
Alexandria Engineering Journal (2016) 55, 1765–1773
HO ST E D BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
ORIGINAL ARTICLE
Implementation of fractional order

integrator/differentiator on field

programmable gate array
* Corresponding author. Tel./fax: +91 11 25099050.

E-mail addresses: kpsrana1@gmail.com (K.P.S. Rana),

vineetkumar27@gmail.com (V. Kumar), nishant_m91@yahoo.com

(N. Mittra), pramanik_neel@yahoo.com (N. Pramanik).
1 http://www.nsit.ac.in.
2 Tel.: +91 11 25099050. Fax: +91 11 25099022.

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

http://dx.doi.org/10.1016/j.aej.2016.03.030
1110-0168 � 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
K.P.S. Rana *, V. Kumar
2
, N. Mittra

2
, N. Pramanik

2

Instrumentation and Control Engineering Department, Netaji Subhas Institute of Technology, Sector-3, Dwarka,
New Delhi 110078, India1
Received 30 December 2013; revised 21 March 2016; accepted 22 March 2016

Available online 18 April 2016
KEYWORDS

Fractional order integrator;

Fractional order differentia-

tor;

FPGA;

Virtual instrumentation
Abstract Concept of fractional order calculus is as old as the regular calculus. With the advent of

high speed and cost effective computing power, now it is possible to model the real world control

and signal processing problems using fractional order calculus. For the past two decades, applica-

tions of fractional order calculus, in system modeling, control and signal processing, have grown

rapidly. This paper presents a systematic procedure for hardware implementation of the basic oper-

ators of fractional calculus i.e. fractional integrator and derivative, using Grünwald–Letnikov def-

inition, on field programmable gate array (FPGA) in LabVIEW environment. The simulation and

hardware implementation results for fractional order integrator and derivative of sinusoid and

square waveform signals for some selected fractional orders have been presented. A close agreement

between the simulated and the experimental results demonstrated the suitability of FPGA device in

fractional order control and signal processing applications. LabVIEW being one of the finest tools

for measurement and control, and signal processing applications the fractional order operator

implementation is expected to further enhance the capability of the tool to cater to the needs of

advanced experimental research employing fractional order operators.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, fixed-point operations have been used for
hardware implementations to save costs at the enhanced com-
putational speed. Field programmable gate array (FPGA) is

one such device. Because of their enormous advantages, there
is an increasing trend in the use of FPGA devices as real time
hardware targets in industry. FPGA finds potential applica-

tions in various domains such as real time measurement and
control, signal processing and digital communication. These

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2016.03.030&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kpsrana1@gmail.com
mailto:vineetkumar27@gmail.com
mailto:nishant_m91@yahoo.com
mailto:pramanik_neel@yahoo.com
http://www.nsit.ac.in
http://dx.doi.org/10.1016/j.aej.2016.03.030
http://dx.doi.org/10.1016/j.aej.2016.03.030
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2016.03.030
http://creativecommons.org/licenses/by-nc-nd/4.0/

1766 K.P.S. Rana et al.
are reconfigurable real time devices available at relatively low
costs. On a FPGA device, all of the logic gets implemented
in digital hardware alone thus yielding very high processing

speed. Modern day FPGAs have clock rates in the range of
several MHz and also allow the user to set precise bit settings
for accurate computations in addition to the effective memory

usage. Additionally, each independent task can utilize a differ-
ent set of logic on the same FPGA hardware allowing multiple
tasks to run simultaneously in contrast to microprocessors.

Overall, FPGAs are perfectly suitable for applications in
time-critical systems. On the other hand, the disadvantage of
FPGAs is that the hardware resources are limited and design
requires lots of careful considerations of the precisions

required, with specific planning for each individual applica-
tion. An excellent review of FPGA technologies and their con-
tribution to industrial control applications has been presented

in [1]. Various potential application areas were addressed
which can exploit the advantages of FPGAs. Benefits of using
FPGAs in the case of control applications are then exhibited

and supported with case studies of artificial neural networks
based control system designs targeting FPGAs.

Fractional calculus has been a topic of theoretical research

for scientists and engineers for a very long time. In the past two
decades, several potential applications of fractional order cal-
culus have been developed. One of the areas where fractional
calculus has been found to be very useful is system modeling.

As real objects are generally fractional, system modeling using
fractional calculus is much more accurate as compared to the
integer order modeling. In a recent work on fractional order

modeling, a fractional derivative model was selected to
describe the arterial wall mechanics in vivo. The fractional
derivative model proved to naturally mimic the elastic modu-

lus spectrum with only four parameters and a reasonable small
computational effort [2]. In another work, a nonlinear frac-
tional order model for steer by wire system was presented. Val-

idation of the proposed approach was done in simulation. As
reported, this method is very useful in design of a robust con-
troller for steer by wire systems [3]. Fractional order model of
Permanent Magnet Synchronous Motor (PMSM) has been

proposed in [4]. Simulation and experimental comparisons
between the fractional order and the integer order model of
PMSM were presented to show the existence of fractional

order model on the PMSM speed servo system.
Process control is another area where fractional order con-

trol is being sought as an improvement over conventional con-

trol. In the conventional PID controller, integral term
eliminates the steady-state error but decreases the relative sta-
bility of the system and makes it sluggish as well. Derivative
term increases the relative stability and makes the system much

faster while compromising the sensitivity to noise. Fractional
order control, which involves the use of fractional integrals
and derivatives instead of classical integer order integral and

derivative terms, is able to achieve satisfactory compromises
between the above stated positive and negative effects of con-

ventional PID control. Thus, instead of pure integral 1
s

� �
or

pure derivative (s) term, fractional integral/derivative term
was used i.e., sc (c 2 R+). [5]. In [6], a fractional order PID
controller was investigated in simulation for a position ser-

vomechanism control system considering actuator saturation
and the shaft tensional flexibility. This work claimed that if
fractional order PID controller is properly designed and
implemented, it will outperform the conventional integer order
PID controller. Another such work presents a strategy to tune
a fractional order integral and derivative controller satisfying

gain and phase margins. This work aimed to apply the tuning
procedure proposed to temperature control at selected points
in M/S Quanser’s heat flow experimental platform. The effec-

tiveness and validity of the technique was experimentally illus-
trated by comparison with the traditional PI/PID controller
based on Ziegler Nichol’s tuning method [7]. In [8], explicit

analytical expressions for step and impulse responses of a lin-
ear fractional-order system with fractional-order controller for
open and closed loop were presented. Superiority of the frac-
tional order control over the convention one was demonstrated

with the help of an example. A fractional order controller was
proposed for a class of fractional order system and a tuning
procedure was developed [9]. In the same direction, an intelli-

gent robust fractional surface sliding mode control is proposed
for a nonlinear system [10]. A recent research on intelligent
fractional order control proposed a novel fractional order

fuzzy PID controller. Closed loop performances and controller
efforts in the presented cases were compared with conventional
PID, fuzzy PID and PIkDl controller subjected to different

performance indices in simulation. As reported, the fractional
order fuzzy PID controller outperformed the others in most
cases [11]. Several other recent interesting works on the appli-
cations of fractional order control are automatic voltage regu-

lator [12], oscillatory fractional order processes with dead time
[13], robotic manipulator [14], binary distillation column [15]
and hybrid electric vehicle [16].

Fractional order signal processing and digital filters are also
promising application areas of fractional order phenomena. In
an early stage work, the behavior of passive RC low pass filters

when the capacitive element acquires a fractional order was
numerically investigated. The effect of the fractional capacitor
on time and frequency-domain responses was numerically

studied. The research claimed that speed of the response
increases with fractional order and that by allowing the capac-
itor to acquire a fractional order greater than unity; one can
achieve the advantages of fast response and linear phase shift

over few decades of frequency [17]. Another research presents
a general procedure to obtain Butterworth filter of required
specifications in the fractional-order domain. The necessary

and sufficient conditions for achieving fractional-order Butter-
worth filter with a specific cutoff frequency were derived as a
function of the orders in addition to the transfer function

parameters. The effect of equal-orders on the filter bandwidth
was discussed showing how the integer-order case is considered
as a special case from the proposed procedure. Several passive
and active filters were studied to validate the concept such as

Kerwin–Huelsman–Newcomb and Sallen–Key filters through
numerical simulations. These circuits were tested experimen-
tally using discrete components to model the fractional order

capacitor showing good match with the numerical simulations
[18].

The mathematics involved in fractional integrator/differen-

tiator is much more complex as compared to integer order inte-
grator/differentiator. Therefore, hardware implementation of
fractional operators is also relatively complex. Some tech-

niques for hardware implementation of fractional operators
have been proposed and reported in the literature. Several
hardware platforms have been used in various applications.

Implementation of fractional order integrator/differentiator 1767
In [19], an experimental study of the fractional order con-
troller, implemented on a desktop computer, was presented.
The LabVIEW based experimental results validated the advan-

tages of the proposed fractional order controller. An experi-
mental study of the fractional order proportional and
derivative controller to control a fractional horsepower

dynamometer system is presented in [20]. The controller was
implemented on a desktop computer. In [21], realization of
fractional order controller, to control a DC motor – generator

plant, was presented in LabVIEW environment on a real time
platform. The fractional order controller transfer function was
realized using continuous fraction expansion scheme. A differ-
entiator using Richardson extrapolation and fractional delay

was proposed and implemented on Field Programmable Gate
Array (FPGA). This work resolves the problems caused by the
high order interpolator used to implement fractional delay by

implementing a higher sampling rate system on FPGA, which
acts like a system using fractional delay [22]. In another such
work, the fractional order integrative operator s�m, where m

is a real positive number, is approximated via a mathematical
formula and then, hardware implementation of fractional inte-
gral operator is proposed using FPGA. The paper claims that

FPGA-based implementation is up to one hundred times faster
than implementations based on microprocessor and this extra
speed is exploited to allow higher performance in terms of dig-
ital approximations of fractional order systems [23]. The pro-

posed method was validated in simulation. In a recent
research, an improved particle swarm optimization (PSO)
algorithm was adopted to optimize fractional order PID con-

troller parameters. This paper adopted FPGA combined with
external circuit to implement fractional order PID controller
because of high complexity of PSO and long tuning time. Val-

idation of the technique was done in simulation. The research
claimed that fractional PID controller implemented with
FPGA has some advantages such as flexible design, self-

tuning on line, high reliability, low development cycle and high
speed [24]. A new hardware architecture for implementing a
Discrete Fractional Fourier Transform which requires hard-
ware complexity of O(4N), where N is transform order was

proposed in [25]. This proposed architecture was simulated
and synthesized using Verilog HDL, targeting a FPGA device
(XLV5LX110T).

The literature survey conducted above clearly indicates that
the use of FPGA in LabVIEW environment for hardware
implementation of fractional order integrator/differentiator

has not been explored. Bridging this technical gap is the key
motivation of this research. This paper presents a step-by-
step procedure for the hardware implementation of basic oper-
ators of fractional calculus i.e. fractional integrator and differ-

entiator on a FPGA device by M/S National Instruments (NI-
PXI 7833R) in LabVIEW environment. Using the well-known
Grünwald–Letnikov (G–L) equation for fractional order inte-

grator/differentiator with a good approximation, the operator
was first applied on several standard waveform signals in sim-
ulation mode. Once satisfactory results were obtained in simu-

lation, the logic was deployed onto the FPGA hardware using
the FPGA toolkit of LabVIEW. This toolkit converted the
graphical LabVIEW code into very high speed integrated cir-

cuits hardware description language (VHDL) and deployed it
onto the FPGA hardware target. In a way, the LabVIEW user
is freed from learning the intricacies of VHDL. The results for
fractional integration/differentiation of standard waveforms
such as sinusoid and square for some selected fractional orders
have been presented in this work.

The rest of the paper is organized as follows. In Section 2,

the basic mathematics for fractional integrator/differentiator
has been described. Section 3 presents the algorithm developed
for the implementation of G–L fractional order operator algo-

rithm in LabVIEW environment. The constraints involved in
the implementation of the proposed algorithm on FPGA
device in LabVIEW environment and their remedies are also

presented. Simulation results for some standard waveforms
along with the validation are also presented in this section.
Then, the experimental results obtained on the FPGA target
for sine and square waveforms along with the resources con-

sumed on the hardware target are presented in the section. Sec-
tion 4 concludes the work.

2. Fractional order operator

The G–L definition for fractional order operator is defined as
follows:

DcxðtÞ ¼ lim
h!0

h�c
X1
j¼0

ð�1Þ j c
j

� �
xðt� jhÞ ð1Þ

where D is the differintegral operator, c
j

� �
¼ ðcÞðc�1Þðc�2Þ...ðc�jþ1Þ

Cðj�1Þ
and h being the step size.

FPGA being a discrete time implementation device requires
a discrete time version of G–L definition. This could be arrived

at by expanding binomially the backward difference equation

for the derivative operator i.e. s ¼ 1�z�1

T
; T being the sampling

interval (assumed to be very small).

Hence, the fundamental fractional operator sc, where c is a
real number, can also be approximated using the binomial
expansion of the backward difference [26].

Therefore,

sc ¼ 1� z�1

T

� �c

On applying binomial expansion for 1�z�1

T

� �c

sc ¼ T�c
X1
j¼0

ð�1Þ j ðcÞðc� 1Þðc� 2Þ . . . ðc� jþ 1Þ
Cðj� 1Þ z�j

Hence, in discrete time differintegral operator, D can be
written as follows:

Dc ¼ T�c
X1
j¼0

ð�1Þ j c
j

� �
z�j ð2Þ

Dc ¼ T�c
X1
j¼0

bjz
�j

where bj ¼ ð�1Þ j c
j

� �
.

Furthermore, coefficient ‘b’ can be simplified to the follow-

ing recursive algorithm:

bj ¼ 1� 1þ c
j

� �
bj�1; j ¼ 1; 2; . . . ð3Þ

with b0 = 1.

Start

Compute the binomial coefficients
 ,b0 = 1 for above array size of j

and , T:sampling interval, :fractional power

Set the required sampling rate. Create an array of
fixed size and initialize with zero

Divide the acquired voltage sample value by
3276.7 to get back normalized sample value

Acquire voltage sample of the waveform to be
operated using fractional operator

Insert this sample value at the beginning of the
array

1768 K.P.S. Rana et al.
So, the fractional integrator/differentiator of a sequence x
[n] is as follows:

Dcðx½n�Þ ¼ T�c
X1
j¼0

bjx½n� j� ð4Þ

As shown in Eq. (4), an infinite series of coefficients needs

to be calculated and stored for implementation of the differin-
tegral operator. FPGA, as any other hardware device, has lim-
ited memory and storing very large number of coefficients
would require longer processing thereby leading to the larger

sampling intervals. Therefore, instead of calculating and stor-
ing all previous values, only the last few sample values are
stored in memory in the form of an array. Keeping the window

size of L, a short memory of L, Eq. (4) can be further simplified
as follows:

Dcðx½n�Þ ¼ T�c
XL
j¼0

bjx½n� j� ð5Þ

This equation matches with the G–L equation with short
memory of L. This is a well implementable logic on the FPGA
as it only requires delays, multipliers and the set of adders.
Yes

No

Multiply the corresponding elements of this array
and the array containing binomial coefficients

Sum all the elements of the above product

Multiply the sum by . This gives the
normalized integrated/differentiated value of the

input sample

Multiply the calculated value by 3276.7 and
generate an output waveform sample

Rotate the array containing input sample values
to the right by one position

Stop

Stop?

Figure 1 Flowchart for FPGA implementation of differintegral

operator.
3. FPGA implementation: Issues and results

FPGA being a hardware device needs to be programmed using
some hardware description language. But in this study, Lab-

VIEW was used for the purpose because it has a well-
developed state-of-the-art toolkit for programming and
deployment of FPGA device. So, FPGA hardware can be pro-

grammed without the need of learning any hardware descrip-
tion language. The software automatically converts the
graphical code into an equivalent VHDL code. The user is

required to take care of the timing and hardware constraints
of the hardware device, if reported by the tool. Once the Lab-
VIEW code is deployed onto the FPGA, it can be executed any

number of times independent of the host computer.
The digital hardware implementation of a fractional order

differintegral operator requires a careful consideration of cer-
tain issues including hardware resources and computational

speed. FPGA based implementations are generally faster than
implementations based on microprocessors; this extra speed
can be exploited to allow a higher performance in terms of dig-

ital approximations of fractional order systems and higher
throughput. Though a FPGA promises speed and reliability,
it lacks in resolution. The NI-7833R FPGA device also works

on fixed-point mathematics and hence, the resolution gets
affected. If word sizes are not correctly assigned to the vari-
ables, then timing violations may occur and the code will not

get deployed onto the FPGA. Another issue to be kept in mind
is the availability of the hardware resources. It may so happen
that the code may be too complex and may run out of
resources. Therefore, a concise code with optimum use of

resources must be conceived. Another constraint is that the
NI-7833R FPGA device allows only fixed size arrays to be
allocated as dynamic arrays cannot be created and handled

in this device. Hence, an efficient approach to apply the differ-
integral algorithm is required.

As can be seen from the G–L equation, pre-computed bino-

mial coefficients are required to be multiplied successively with
previous values of sampled input and the multiplication needs
to be accumulated and scaled by T�c to yield the result. This

process needs to be continued for every new sample acquisi-
tion. Since a long memory (large window) would take more
time for multiplication and accumulation of large number

set, one would be left with a lower sampling rate and there
may be issues to represent the signal correctly on account of
the poor sampling rate alone. On the other hand, a long mem-

ory will enhance the implementation accuracy. So, a trade-off
needs to be set between the memory length and the required
sampling rate.

Figure 3 Fractional derivative of sine waveform for c ¼ 0:2.

Figure 4 Fractional integral of sine waveform for c ¼ �0:6.

Implementation of fractional order integrator/differentiator 1769
In the present study a memory length L of 100 was kept for
the investigation at 20 Hz waveforms and a memory length L
of 400 was kept for the measurement of frequency responses of

the developed differentiators and integrators. This reduces the
accuracy to some extent but the hardware resources were plau-
sibly utilized while maintaining a good approximation and

required sampling rates. In order to implement the effect of
delay, before every new acquisition the array set is right shifted
and the new acquisition is inserted at the beginning. It may be

noted that initially the entire array is initialized to zero. There-
fore, in this study the samples are stored one by one in an array
having a fixed size of L elements. When the number of input
samples reaches L, the oldest value is exited from the array,

the array elements are right shifted and the new sample is
inserted in the beginning. Thus only a fixed number of calcula-
tions were required to be performed at each acquisition. For

example, if the array size is fixed to 100, then only 100 past
samples need to be multiplied with the corresponding binomial
coefficients and accumulated to realize the operated output for

the present iteration. Furthermore, it may be noted that there
will be a transient state of 100 samples in the output
waveforms.

FPGA implementation of the differintegral operator is not
a very straight forward operation and needs some special men-
tion. The real world voltage signal of few volts (say 1 V)
acquired using FPGA board formed a large numeric value

(i.e. 3276.7) on the FPGA and hence, it needed to be treated
appropriately. Also, a large numeric value (say 3276.7) on
the FPGA board formed a voltage signal of 1 V to the real

world. Computation of the factor T�c present in Eq. (5) on
the FPGA target also requires a special mention. As there is
no inbuilt mathematical library present in the FPGA toolkit

of LabVIEW to perform xy operation, instead of implementing
T�c directly, the same was implemented as in Eq. (6).

T�c ¼ e�c lnðTÞ ð6Þ
Another consideration has been the supported exponential

function on FPGA board which is designed to take input in the

range of ±1 only. For the same, the actual input value, that is,
�c ln(T) was scaled down by 10 as in this study, this value was
never greater than 10 and then, the exponential operation was
performed. Now, to obtain the actual applicable values, the

computed exponential function was further raised to the power
of 10 as given in Eq. (7). This obtained exponential value is the
required value.
Figure 2 LabVIEW code for implementation of differin
e�c lnðTÞ ¼ e
�c lnðTÞ

10

� �10

ð7Þ

Finally, the algorithm for differintegral operator was imple-

mented as shown in the flowchart of Fig. 1. A LabVIEW code
which used the FPGA resources effectively was developed. The
G-code shown in Fig. 2 is the code for implementation of frac-
tional order integration/differentiation on FPGA. The part of

the code present inside the while loop is recursive. It was found
by means of various experiments on the hardware that an iter-
ation of this recursive part takes approximately 20 ls. So, the
delay in the data acquisition loop of two successive samples
was always kept at a value greater than 20 ls. This means that
tegral operator on FPGA for a window size of 100.

Figure 5 Fractional derivative of square waveform for c ¼ 0:2.

Figure 6 Fractional integral of square waveform for c ¼ �0:6.

1770 K.P.S. Rana et al.
the sampling interval for the input waveform to the fractional
operator deployed on the FPGA is required to be set greater

than 20 ls.
The code in Fig. 2 was first validated in simulation. The

results obtained in simulation for sine and square waveforms

for different values of c are presented in Figs. 3–6.
In this implementation, the fixed-point coding is used to

process the data. The data is converted to a signed bit stream
of 24 bits, wherein the first 7 bits are used to represent the inte-

ger part of the data, while the remaining 17 bits are used for
the fractional value of the data. This word length allowed
defining a maximum signed value of ±64 having an accuracy

of about 7.6294E�06.
Theoretically, 1 V sinusoid waveform of 20 Hz sampled at

0.5 ms, and for the differential operator of fractional order

0.2, the output signal is amplified by a factor of sc =
(2�p�20)0.2 = 2.63 i.e. for an input signal of amplitude 1 V,
an output of 2.63 V is produced. The output signal is also

advanced of a phase equal to c�90� = 18�, equal to 2.5 ms.
Arbitrary Function Generator
(AFG-3022, M/S Tektronix)

Dua

LabVIEW software package on NI-PXI (1031

CH1

Figure 7 Experimental
In simulation using 100 binomial coefficients, these results
were obtained as 2.59 V and 2.5 ms. Furthermore, for a win-
dow size of 400 results are further improved to 2.68 V and

2.5 ms. Similarly, for the same signal, for the integral operator
of fractional order 0.6, the output signal is attenuated by a fac-
tor of sc = (2�p�20)0.6 = 18.18 i.e. an input signal of amplitude

1 V produced an output of 0.055 V. The output signal is also
delayed of a phase equal to c�90� = 54�, equal to 7.5 ms. On
the fixed-point mathematics, the results are obtained as

0.042 V and 5.5 ms. For a window size of 400, results are little
improved to 0.050 V and 5.5 ms. The result, for both the oper-
ations, closely matches with the theoretical ones.

After satisfactory results were obtained in simulation, the

code was deployed onto the FPGA device for a window size
of 100. Inputs to the FPGA device were waveforms generated
by an arbitrary waveform generator (AFG-3022, M/S Tek-

tronix) and the generated integrated/differentiated waveforms
were displayed on a digital storage oscilloscope (TDS-2022,
M/S Tektronix). Fig. 7 shows the schematic of the experimen-

tal setup and Fig. 8 shows the snap shot of the actual experi-
mental setup. The inputs used were sinusoid and square
waveforms of 20 Hz. The results for these waveforms for dif-

ferent values of gamma have been given in Figs. 9–12.
As can be seen, the hardware implementation results closely

conform to the simulation results. In case of differentiation of
c= 0.2, for an input of 2.10 Vp–p the oscilloscope recorded an

output of 5.44 Vp–p i.e. an amplification of 2.69 against the
2.63. In case of integration of c = 0.6, for an input of
2.10 Vp–p the oscilloscope recorded an output of 100 mVp–p

i.e. an attenuation of 21 against the 18. It may also be noted
that the signal in second case being very small also picks up
the noise yielding more uncertainty. Also, the results for the

square waveform are also in agreement with the simulation.
For further validation of the technique, fractional deriva-

tive of sine waveform was performed for c = 0.99 which

resulted in approximate complete derivative of sine waveform
as shown in Fig. 13. In this particular case, the output signal
was appropriately attenuated to yield a 1.0 V physical signal
on the oscilloscope. This was done because in normal case

the resulting amplitude was much higher (>122 V) and would
have forced the device to saturate. It can be clearly seen that
the input and the output waveforms on a digital storage oscil-

loscope show a phase difference of near 90�. To validate this,
the differentiated waveform was given as external trigger to
the oscilloscope and sine waveform was given as input. This

resulted in the formation of an elliptical Lissajous pattern as
shown in Fig. 14 which authenticated that the waveforms were
90� apart in phase. In this way, complete differentiation of sine
waveform was achieved using the same technique as was used

for fractional order derivative thus showing the effectiveness of
the proposed implementation technique.
l Channel DSO (TDS-2022, M/S Tektronix)

) platform and NI-FPGA (7833R Board)

CH2

setup block diagram.

Figure 8 Experimental setup.

Figure 9 Fractional derivative of sine waveform for c ¼ 0:2

(input – yellow, output – cyan). (For interpretation of the

references to color in this figure legend, the reader is referred to

the web version of this article.)

Figure 10 Fractional integral of sine waveform for c ¼ �0:6

(input – yellow, output – cyan). (For interpretation of the

references to color in this figure legend, the reader is referred to

the web version of this article.)

Figure 11 Fractional derivative of square waveform for c ¼ 0:2

(input – yellow, output – cyan). (For interpretation of the

references to color in this figure legend, the reader is referred to

the web version of this article.)

Figure 12 Fractional integral of square waveform for c ¼ �0:6

(input – yellow, output – cyan). (For interpretation of the

references to color in this figure legend, the reader is referred to

the web version of this article.)

Implementation of fractional order integrator/differentiator 1771

1772 K.P.S. Rana et al.
To further investigate the implemented fractional order
operators, on the used FPGA target, frequency responses of
the fractional derivative of c= 0.2 and fractional integral of

c= �0.6 were recorded for a window size of 400 in the fre-
quency range of 2–20 Hz. Since arrays of this size were not
Figure 13 Fractional derivative of sine waveform for c ¼ 0:99

(input – yellow, output – cyan). (For interpretation of the

references to color in this figure legend, the reader is referred to

the web version of this article.)

Figure 14 Lissajous pattern.

Figure 15 Frequency response comparison for fractional deriva-

tive (c= 0.2, memory = 400).

Figure 16 Frequency response comparison for fractional inte-

grator (c = �0.6, memory = 400).

Table 1 Design summary.

Resource Utilization Utilization (%)

Sliced flip flops 2538 out of 28,672 8

4 Input LUTs 3854 out of 28,672 13

BUFGMUXs 2 out of 16 12

LOCed BUFGMUXs 1 out of 2 50

External IOBs 113 out of 484 23

LOCed IOBs 113 out of 113 100

MULT18X18s 25 out of 96 26

RAMB16s 14 out of 96 14

Slices 2852 out of 14,336 19

Design information

Target device xc2v3000-4-fg676

Input format VHDL
supported by the used FPGA device, first-in-first-out (FIFO)
memory was used to implement the same for storing of input

signal and the coefficients. Fig. 15 shows the comparison
between the implemented fractional derivative of c= 0.2 for
the frequency range of 2–20 Hz with the ideal one. Good

match between the theoretical and the measured responses
can be clearly observed in the considered frequency range.
Similarly, Fig. 16 compares the implemented fractional inte-

gral of c = �0.6 for the frequency range of 2–20 Hz with the
ideal one.

An important aspect while working on a hardware device is
the resources utilized by the developed code. This aspect

becomes even more important while working on a real time
hardware device. As the amount of logic used for implementa-
tion of a code increases, propagation delay also increases

which adversely influences the performance of a real time
device and the device deviates from the expected performance.
Even power dissipation also increases with the increase in logic

influencing the device’s performance. So, it becomes crucial to
present the resources employed by a code on FPGA. The
resources utilized by the code using FIFO memory for input
and coefficient for a window size of 400 are given in Table 1.

4. Conclusion

In this paper, a step by step procedure for hardware implemen-
tation of fractional integrators and derivatives on field pro-
grammable gate arrays (FPGA), using Grünwald–Letnikov

Implementation of fractional order integrator/differentiator 1773
algorithm, was presented. Various FPGA implementation
aspects including the fixed point operations, supported mathe-
matical functions and programming constraints on the used

FPGA target were addressed for the LabVIEW implementa-
tion environment. Detailed hardware implementation results,
verifying the theoretical simulations, for fractional integrations

and derivatives of sine and square waveforms for fractional
powers of �0.6 and 0.2 have been presented in addition to
the frequency responses of the developed operators. Developed

fractional integrations and derivatives demonstrated a very
close agreement with the expected ideal theoretical results
and thereby validated the procedure used in this work. As a
future scope of this work, the developed fractional operators

can be integrated with the hardware processes for fractional
order control or signal processing applications and enhanced
performances may be utilized for a particular case.

Acknowledgment

The authors would like to thank anonymous reviewers for
their valuable comments and suggestions to improve the qual-
ity of the paper.

References

[1] E. Monmasson, L. Idkhajine, M.N. Cirstea, I. Bahri, A. Tisan,

M.W. Naouar, FPGAs in industrial control applications, IEEE

Trans. Ind. Inf. 7 (2) (2011) 224–243.

[2] Damian O. Craiem, Ricardo L. Armentano, Arterial

viscoelasticity: a fractional derivative model, in: Proceedings of

the 28th IEEE EMBS Annual International Conference, New

York City, USA, Aug 30–Sept 3, 2006, pp. 1098–1101.

[3] F. Tahami, H. Afshang, A fractional order model for steer-by-

wire systems, in: Proceedings of the 35th IEEE conference,

IECON Industrial Electronics, 3–5th November, 2009, pp.

4161–4166.

[4] Wei Yu, Youguo Pi, Fractional order modeling and simulation

experiment of permanent magnet synchronous motor, in:

Proceedings of the 28th IEEE/ASME Conference on

Mechatronics and Embodied Systems and Applications

(MESA), 8–10 July, 2012, pp. 114–118.

[5] J. Sabatier, A. Oustaloup, A.G. Iturricha, P. Lanusse, CRONE

control: principles and extension to time-variant plants with

asymptotically constant coefficients, Nonlinear Dyn. 29 (2002)

363–385.

[6] Dingyu Xue, Chunna Zhao, YangQuan Chen, Fractional order

PID control of a DC-motor with elastic shaft: a case study, in:

Proceedings of the 2006 American Control Conference,

Minneapolis, Minnesota, USA, June 14–16, 2006, pp. 3182–

4187.

[7] Hyo-Sung Ahn, Varsha Bhambhani, YangQuan Chen,

Fractional-order integral and derivative controller design for

temperature profile control, in: Proceedings of the Control and

Decision Conference (CCDC 2008), 2–4 July, 2008, pp. 4766–

4771.

[8] Igor Podlubny, Fractional-order systems and controllers, IEEE

Trans. Autom. Control 44 (1) (1999) 208–213.

[9] Ying Luo, Yang Quan Chen, Fractional order [proportional

derivative] controller for a class of fractional order systems,

Automatica 45 (2009) 2446–2450.

[10] H. Delavari, R. Ghaderi, N.A. Ranjbar, S. Momani, Fuzzy

fractional order sliding mode controller for nonlinear systems,

Commun. Nonlinear Sci. Numer. Simul. 15 (4) (2010) 963–978.
[11] Saptarshi Das, Indranil Pan, Shantanu Das, Amitava Gupta, A

novel fractional order fuzzy PID controller and its optimal time

domain tuning based on integral performance indices, Eng.

Appl. Artif. Intell., Elsevier 25 (2) (2012) 430–442.

[12] I. Pan, S. Das, Chaotic multi-objective optimization based

design of fractional order PIkDl controller in AVR system,

Electr. Power Energy Syst. 43 (1) (2012) 393–407.

[13] S. Das, I. Pan, S. Das, Performance comparison of optimal

fractional order hybrid fuzzy PID controllers for handling

oscillatory fractional order processes with dead time, ISA Trans.

52 (4) (2013) 550–566.

[14] R. Sharma, K.P.S. Rana, V. Kumar, Performance analysis of

fractional order fuzzy PID controllers applied to a robotic

manipulator, Expert Syst. Appl. 41 (9) (2014) 4274–4289.

[15] P. Mishra, V. Kumar, K.P.S. Rana, A fractional order fuzzy

PID controller for binary distillation column control, Expert

Syst. Appl. 42 (22) (2015) 8533–8549.

[16] V. Kumar, K.P.S. Rana, P. Mishra, Robust speed control of

hybrid electric vehicle using fractional order fuzzy PD & PI

controllers in cascade control loop, J Franklin Inst, Elsevier,

2016 (in press), http://dx.doi.org/10.1016/j.jfranklin.2016.02.

018.

[17] Wajdi Ahmad, Reyad El-Khazali, Fractional-order passive low-

pass filters, in: Proceedings of the 10th IEEE International

Conference on Electronics, Circuits and Systems (ICECS 2003),

14–17 Dec, 2003, pp. 160–163.

[18] A. Soltan Ali, A.G. Radwan, Ahmed M. Soliman, Fractional

order Butterworth filter: active and passive realizations, IEEE J.

Emerg. Sel. Top. Circ. Syst. 3 (3) (2013) 346–354.

[19] Yongshun Jin, Ying Luo, Chunyang Wang, YangQuan Chen,

LabVIEW based experimental validation of fractional order

motion controllers, Chinese Control and Decision Conference

(CCDC 2009), 2009, pp. 323–328.

[20] Ying Luo, Yang Quan Chen, Youguo Pi, Experimental study of

fractional order proportional derivative controller synthesis for

fractional order systems, Mechatronics 21 (2011) 204–214.

[21] A. Ruszewski, A. Sobolewski, Comparative studies of control

systems with fractional controllers, Przeglazd Elektrotechniczny

(Electr. Rev.) (2012) 204–208.

[22] Yasuaki Kaneda, Teruyoshi Sadahiro, MasakiYamakita, FPGA

Implementation of digital differentiator using richardson

extrapolation and high sampling rate acting like fractional

delay, SICE Annual Conference, Waseda University, Tokyo,

Japan, September 13–18, 2011, pp. 2378–2383.

[23] R. Caponetto, G. Dongola, A. Gallo, Fractional integrative

operator and its FPGA implementation, in: Proceedings of the

ASME 2009 International Design Engineering Technical

Conferences & Computers and Information in Engineering

Conference (IDETC/CIE 2009), San Diego, California, USA,

August 30–September 2, 2009, pp. 1–7.

[24] Liguo Qu, Haibo Hu, Yourui Huang, Fractional order PID

controller based on particle swarm optimization implemented

with FPGA, in: Proceedings of the International Conference on

Artificial Intelligence and Computational Intelligence (AICI-

2010), IEEE Computer Society, 23–24 Oct, 2010, pp. 165–169.

[25] M.V.N.V. Prasad, K. C. Ray, A. S. Dhar, FPGA

implementation of discrete fractional Fourier transform,

International Conference on Signal Processing and

Communications (SPCOM-2010), 18–21 July, 2010, pp. 1–5.

[26] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional

Order Systems: Modeling and Control Applications, World

Scientific Publishing Co. Pte. Ltd., Singapore, 2010.

http://refhub.elsevier.com/S1110-0168(16)30044-8/h0005
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0005
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0005
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0025
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0025
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0025
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0025
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0040
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0040
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0045
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0045
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0045
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0050
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0050
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0050
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0055
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0055
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0055
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0055
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0060
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0060
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0060
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0060
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0060
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0065
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0065
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0065
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0065
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0070
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0070
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0070
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0075
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0075
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0075
http://dx.doi.org/10.1016/j.jfranklin.2016.02.018
http://dx.doi.org/10.1016/j.jfranklin.2016.02.018
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0090
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0090
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0090
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0100
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0100
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0100
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0105
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0105
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0105
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0105
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0130
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0130
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0130
http://refhub.elsevier.com/S1110-0168(16)30044-8/h0130

	Implementation of fractional order �integrator/differentiator on field �programmable gate array
	1 Introduction
	2 Fractional order operator
	3 FPGA implementation: Issues and results
	4 Conclusion
	Acknowledgment
	References

