and  
≺ ı. Thus ρı   ı = 0 if ı and 
belong to different ρ-components, and exactly one of ρı   ı and ρ ı ı  is zero
for distinct ı�  which belong to the same ρ-component.

We now examine what it means for (10) to hold when (6)–(8) and (11)–
(13) hold. Let T be a two-element subset of S. If the elements of T belong
to different ρ-components then (10) holds. Consequently we need only con-
sider (10) when T lies in an ρ-component which therefore has at least two
elements.

Let � be an ρ-component with at least two elements. By virtue of (18)
the ρı � ı �ρ� ı � ı’s for all ı� � ∈ � distinct have the same value, which we
denote by b�c.

Suppose that T = 	ı� 
 ⊆ � and has two elements. We may assume that
ı ≺ . Then (10) holds for T if and only if


ρı ı ı ı 0 0 0

0 ρı  ı  ρı   ı 0
0 0 ρ ı  ı 0
0 0 0 ρ   



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satisfies the quantum Yang–Baxter equation. This matrix has the form


a 0 0 0
0 b x 0
0 0 c 0
0 0 0 d




where a� b� c� d� x ∈ k∗. A straightforward calculation shows that the pre-
ceding matrix satisfies the quantum Yang–Baxter equation if and only if
x�a2 − bc� = x2a and x�d2 − bc� = x2d, or equivalently

a2 
= bc� a = d or ad = −bc� x = a− bc/a�

in which case x = d − bc/d also. At this point we simplify notation by
writing a� = ρ�� � � for � ∈ � . Observe that ρı   ı = aı − b�c/aı = a − b�c/a
when (10) holds. In this case all such ρı   ı’s have the same value. We have
shown that (10) holds for all two element subsets T ⊆ � if and only if there
are b�c� x ∈ k∗ such that a2

i 
= b�c for all ı ∈ � , and

aı = a or aıa = −b�c� ρı   ı = aı − b�c/aı = a − b�c/a = x (19)

for all ı�  ∈ � such that ı ≺ .
Assume that (6)–(8) and (10)–(13) hold, or equivalently (6)–(8), (10),

and (16)–(18) hold. We will find a necessary and sufficient condition for (9)
to hold for all ı� u ∈ � .

Observe that (9) holds when u = ı. If u 
= ı and ı 
≺ u or u ≺ ı then both
sides of (9) are zero by (16). Consequently we need only consider (9) when
ı ≺ u, in particular when ı� u are in the same ρ-component which we may
assume is � .

Suppose that ı� u ∈ � and ı ≺ u. Then (9) is equivalent to

1
x

(
aı − au

(
ωı
ωu

)2)
= 1 + ∑

ı≺�≺u

(
ωı
ω�

)2

� (20)

If ı is the immediate predecessor of u in the well-ordering � on � then
(20) is

1
x

(
aı − au

(
ωı
ωu

)2)
= 1�

or

aı − au

(
ωı
ωu

)2

= x = aı −
bc

aı
�

Thus (20) is equivalent to �ωı/ωu�2 = b�c/�aıau� when ı is the immedi-
ate predecessor of u. Generally, write ı = ı0 ≺ ı1 ≺ · · · ≺ ım = u where
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ır−1 is the immediate predecessor of ır for 1 ≤ r ≤ m. Since �ωı/ωu�2 =
�ωı0/ωı1�2�ωı1/ωı2�2 · · · �ωır−1

/ωır �2 we have

(
ωı
ωu

)2

= b�c
aıau

( ∏
ı≺≺u

b�c
a2


)
� (21)

Let e be smallest element of � with respect to the well-ordering �. Then
(21) is equivalent to

ω2
u =

aeau
b�c

( ∏
e≺≺u

a2


b�c
)
ω2
e (22)

for all u ∈ � \e.
We have shown that (9) implies (22) under the assumption that (6)–

(8) and (10)–(13) hold. Under this assumption we will show that (22)
implies (9).

Suppose that (22) holds for u� ı ∈ � . As we have noted, to show that
(9) holds we may assume that ı� u ∈ � and that ı ≺ u. Let xj = b�c/a2

 for
 ∈ � . Then using (21) we see that (20), the equivalent to (9) in this case,
can be formulated as

1
x

(
aı − au

(
b�c
aıau

∏
ı≺≺u

x

))
= 1 + ∑

ı≺�≺u

b�c
aıa�

( ∏
ı≺≺�

x

)

and thus can be written

aı
x

(
1 − ∏

ı�≺u
x

)
= 1 + ∑

ı≺�≺u

b�c
aıa�

( ∏
ı≺≺�

x

)
�

which in turn, using (19), can be formulated as

1 − ∏
ı�≺u

x =
(
aı −

b�c
aı

)
1
aı

+ ∑
ı≺�≺u

(
b�c
aıa�

( ∏
ı≺≺�

x

))(
a� −

b�c
a�

)
1
aı
�

which can be written( ∏
ı�≺u

x

)
− xı =

∑
ı≺�≺u

( ∏
ı�≺�

x

)
�x� − 1��

The last equation is always true. For suppose z1� � � � � zm ∈ k and 1 ≤ ı < m.
Then ( ∏

ı≤<m
z

)
− zı =

∑
ı<�<m

( ∏
ı≤<�

z

)
�z� − 1�

follows by induction on m− ı. We have proved:
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Theorem 5. Let A = Mn�k� be the algebra of n × n matrices over the
field k. Let ω1� � � � � ωn ∈ k∗ and let t be the algebra automorphism of A
determined by

t�Eı � =
(
ωı
ω

)
Eı 

for all 1 ≤ ı�  ≤ n , where 	Eı 
1≤ı� ≤n is the standard basis for A. Let
ρ ∈ A⊗A and write

ρ =
n∑

ı� � ��m= 1

ρı � mEı  ⊗ E�m

where ρı � m ∈ k. Assume that ρı � m 
= 0 implies 	ı� �
 = 	�m
. Then
�A�ρ� t� is a balanced oriented quantum algebra if and only if:

(a) ρı  ı  
= 0 for all 1 ≤ ı�  ≤ n.
(b) There is a partition S1� � � � � Sr of 	1� � � � � n
 into non-empty subsets

such that for each S� with �S�� ≥ 2 the relation ı ≺  if and only if ı 
=  and
ρı   ı 
= 0 determines a well-ordering � on S�.

(c) ρı   ı = 0 unless ı�  ∈ S� for some 1 ≤ � ≤ r.
(d) If �S�� ≥ 2 then there exist b�c�� x� ∈ k∗ such that

(i) for all u ∈ S�\e the formula

ω2
u =

(
ρeeeeρuuuu
b�c�

)( ∏
e≺≺u

�ρ   �2
b�c�

)
ω2
e

holds, where e is the smallest element in S� with respect to the well-ordering �
on S�, and for all ı�  ∈ � such that ı ≺ :

(ii) ρı  ı ρ ı  ı = b�c��
(iii) ρı   ı = x� = ρı ı ı ı − b�c�/ρı ı ı ı, and
(iv) either ρı ı ı ı = ρ    or ρı ı ı ıρ    = −b�c�.

6. INVARIANTS ASSOCIATED WITH ρ-MATRICES OF THE
PREVIOUS SECTION

Suppose that n ≥ 2 and that �A�ρ� t� is the balanced oriented quantum
algebra of Theorem 5. By Lemma 1 there is an invertible G ∈ A = Mn�k�
such that �A�ρ� t�G� is a twist balanced oriented quantum algebra over
k and G is unique up to scalar multiple. In this section we determine the
resulting link invariants defined in Section 3, where tr is the trace function
on A, in the case of one ρ-component.
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We continue with the notation of the previous section and will use parts
of Theorem 5 without particular reference. We may assume that � is the
usual well-ordering of 	1� � � � � n
 and we continue with the notation ρı ı ı ı =
aı for all 1 ≤ ı ≤ n. We set a1 = a� b�c1 = b�c� x1 = x and assume that b�c
has a square root in k which we denote by

√
b�c. Let

r = a2

b�c � F = InvA� tr� and q = a√
b�c �

Without loss of generality we set G = ∑n
ı=1ω

2
ı Eı ı. Note that the most

general twist balanced oriented quantum algebra structure on �A�ρ� t� is
�A�ρ� t� zG�, where z ∈ k∗. If InvA� tr� Inv

′
A� tr� Link −→ k are the func-

tions of Section 3.2 defined for �A�ρ� t�G� and �A�ρ� t� zG�, respectively,
then

Inv′A� tr� �L� = zWdL1+···+WdLr InvA� tr�L��
where L1� � � � �Lr are the components of L ∈ Link.

Let B = �1/√b�c��∑n
ı� � ��m= 1�ρ−1�� ı mEı  ⊗ E�m�. Then B satisfies the

braid equation and is invertible, and B−1 = √
b�c�∑n

ı� � ��m= 1 ρı �m Eı  ⊗
E�m�. Since B − B−1 = �q − q−1�1A ⊗ 1A, the oriented link invariant G
defined by

G�L� =
(

1√
b�c

)writheL

F�L�

for all L ∈ Link satisfies the skein relation

(23)

We will show that G is determined by the regular isotopy HOMFLY poly-
nomial in two variables, up to a writhe and/or rotation factor when G 
= 0.
Let Tr�+�T��−�T��+, and Tr�− be the oriented 1–1 tangle diagrams depicted
by

respectively. For m ≥ 0 let Cr�+�m��Cr�−�m� be the oriented diagrams
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where T = Tr�+�Tr�−, respectively, and let C��+�m��C��−�m� be the ori-
ented diagram

where T = T��+�T��−, respectively. By convention C��±�0� is a circle with
clockwise orientation and Cr�±�0� is a circle with counterclockwise orien-
tation. To determine, F we compute F on these four types of composite
diagrams and compute Tr�G��Tr�G−1�.

For 0 ≤ � ≤ m ≤ n let

η+�� � m� = �	ı � � < ı ≤ m�aı = a
�
and

η−�� � m� = �	ı � � < ı ≤ m�aı 
= a
��
Now for each 1 ≤ ı ≤ n either aı = a or aı = −b�c/a. Thus a2

ı /b�c = r if
aı = a, and a2

ı /b�c = r−1 if aı 
= a. Consequently

ω2
ı = −�−r�−δa1a rη+�0 � ı�−η−�0 � ı� (24)

for all 1 ≤ ı ≤ n. Set ωı�r� = ωı, and otherwise for x ∈ k∗ choose ωı�x� ∈ k
so that ωı�x�2 = −�−x�−δaıa xη+�0 � ı�−η−�0 � ı�. For all 0 ≤ � ≤ n and x 
= 0� 1
we have the formula

�∑
=1

ω�x�2 = 1 − xη+�0 � ��−η−�0 � ��

1 − x
� (25)

and thus
n∑

=�+1

ω�x�2 = xη+�0 � ��−η−�0 � ��
(

1 − xη+�� �n�−η−�� �n�

1 − x

)
� (26)

To establish (25) observe that ωı�x�2 +ωı+1�x�2 = 0 whenever aı and aı+1
are different. Thus for the purpose of establishing (25) we may assume that
the aı’s in the list a1� � � � � a� which are equal to a precede those aı’s which
are not equal to a.

Observe that ωı�1�2 = �−1�δaıa +1 and ωı�xy�2 = �−1�δaıa +1ωı�x�2ωı�y�2
for all x� y ∈ k∗. The transparent relation

ωı�x−1�2 = ωı�x�−2 (27)

is also a consequence of the preceding properties which the ωı�x�’s satisfy.
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Let

� = rη+�0 �n�−η−�0 �n�

r
�

By (25) and (27) we see that

Tr�G� = 1 − rη+�0 �n�−η−�0 �n�

1 − r
� Tr�G−1� = 1 − r−�η+�0 �n�−η−�0 �n��

1 − r−1

and consequently

Tr�G�
Tr�G−1� = �

when Tr�G−1� 
= 0. Note that Tr�G−1� 
= 0 if and only if Tr�G� 
= 0. Using
(26) and (25) one can show that

wA�Tr�+� = a

( n∑
ı=1

�−r�δaıa −1rη+�ı �n�−η−�ı �n�Eıı

)
�

F�Cr�+�m�� = �a��m Tr �G−1��

wA�T��−� =
1
a

( n∑
ı=1

�−r−1�δaıa −1r−�η+�ı�n�−η−�ı �n��Eıı

)
�

F�C��−�m�� = �a��−m Tr �G��

wA�T��+� = a

( n∑
ı=1

r−1�−r−1�δaıa −1rη+�0 � ı�−η−�0 � ı�Eıı

)
�

F�C��+�m�� = am Tr�G��
and

wA�Tr�−� =
1
a

( n∑
ı=1

r�−r�δaıa −1r−�η+�0 � ı�−η−�0 � ı��Eıı

)
�

F�Cr�−�m�� = a−m Tr�G−1�
for all m ≥ 0.

Suppose that Tr�G� = 0. Then G�L� = 0 for all L ∈ Link. However, when
Tr�G� = 0, if one goes through the same formalism using oriented 1–1
tangles, then the Conway–Alexander polynomial is recovered for oriented
1–1 tangles and, by extension, for all oriented knots and links. See [5, p. 174]
for example.

Now suppose that Tr�G� 
= 0. Then Tr�G−1� 
= 0. Set

ρ = q

qη+�0 �n�−η−�0 �n� and κ = ρTr�G� = ρ−1 Tr�G−1��
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At this point it is not hard to see that F�C� = κ�aρ−1�writheCρ−WdC for all
C = C��±�m��Cr�±�m�, where m ≥ 0. Using (23) we see that

HL�qη+�0 �n�−η−�0 �n�� q− q−1� = �1/√b�c�writheLWdL
ρ

κ
F�L�

for all L ∈ Link, where HL�α� z� is the two variable regular isotopy HOM-
FLY polynomial. See [5, p. 54] for example. Thus

F�L� = awritheL
(
κq−writheLρ−WdLHL

(
qη+�0 �n�−η−�0 �n�� q− q−1))

for all L ∈ Link when Tr�G� 
= 0.
Suppose that a and

√
b�c are independent indeterminates over the prime

field of κ. Note that F�L� is a polynomial in a and b�c and is a homoge-
neous Laurent polynomial in a and

√
b�c of degree writheL. By contrast

the formulas for F deduced in this section are in terms of a and
√
b�c.
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