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1. INTRODUCTION

Let 2 be a bounded open set of R", n =2, with points x=(x, .., x,). N
is an integer >1, (| ), and || - ||, are the scalar product and the norm in R*.
We will drop the subscript k& when there is no fear of confusion.

If u: Q- R, we set Du=(D,u, .., D,u), where, as usual, D,=3/0x,.
Clearly, Due R™ and we denote by p=(p’, .., p"), p'e R, a typical vec-
tor of R™.

H'=H"? and H} = H}? are the usual Sobolev spaces.

Let us consider the non-linear differential operator of second order

Eu=Y D.a'(Du), (1.1)

where a'(p) are vectors of RY. Suppose that

a'e C(R™) (1.2)
a'(0)=0 (1.3)
n N i 2y 12
{Z Y, a—q(#} <M, VYpe R™Y (1.4)
J=1 hk=1 Px
da .
22 ‘;"(f])é},éizwléllz, Vp, £ R™, (1.5)
i hk k

where M and v are suitable positive constants.
Then, we say that operator (1.1) has “2-non-linearity” [6].
From (1.3), (1.4) it easily follows that

la (Pl <Mlpl,  VpeR™. (1.6)

A solution of system Ex=0 in Q is a vector ue H'(£2), such that

f Y (@(Du)| D) dx=0,  VoeHYQ). (1.7)

291
0001-8708/87 $7.50

Copyright © 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82279547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

292 SERGIO CAMPANATO

For the sake of simplicity, we will confine ourselves to considering
second order operators even if, as will be proved, they could be extended to
systems of order 2m.

Now, consider the theory of the regularity, in the #**-spaces' (in
particular the theory of C®*regularity), for the solutions to non-linear
elliptic systems

Y. D.a'(x, u, Du)=a®(x, u, Du); (1.8)

it is known that systems of type

Y D,a(Du)=0 (1.9)

play, in that theory, a role quite analogous to the one played, in linear
theory, by systems with constant coefficients and reduced to the principal
part, ie.,

ai(p)=ZA,jpj, (1.10)

where 4, are N x N constant matrices.

This is the reason why it is important to obtain, for the solutions of
system (1.9), the #>*-regularity and above all the so-called “fundamental
estimates” for both the vectors u and Du.

In [4, 5] such a problem has been studied in the interior. In Section 3,
we will recall and even improve some results obtained in [4, 5]:

Define

B(x% o)={x:|x—x°| <o}

If ue H'(RQ) is a solution of system (1.9), then there exists an &(v, M, n)e
(0, 1) such that, for every ball B(¢)= B(x°, ¢) = Q and Vre (0, 1), we have
the following interior fundamental estimates,

f ||Dun2dx<cz*f I1Du|? dx, (1.11)
B(to) B(o)

where
A=min(2 + ¢, n). (1.12)

Furthermore, we have

[ M= spll? dx<er 2 [ u— gl dx, (1.13)
B(reo) B(os)

!'See [2] and [Q, p. 13].
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where

ug=+ u(x)dx.

2= ulx)

And hence, if 2<n <4, we get
j ||u||2dx<ct"f lul? dx. (1.14)
B(10) B(a)

The constants ¢, which appear in (1.11), (1.13), (1.14), depend neither on
t, ¢ nor on x°.

In particular, from (1.13) it follows that ue #%**3(R), so that, if
2<n<4,
n—2a

ue Co**(Q)  with a=1-— 5

(1.15)

Note that this regularity result for the vector u is the best possible. Indeed,
if n> 4, the vector u is only partially Holder continuous in € (see [4]).
Finally, inequality (1.14) is a cornerstone in proving the maximum
principle of Section 8.
In Section 5 we will prove that a fundamental estimate, quite analogous
to (1.11), also holds for the solutions of system Eu =0, in the hemisphere

B*(1)={xeB(0,1):x,>0};
such solutions vanish on the flat part I" of the boundary
I'={xeB(0,1): x,=0}.

Indeed, under the hypotheses (1.2)-(1.5), we will prove again that
ue H**(B* (o)) for every o <1 (Section 4). Then, there again exists an
e(v, M, n)e (0, 1) such that, Vo e (0, 1) and Vre (0, 1), we have

j 1 Dul? dx < cﬂj |1 Dul? dx, (1.16)
Bt (10) B*(a)

where 4=min(2 + ¢, n). The proof of this inequality is not elementary.

The interior fundamental estimate (1.11) allows one to obtain the follow-
ing regularity result (Section 3).

Let a'(x, p), i=1, .., n, be vectors of R”, defined in 2 x R"™, of class C!
in p, which satisfy conditions (1.4) and (1.5) for all (x, p)e 2 x R™¥ and
a'(x, 0) =0 for x e Q. Moreover, for every x, yeQ and pe R"™, we suppose
that

2 la'(x, p)—d'(y, pl <allx—yl)-lpl, (1.17)
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where w(t), with >0, is a bounded, non-decreasing function which con-
verges to zero when 1 — 0. If ue H'(£2) is a solution of the system

Y D,ai(x, Du+Dg)=0 inQ (1.18)

and ge H""(Q) with 0 < < 4, then Due IZH(RQ).

Likewise, from the fundamental estimate (1.16) it follows that, if the
vectors a‘(x, p) verify, in B* (1) x R"", all the conditions listed above, and
if ue H'(B*(1)) is a solution of the problem

u=0 on I
| (1.19)
Y D.a'(x,Du+Dg)=0  in B*(l),

where ge H"“(B*(1)), 0<u<4, then DuelLl**(B*(c)) for every
o€ (0, 1) (see Section 6).

By a usual covering argument, from the previous interior, or near the
boundary, regularity results, we deduce the following (see Section 7):

If Q is of class C? and ue H'(R) is the solution of the Dirichlet problem

u—geHy(Q)
‘ (1.20)
Y D,a'(Du)=0  in &,

where ge H"*Y(Q), 0< u< A, then Due L**(Q); moreover, the estimate
I Dull 2ma) < C1Dgl 200) (1.21)
holds. In particular we get ue #>2*#(). As a consequence, if

2<n<g4 and n—2<pu<Ai

then

ue C*%Q)  with a=1—”—;’f. (122)

Sections 4, S, and 6 are necessary as, to date, the boundary
#>*_regularity for solutions to non-linear systems with Dirichlet boundary
datum has not been stated. By the same procedure, it is certainly possible
to study this boundary P regularity for systems of general type, such as
(1.8) also. But we will not deal with this topic in this paper.

Finally, (1.21) and the fundamental estimate (1.14) allow one to obtain
the maximum principle contained in Section 8.

This maximum principle is analogous to the one proved in [9] for linear
systems with constant coefficients and it is the aim of the present paper. In
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fact, this maximum principle is an important step in studying the partial
regularity of the H' n L®() solutions to system (1.8) when a°(x, u, p) has
quadratic growth (see [10] for the quasi-linear systems).

2. PRELIMINARIES AND NOTATIONS

We define
B(x% 6)={x: |x—x° <0};
moreover, if x2=0,
B*(x% 6)={xeB(x% g): x,>0}
I(x°% o)={xeB(x° 0): x,=0}.
We will simply write B*(g), I'(6), and I instead of B*(0, o), I'(0, 6), and
I'(0, 1), respectively.
Throughout the present paper, 2 will denote a bounded open set of R”

with diameter d,,.
If ue L'(#), # is an open non-empty set of 2, then

ux=£a Mx)dx:measé&L,udx' (2.1)
If ue L=(2), we define
el co.o = ess sup [lu(x)]. (22)
If ue C**(Q), 0<a<1, we set
lu(x) — u(y)|l

[#]ea= sup (2.3)

x,yef “x_y”a

and we will say that ue C**(Q) if ue C**(K) for every compact subset
Kc.

If ue L*(Q), 0<A<n, or ue £**(Q) with 0< A< n+2, we define, as
usual (see [Q]),

I 2asa = sup o * [ fu(x)|® dx (24)
Nee 2(x%0)
O<ox<dg

[Wlsa= sup o *[  Jux)—ugwol?de,  (25)
Neq 2(x0,0)

€
O<o<dp

where Q(x°, ¢) = Q N B(x°, o).
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We say that ue H"*(Q), 0<i<n, if

ue H'(2) and Due L*(Q). (2.6)
When ue H'(2), we define
uld.q= Nl dx (27)
Q
lul o= |Duloq. (2.8)

The lemma which follows is a very particular case of Theorem 2.1, p. 15,
of [Q]; clearly, it holds even if the ball B(x° o) is replaced by the
hemisphere B*(x°, o).

LemMma 21 Fix a ball B(c)=B(x° 0)<R" If uec £**(B(c)) with
n<i<n+2, then ue C**(B(c)), with o.= (A —n)/2, and

[u]a,ira_)<C(”)[“]yU(B(a))- (2.9)

The following Caccioppoli-type inequality is well known.

LemMa 2I1. If ue HY(Q) is a solution, in Q, of system (1.9) under the
hypotheses (1.2)~(1.5), then for every ball B(2¢)= B(x°, 2¢6) <= Q

'Du|0.B(a) <cv, M)o -t flu— uB(Za)”O,B(Za)' (2-10)
In fact, after the (N x N)-matrices

t Oaj(1p)
B,={B'¥}, where Bi= L—apz—dt, (2.11)

have been introduced, system (1.9) can be written
ZDi(B,.j(Du)Dju)=0 in Q (2.12)
ij

so that ue H'(£2) is a solution, in €, of a linear elliptic system, whose coef-
ficients B;(Du(x)) belong to L*(L).

Then, (2.10) is a very particular case, for instance, of (1.40), p. 46
of [Q].

LemMA 2II1.  If u belongs to L*(B*(R)) together with its derivatives
Du i=1, ..,n—1, and if

L(R,(“'Dn(ﬂ)dx <M[@los ), VOeCI(BT(R)) (2.13)
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then, for every 6 < R, ue H'(B*(c)) and

n—1
||Dnu”0,B+(a')<c{m+ |ulo, 5+ Ry + Z |Diu|O,B+(R)}a (2.14)

i=1
where the constant ¢ depends on (R — o).

For this lemma see, for instance, [1, Lemma 9.3, p. 112].

LemMMA 21V. If ue H(B*(0)) is a solution of the system Au=0, and
u=0 on I'(¢), then, ¥t (0, 1),

|Du|0,3+(w)Sct"|Dulo,B+(a). (215)

The constant ¢ depends neither on ¢ nor on o (one can prove that c=1).
This lemma is proved in [2, p. 352].

Let A,x), ii=1, ..,n, be NxN matrices, defined in B*(s), which
belong to L°(B™* (s)), and suppose that

1/2
M= sup {Z ||A.-j||2}

B Ly (2.16)
Y (A;E1E) 2 v €% v>0,Yxe B* (o) and VEe R,

i

LEMMA 2V. If ueHYB*(c)) is a solution of the system
Y;D[A;Du]=0, and u=0 on I'(c), then ¥t (0, 1)

gy

c(v, M)

lDu|0,B+(m)<6(TT) |ulo, 8+ (o) (2.17)

See, for instance, [2, Lemma 5.III, p. 329] for the case of only one
equation (N =1). The proof of this lemma remains unchanged in the case
of several equations (N> 1).

Denote by 4} the adjoint of the matrix 4, and set

M_ = sup {Z 2}1/2. (2.18)

Bt (o)

1
E(A,-,-——A};

LEMMA 2VI. For every p>0 and é e R*™N

2y 12
sup {T|r+we-2 4,8 | < (M—ve JFFHIEL 1L 219)

Bt (o)
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Moreover, if u>(M?* —v*)/2v, then

_ 2 2
K=tV M- (2.20)

M+u

Because it concerns inequality (2.19), see [Q], Lemma 8&.II1, p. 88]. To
verify (2.20), an elementary calculation is enough.

The following existence lemma is well known. To obtain its proof it
suffices, for instance, to argue as in Lemma 2.XI of [8].

LEMMA 2.VIL. Under the hypotheses (1.2)~(1.5), for every g€ H'(Q) and
fleLA(Q), i=1, .., n, there exists a unique vector ue HY(2), which is the
solution of the Dirichlet problem

ue H(Q)
. , (2.21)
Y D,a'(Du+Dg)=Y D,f" inQ.
Moreover, the inequality

| Dulg o < clv, M)Z |f'—d'(Dg)l}q (222)

holds.

3. INTERIOR FUNDAMENTAL ESTIMATES AND AN INTERIOR
REGULARITY RESULT

Let ue H'(Q) be a solution of the system
Y. D,a'(Du)=0 in Q (3.1
in the sense that (1.7) holds. The vectors a'(p) satisfy the conditions
(1.2)—(1.5). Then, it is known (see, for instance, [5, Theorem 1.I7]) that

ue H?

loc(g);
moreover, for every ball B(2¢)= B(x° 206)ccQ
|Dutl ;g < c(v, M) 0~ | Dt — (Dtt) g2l 0.8020)- (3.2)

If we consider (1.7) at ¢ =Dy, s=1, .., n, with Yy € C(B(a)), then we
obtain

[ ¥ D.a'(Du)| D) dx=0;
Bl(o) ;
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in addition, for i, j=1, ..,nand h, k=1, .., N, we set

: 9aj(p)
Ay=1{A% with Ag."(p)=7pi—. (3.3)

Then, we have

j Y (A,(Du) D, D,u| Dp)dx =0,  s=1, ..n, Ve CP(B()). (34)
B(a)ij

Furthermore, we define

U=Du
010
T
Aip)={ 0 i\\\i 0 ), n*(NxN)blocks. (3.5)
0 [0 | 4

¥

Then, from (3.4) it follows that Ue H'(B(s)) is a solution of the system

B(o

)Z(Mj(U) D,U\D;9)dx=0, Voe HyB(a)) (3.6)

Taking into account (1.2), (1.5), the (nN x N)-matrices ./,(p) turn out to
be continuous and elliptic, ie.,

S (#4(p) 18 2 Vel

Vpe R™ and for every &= (&', .., &") with & e R Moreover, by (1.4), it
results that o/ (U(x)) e L”(B(0)).

Hence, a known theorem (see [Q, p. 90, Theorem 8.1]) enables one to
conclude that there exists an e(v, M,n)e(0,1) such that, for every
te (0, 1),

1Dul} poy < €2 | DI gy (3.7

where the constant ¢ depends neither on ¢, ¢ nor on x°.
Now, we can prove the following theorem, which improves, in case n=2,
the result of [4, 5].

TueoreM 3.1, If ue H(Q) is a solution of system (3.1) then, for every
ball B(c)=B(x° 6¢)cQ and Vie (0, 1), we have

|Dul(2),8(w)$“& IDu‘%,B(o) (3.3)

607/66/3-6
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where
A=min(2 +¢, n) (3.9)

and the constant ¢ does not depend on t, o, x°.

Proof. The cases n>2 and n=2 will be considered separately.
If n>2, let us suppose 0 <7< 1<% Then

t n
|Du|(2),B(to') S C(n) (;) IDu|(2),B(ra) + 2 IDU - (Du)B(TU)Ig,B(Ia)' (310)

On the other hand, by Poincaré’s inequality and (3.7)
| D — (Du)B(w)l(z).B(wJ < C(”)(TU)2 IDuI%,B(w)

<ct?* 0% |Duli gy (3.11)

Taking into account inequality (3.2), from (3.10), (3.11) we get
t n
IDul(z),B(m) < c(n) (;) |Du|g,8(m) + CT2+£ ID"‘lé.li"(ff)‘
Then, since n>2+¢, by Lemma LI, p. 7, of [Q]
t 2+
IDu’(z),B(m) sc¢ <;) ID”'(Z).B(W) +e?te IDU|(2),B(<:)-

Taking the limit for T — 3, we obtain inequality (3.8) Yze (0, 4). However,
(3.8) is clearly true for <1< 1 too.

If n=2 the proof is slightly more complicated. First of all, taking into
account Poincaré’s inequality and (3.2), from (3.7) we deduce that for
every ball B(¢)= B(x° 6)<=Q and Vre(0, 1)

| Du — (Du)B(m)lg.B(m) Ler*ts | Du —~ (Du)B(o)l(z),B(a)' (3.12)

Then, Due #%2+%(Q) or, due to the properties of the £>*-spaces (see

loc
Lemma 2.1), Due C*%*(Q). Furthermore, from (3.12), we get that, for
every ball B(c)= B(x° o)<
o* [ Dullsmem < 1 Dulf g, (3.13)

where the constant ¢ depends neither on ¢ nor on x°.
Then, for every ball B(s)= B(x°, o) = 2 and Vte (0, 1)

|Du|(2),B(m)<C(n)(’0')n ”Du||§o,B(o'/2)' (3.14)
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On the other hand,
a" ||D“||§0,B(a/2) <26? +£[D“]z/z,mi + ¢(n) |Du|(2),8(a)' (3.15)

When 0<¢<1, taking into account (3.13), from (3.14) and (3.15) the
thesis (3.8) still follows. Obviously, (3.8) is true also for <1< 1.
We now give the interior fundamental estimate for the vector u.

TueoREM 3.1  If ue HY(Q) is a solution of system (3.1) and
2<n<4 (3.16)
then VB(6) = B(x°, 6) = Q and ¥te (0, 1)
|13, 5oy S 1" 113 5oy (3.17)

where ¢ depends neither on o, t nor on x°.

Proof. By Poincaré’s inequality and Lemma 2.II, from (3.8) it follows
that for every ball B(g) = B(X°, 6)<=Q and Vte(0, 1)

|u— ua(m)l(z),n(m) <cr?t? |u— uB(a)|(2),B(a')’ (3.18)

where A is defined as in (3.8). Then, it is sufficient to repeat the proof we
have given in the previous theorem for the case n=2.

Inequality (3.18) implies that we £%**%(Q) and for every ball
B(x° 0)cQ

02+ﬂ[u]§z2~2+iw(a/2))<c |u|(2),B(a)' (3.19)

Then, because n<A+2, having set a=1—(n~1)/2, by Lemma 2.I we
have that

62+A[u]¢x,8(c/2)<c lul(z),B(a)’ (3.20)

where the constant ¢ depends neither on ¢ nor on x°.
From this we obtain that, for every ball B(¢) and Vre (0, 4),

U3 5oy < c(m)(20)" |l % peor2)
<e(n) t*{o"* *[u]; gy + 1413 bo}
gct” |u|(2),B(a)'
Finally, inequality (3.17) trivially holds if i<t<1. Remark that
condition (3.16) cannot be weakened unless system (3.1) has a particular

structure. For instance, for the linear systems (1.10), with constant coef-
ficients, estimate (3.17) holds without any condition on ».
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We now consider the operator

Y. D,a'(x, Du),

where the a(x, p) are vectors of R”, defined in A = Q x R"Y, continuous in
x and of class C' in p; such vectors satisfy assumptions (1.3)-(1.5), i.e.,

a'(x,0)=0, VxeQ (3.21)
n N a 2y 12
{Z y daj(x, p) } <M, Y(x, p)e A (3.22)
=1 hk=1 apk
Zza"” NP e suleln, v, (3.23)
ij hk k

for every (x, p)e A and V& e R™.
From (3.21) and (3.22) it again follows that

la'Cx, pYI<Mipl,  V(x, p)ed. (3.24)

Furthermore, we supose that there exists a bounded non-negative function
w(t), on t >0, which is non-decreasing and converges to zero when -0,
such that Vx, yeQ and pe R

1/2
{Z la'(x, p)—a'(y, p)llz} <ao(lx—y0)-lprl. (3.25)

The fundamental estimate (3.8) enables us to obtain the following
interior regularity result.

THEOREM 3.III.  Let ue H'(Q) be a solution of system

Y D.a'(x, Du+Dg)=0 in Q (3.26)

under the assumptions (3.21)-(3.25), and suppose that ge H“'"(Q) with
O0<u <A Then, for every open set Q* =< Q, we have that Due L**(Q%*)
and inequality

| Du|l L2y S { [Dulo g + ”Dg“LM(m} (3.27)
holds, where the constant ¢ depends also on d=dist(Q*, 0Q).

Proof. Fix B(c)= B(x°, o) with x°c Q* and ¢ <d. In B(c) we decom-
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pose u as v—w; w is the solution of the Dirichlet problem (recall Lem-
ma 2.VII)

we H)(B(0))
) ) (3.28)
Y. D,a'(x°, Dw+ Du+ Dg)=Y D,a'(x, Du+ Dg)
while ve H'(B(a)) is a solution of system
Y. D;a'(x°, Dv+ Dg)=0. (3.29)
From (2.22) we get
|DW|2 psy < c(v, M) Y |a'(x, Du+ Dg)— a'(x° Du+ Dg)|3 z,)-
Then, taking into account hypothesis (3.25), we have
lle(z),B(a) <e(v, M) wz(o.){ IDul(z),B(o‘) + IDg’g,B(o') ) (3.30)

As far as (v+ g) is concerned, the hypotheses of Theorem 3.1 are fulfilled;
then Ve (0, 1)

[Dv + Dgl§ po) < ct*|Dv + Dgl} po)
and so, Yie (0, 1),
1D0|3 a0y < €1% 1 DVIG go) + €1 DRIE g (3.31)
From (3.30) and (3.31), Vte(0, 1) it easily follows that
|Dul} g S c{t* + @0*(0)} |Dulf 5oy + 0" I DGl T2ma).  (332)

Hence, by Lemma 2.VII of [5], it follows that V7 & (0, A — ) there exists a
positive a, < d such that, if 6 <o, and 1€ (0, 1),

[Dulg gy < (1+¢) 77| Dul} g
+K(c, 7, 4, p)(to)* |1 Dgl T2na)
This implies that for every 6 <o,
|Dulo, o) n o= < ca*{o7#|Dulf o + I Dgl T 2ua) }- (3.33)

Therefore, recalling (2.4), Theorem 3.II1 is proved.
Note that, if w=0, in particular if a’=a'(p), then o,=d (see [Q,
Lemma 1.1, p. 7] or [5, Lemma 2.VI]).
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4. DIFFERENTIABILITY NEAR THE BOUNDARY

In the hemisphere B* (1) let us consider the problem
ue H'(B*(1))
u=0 on I (4.1)
Y. Da'(Du)=0  in B*(1).

The last equality means that

J; Y (a'(Du)| D,p)dx=0,  VoeHY(B*(1)). (42)

Ty ;

Let us suppose that the vector mappings p — a'(p) satisfy the conditions
(1.2)-(1.5). Then, we want to prove the following differentiability theorem:

THEOREM 4.1. If ue H'(B* (1)) is a solution of problem (4.1), under the
conditions (1.2)-(1.5), for every 6 <1

ue HY(B* (o)) (4.3)
and

c(v, M)

ID“{],B‘*(o)sra)

[Duly p+(15- (44)

Proof. Define

T, ,u(x) =u(x + pe") — u(x),

where {¢"},_, _, is the standard base of R™.
The proof will be divided into two steps. First let us suppose that

r=1, .,n—1. (4.5)

In this case one argues exactly as in the interior differentiability case. Let us
choose

g<1, o= lpl <1 —ga,,

2 b
and the function 6 € CP(R") fulfilling these properties,

0<0<1, 6=1inB(s), 0=0inR"\B(c,); (4.6)
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then, taking into account the fact that u=0 on I, in (4.2) we can assume

o=1,_,(0°t,,u), r=1,.,n-1,

and we obtain

J Y (z,,a(Du)| D{61, ,u)) dx =0.
Bt(1) ;

Setting

daj(Du+1tz,, Du)
opi

Bt (x)= j
we have that

1,,a'(Du)y= Y By1,,Du.

j=1

Then, from (4.7), we obtain

J 022(8,] 1., Dult,, Du)dx
B+(1)

i

= _J‘B Z(BU ’PDjul‘[r,pu'Dioz)dx.

Wy

d,  B,={Bf}hk=1, ..

4.7)

N (4.8)

(49)

By keeping in mind (1.5) and (1.4), from (4.9) we easily obtain

(v M) R
fyoo Teng Dul? < [l

c(v M) )

<qey o], 1pulax

From this, because of Nirenberg’s well-known lemma, we conclude that

there exists D, Due L*(B*(a)), r=1, ..,n—1, and

zj ID Du||2dx<M_[ | Dul|? dx.

B*(a) ! (1—0)2 B*(1)

In case r =n, we argue as follows:

(4.10)

Fix0<o<R<1and 0<p<(1—R)/2. We want to estimate the integral

[ (DuIDg)dx,  geCT(B*(R).
B*(R)

(4.11)
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For this purpose, we observe that Vxe B*(R) + pe”

n—1
‘[",‘ﬂan(Du)z Bnn[Tn,fp Dnu] + Z an[rn,fp Dju]a (412)
=1

j=

where the B are defined as in (4.8), p being replaced by —p.
Now, the B,, is a non-singular matrix; in fact, assuming £ = (0, ..., 0, &%),
from the ellipticity condition (1.5) we deduce

(Bun(x) E"EMZVIIEMR,  VE"e RY and Yxe BT (1),

so that
N
detB,,#0  and B, (x)]l <4, YxeB*(1).?

In conclusion, from (4.12) we get

t,_,Dyu= B, [1,_,a"(Du)+G(Du)],  VxeB*(R)+pe", (4.13)

n—p

where G(Du)= —¥"-! B, [, _, Dul.
On the other hand, taking into account (1.4) and (4.10), from (4.2) it
follows that D, a"(Du) exists and belongs to L2(B*(R)), VR < 1. Moreover,

n-—1 ”n iD 2
[ D@Dl dx= L Dy
B+(R) BHR) | j=1 j=1 api
c(v, M) 2
<—= : .
(I_R)ZLWHDMH dx (4.14)

Finally, integral (4.11) can be estimated as follows:
Set B (R, p)=B"(R)n[B*(R)+ pe"]. For every o CFX(B*(R)) we
have

[ ult,, 0 ax
B*(R)

= (D,u(x—pe")|p(x))dx— | (D,ulp)dx

BT(R,p) BH{(R)

= (Tn.—pDnulqo)dx_j (Dnu|q))dx'

BH{R.p) BYH(R\BT(R.p)

If p is small enough, the last integral vanishes because ¢ has a compact

2 Recall that, if C={C*}, then |Cll = {Z |C*]?}172
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support in B* (R). Then, taking into account (4.13), (4.14), and (4.10), if p
is small enough we get?

[ (Dult,,0)dx
B*(R)

(tn, - pa"(Du)+ G(Du)| (B,")* @) dx

L?*(R,p)

n—1 12
<e(v, M)-l(PIo,wR)-{f )IITn,_pa"(Du)||2+ ) IIL,,_,,D,-uIIde}
.0 j=1

Bt (R,

n—1 1/2
<cls M) ploloss i, ID OIS (Dl x|
0 J—1

c(v, M)
“(1-R)

P |(P|o.3+(R) : |Du|o.3+(1)-

From this, by dividing all sides by p and taking the limit for p —» 0, we
obtain that for every ¢ € CP(B*(R))

(v, M)
(I-R)

LJ{( (D,u|D,0)dx ( [Duloa‘r(l) [@lo,8+(r)- (4.15)

Now, we only need to apply Lemma 2.III to obtain that D,ue H'(B* (),
Vo< R<1, and

(v, M)
S =025

From (4.10) and (4.16), Theorem 4.1 follows.

'[ | D, te|* dx < | Du|* dx. (4.16)
B* (o)

5. THE BOUNDARY FUNDAMENTAL ESTIMATES

Let ue H'(B* (1)) be a solution of the problem (4.1). Having stated in
Section 4 that ue H*(B™* (¢)) for every o < 1, we can argue as in Section 3.

We set U= Du (that is, U =D, u, s=1, .., n) and we define the matrices
Ay, ij=1, .., n, asin (3.3). Fix 0 < 1. Each vector U* belongs to H'(B* (o))
and is a solution in B* (o) of the system (see (3.4))

Y D(AU)D,U*)=0, s=1, .,n. (5.1)

i

3 (Bz!)* is the adjoint of the matrix B_!.
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Furthermore
U'=0on I for s=1, ..,n—1. (5.2)
TueorReM S.1. If ue H' (B (1) is a solution of the problem (4.1) under

the assumptions (1.2)-(1.5), then there exists an ¢(v, M, n)€ (0, 1) such that,
for every t,0€(0, 1)

|Dul3 g+ 1o < €17 | DUl 5+ (s (5.3)
where ¢ depends neither on t nor on o.
Proof. Fix ce(0, 1) and choose

M? —y?
—

u= (5.4)

We decompose each vector U®, s=1, ..,n—1, as V+ W, where W is the

solution of the Dirichlet problem

We Hy(B* (o))
(5.5)
(M+u) 4W=Y.D, {(M+u) DU —Y 4,(U) DjUS}, in B*(0),

whereas Ve H'(B* (o)) is a solution of the problem

V=0 on I(o)

(5.6)
AV=0  in B* (o).
Then, as is well known, W verifies the inequality
2
me IDW|? dxém}wfm(g)zi: “(M+u) DIUS—%:AUDJU‘ dx;
therefore, by Lemma 2.VI,
|DWlo.p+(0) < K(1) IDU’|g g+ (0)- (5.7)
Taking into account Lemma 2.1V, V verifies the inequality
IDV 6.5+ (o) <t [ DV 5+ (o) Vte (0, 1). (5.8)

Because U=V + W, from (5.7) and (5.8), it follows easily that Ve (0, 1)

IDU?| 6.5+ 1oy < {c(1 + K) "2 + K} - | DU g g+ ()-
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Because of (5.4), the constant K is <1; then by Lemma 1.V, p. 12, of [Q],
there exists n € (0, 1) such that for every 1€ (0, 1)

IDU*I2 i 1oy S ™ IDU3 poyy S=1, cym—1.

Set ¢ =nn. We can suppose that € (0, 1), then we conclude that Ve (0, 1)

n—1 n—1
Z |DsDu|(2),B+(m)<ct‘ Z |DsDu1(2),B+(a)' (5.9)
=1

s=1 s=

Because D, U'=D,U’, to obtain (5.3) we need only to estimate the integral
of the vector D, u.

Remark that 4,,(p) is a non-singular matrix; in fact, from the ellipticity
condition (1.5), we deduce

(Am(p)nin)=vinl?,  VpR™ and neRY

and so
N
det4,,(p)#0  and A4 <4, VYpe R™.
On the other hand

D, d(U)=Y AU)D;U', i=1, .,n

s
In particular
D,a"(U)=A,,(U)D,U" + "il A4,(U) D,U". (5.10)
Pt
Moreover, from system (1.9),
D,aU)=-3 ¥ 4,(U)D,U- (5.11)

i=1 j=1

Then, from (5.10), (5.11), we get

D, U"= —A,,;‘(U){”il S 4,0) DfUiJ’nilA"f(U) D"U"}
j=1

i=1 j=1 J
so that

1D, Ul <cv. M)'Y. 3 ID,U. (5.12)

i=1 j=1
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From (5.12), taking into account (5.9), it follows that Vre (0, 1)
n—1

IDttl2 gy <t® Y 1D, Dul? ges)- (5.13)

s=1

Clearly, (5.3) follows from (5.9) and (5.13).
Now, we are ready to prove the following boundary fundamental
estimate.

THeOREM S5.ALI  If ue H'(B* (1)) is a solution of the problem (4.1) then,
for every 6 <1 and Vi (0, 1)

|D“|(2).15?+(m)<Ct11 |D“'3,B+(o—) (5.14)
where
A=min(2 +¢, n) (5.15)
and the constant ¢ depends neither on t nor on .

Proof. Inequality (5.14) is clearly true for $ << 1. Then it is enough to
consider the case 0 <r< 1.

Taking into account Poincaré’s inequality and (4.4), from the estimate
(5.3) we get that, for every 6 (0, 1) and r€(0, 1)

|Dt— (D) g+ i1or)2 1oy < €25 1Dl g - (5.16)

That being stated, if n > 2 the inequality (5.14) follows by arguing as in the
analogous case of Theorem 3.I. Conversely, if n=2, from (5.16) and the
interior estimate (3.12), it follows that

Due £****(B*(0)), Vo<l
and so (cf. Lemma 2.I) for every 6 < 1
o> [ Dull, g < ¢ |Duld g gy (5.17)
On the other hand,
0" IDuI2, g o2y <262 [ DUy gy + €(1) DUl o (5.18)

Now, we conclude as in the analogous case of Theorem 3.1: for every e < 1
and r€(0, 3)

|Du|(2),B+uaJ <c(n)to)” ”Du”io,Bﬂg/z)
<celn) tn{02+E[Du]§/2,_BI(U_/2) + ID“ltz).Bﬂa)}

<ct"|Duld g+ (o)
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6. A BoUNDARY REGULARITY RESULT
We now consider the operator

Z Diai(‘x’ Du)’

where the a'(x, p) are vectors of RY, defined in A*=B*(1)x R™,
continuous in x and of class C' in p; such vectors satisfy conditions
(3.21)—(3.25), where A is replaced by A4+,

The fundamental estimate (5.14) enables us to obtain the following
boundary regularity result, which is quite analogous to that of
Theorem 3.1IL

THEOREM 6.1. Let ue H'(B* (1)) be a solution of the problem
u=0 on I’

(6.1)
Y D,a(x, Du+Dg)=0  in B(1).

Let us suppose that ge H""(B* (1)) with 0 < u < A. Then, for every R<1,
Due L**(B*(R)) and the inequality

I Dull 265+ (ry) < €{ | Dtil o g+ 1)+ | DgN r2mz+ 17} (6.2)
holds.

Proof. We will reason in the same way as in Theorem 3.III. Fix R,
0<R< 1. In any hemisphere B*(x° 4), with 6 <1— R and centered in
x%e I'(R), we write u=v—w, where w is the solution of the Dirichlet
problem

we Hy(B*(x° a))

. 4 (6.3)
Y. D,a'(x°, Dw+ Du+ Dg) =Y D,a'(x, Du+ Dg)
whereas ve H'(B*(x°% ¢)) is a solution of the problem
v=0 on I'(x°% o)
(6.4)

Y. D;a'(x°, Dv+ Dg)=0  in B*(x°0).

Taking into account (2.22) and hypothesis (3.25), we have (see (3.30))

|DW|(2),B+(x°,a) <c(v, M) 0)2(6){ |D”|<2),B+(x0,a) + 'Dg|(2),5+(x°,a)}- (6.5)
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Because of the fundamental estimate (5.14), the inequality
|DV[3 g+ (0.0 < ct’ |DV|§ g+ (x0.0)F €| DEIG 5+ (x0.0)> Vie (0,1) (6.6)

holds for the vector v (see (3.31)).
And so, Ve (0, 1)

|Du|(2),B+(x°,m) < c{ti + wZ(o,)} |Du|(2),3+(x0,a) + ca* || Dgl ilu(Bﬂ]))- (6.7)

Hence, by Lemma 2.VII of [5], it follows that V& (0, A — u) there exists a
positive o, <1— R such that, if 6 <o,

‘Du|(2),8+(x°.a'] < CJ”{UT_” |Du|(2),3+(1) + ”Dg”iZ‘I‘(B*'(l))}' (6.8)

We now consider the case of x°e B*(R) with x> 0. Fix g, 0 <o < 0,/2.
If x< o, then B(x° 6) " B*(R) <= B*(x° 20), where ¥° = (x?, .., x°_,, 0),
and so, because of (6.7),

|D“|(2),B(x°.a)n3+(k) < CU#{“;“ |Du|(2),3+(1) + | Dg| ZLZ#(3+(1))}- (6.9)

On the contrary, if x> g, then B(x% o) is an interior ball of B*(1);
therefore, because of the interior regularity result (3.33), with Q replaced
by B*(1), estimate (6.9) still holds.

We conclude that, in any case, if x°¢ B¥(R) and ¢ <0,/2, inequality
(6.9) holds. However, (6.9) is trivially true for ¢./2 <o < o, too.

Recalling (2.4), Theorem 6.1 follows from (6.9).

7. A GLOBAL REGULARITY RESULT

Let ue H'(Q2) be the solution of the Dirichlet problem

u—ge Hy(Q)
| (1.1)
Y D;a'(Du)=0 in &,

where ge H""(Q) with 0 < u< 4; the open set Q is of class C> and the
vector mappings a'(p), i=1, ..,n, belong to C!(R™) and satisfy the
conditions (1.2)—(1.5).

Note that, assuming w=u— g, problem (7.1) can be written in the
equivalent form

we Hi(Q)
. (7.2)
Y Da'(Dw+Dg)=0 in Q.
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We premise some notation and remarks. As @ is of class C?, if x°€ 0@,
about x° there is an open neighborhood # such that % is mapped, by a
mapping J of class C? together with its inverse, onto the ball B(0, 1) and,
in particular, 2 N4 is sent in B*(1) and 02 "% in I.

We set

07 (x) _[0F(x)

0x _{ Ox; }

0T (x)
ox

B

J(x)= 1det

moreover, for all ye B(0, 1) and pe R™, we define

o
(1) =52 (T ()

J

07,

b= (527) 70

n

7y, p)=Y a(»)p (7.3)

r=1

q(ya P) = (ql, ooy qn)
Ay, p)=Y. Buly) a(q(y» P)).

Clearly, ¢’ and A4° are vectors of R" defined in B(0, 1) x R™; moreover
a; and B; are functions of class C!(B(0, 1)). Then, by definition (7.3) and
assumptions (1.2)-(1.5), it is not difficult to prove that the vectors A°(y, p)
verify all the conditions (3.21)-(3.25), where v, M and w(¢) are replaced by
(T, (TIYM, c(F)t; «(T) being a suitable positive constant which
depends on 7.

The following notation will be suitable: if ye B*(1) and u is a vector
function defined in 4 n 2, then

U(y)=uT ~'(»)).

That being stated, from (7.2) we get, in particular,

L X (@(Dw+Dg) | Dip)dx=0,  forall peHYQN®);

i

then, making use of the transformation of co-ordinates y =9 (x), we
obtain that W is a solution of problem
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WeH(B*(1))

W=0 on I”
(7.4)
ZDJA"(y,DW+DG)=O in B*(1).

As 7 is of class C* and ge H""(Q2 %), then also G belongs to
H“®(B*(1)) and

||DG“L2-#(B+(1))<C(9—)||Dg||Llenm (7.5)

(see [2, Theorem V, p. 375]). Then, we may apply Theorem 6.1 and we
get, for all Re (0, 1),

IDW 12zt (ry < c{IDWlo g+ 1)+ |1 DGl 2sgs+ 1 }- (7.6)

Consequently,

[U]_(ﬁwl(a*(kn < C{ |DU|0,B+(1) + | DG| LZ-#(Bﬂm}- (7.7)

Denote by #(R) the inverse image of B(0, R). Since the mapping 7 of
class C” preserves the desired #>*-properties [2, Theorem V, p. 375],
from (7.6) and (7.7) we derive

[u]p2ur20nmry + 1 Dull 20 - 2R (7.8)
<cf|Dulgo+ | Dgll 2wy )t

Using this local regularity result near the boundary together with
Theorem 3.III, we can prove, by a usual coveriug argument, the global
regularity result which follows.

THEOREM 7.1. Let ue H'(Q) be the solution of Dirichlet problem (7.1)
and suppose that

Q is of class C?,
(19)

geH"W(Q) with0<u<i
then

ue H-"(Q)n L2+ +3(Q) (7.10)
and

[u] p2uiryg)+ | Dull p2uo, < I Dg| 1200 (7.11)
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In particular, if
2<n<4 and n-2<pu<Ai (7.12)

then ue C**(2), with x=1— (n— u)/2, and the inequality

[u],0<clDgll p2ua) (7.13)
holds.

Proof. Around every x°edQ there is an open neighborhood # such
that & is mapped, by a mapping J of class C? together with its inverse,
onto B(0, 1) and, in particular, Z N Q is carried in B*(1). Since 0Q2 is a
compact, only a finite number of such neighborhoods are needed to cover
it, say #,, .., B,

For each %;, we can suppose that R is close enough to 1, such that
#,(R), ..., B,(R) still cover 0Q.

Then there exists an open set 2, < < £ such that 2,, #,(R), ... #,(R)
cover 0.

Theorem 3.III can be applied to the open set ; therefore, from (3.27),
taking into account that u=w+ g, we have

[u]$2,M+2(QO) + ||Du“L2.u(go) < C{ lDulo’g + ”Dg”LZ.M(Q)}. (7.14)

Inequality (7.8) holds for each of the mapped neighborhoods %,(R),
j=1, .., m, so that

[ulpr2an @Ry T [ Dull 12 #(RH S c{|Duloq+ | Dgll Lz-“({))}' (7.15)

Now, by Lemma 2.VII, we get
|Dulo o < |Dwlog+ 1Dglo.o < c(v, M)|Dglo.o- (7.16)

Inequality (7.11) follows from estimates (7.14), (7.15), (7.16). Finally,
(7.13) is a consequence of (7.11) and Lemma 2.1, where the ball B(g) can
be replaced by an open set Q of class C? (see [Q, Theorem 2.I, p. 15]).

Remark 71. Theorem 7.1 holds also for the solution of the Dirichlet
problem

u—ge HY(Q)
Y D,a'(x, Du)y=0  in Q,
where the vectors a'(x, p), i=1, .., n, verify the assumptions (3.21)-(3.25)
instead of (1.2)-(1.5). Even the proof remains unchanged. However, we

confine ourselves to considering only this case, which will be useful in next
section.

607/66/3-7
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8. A MAXIMUM PRINCIPLE

In this section we will prove a maximum principle, which is the main
purpose of the present paper. The principle concerns the non-linear elliptic
operators Eu=Y, D,a’(Du) which, as mentioned in the Introduction, play
a role analogous to that played, in linear theory, by the elliptic operators
Su=3%, D,A; Du with constant coefficients 4.

For the case of linear operators &u see [9]. In our case, after the results
of Sections 3-7 have been obtained, the proof of the maximum principle
can be carried out using a method similar to that in [9].

Of course, we also supose here that vectors a'(p), i=1, .., n, fulfill
assumptions (1.2)—(1.5).

THEOREM 8.1. Let uec H'(Q) be the solution of the Dirichlet problem

u—geHyQ)
. (8.1)
Y. D.a'(Du)=0 in Q.
Suppose that
Q is of class C*? and convex, (8.2)

geEH"" " InL*(Q) and  |Dgl ey <clgloe  (83)
2<n<4. (8.4)

Then, ue L™(2) and
lull oo <cllgllw.o- (8.5)

Proof. We need a reason as in Section 2 of [9]. Let x°cQ; set
d=dist(x°, 0©2) and suppose that y°e 4R is such that |x°— y°|| =d.
As 2 <n <4, by the fundamental estimate (3.17) it resuits that

|u|(2),B(x°,rd) <ct” |u|(2),8(x0.d) Set” |u|<2).:2n3(y0,2d) (8.6)

for every t€ (0, 1), where the constant ¢ depends neither on ¢, d nor on x°
On the other hand taking into account that 2 n B(y°, 2d) is convex and
u— ge H(Q), so that the Poincaré inequality is valid, we get

|u|(2),gn3(y°.2d) <2lu— g[(z),.QnB(yo,Zd) +c(n) d” Ilgllig

< C(”){d2 {D(u— g)ltz),gnB(yo,zd) +d"| gllgo,{z- (8.7)
Moreover, by the regularity Theorem 7.I and the hypothesis (8.3)

[D(u— g)lg,QnB(yo,Zd) <cd' 2 |.D(u — g)”iz-ﬂﬁ(g) <ed'™? ||g”§og (8.8)
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From (8.6)-(8.8) we get

f o quldr<clglle,  Vie(©1), (89)
B(xV,1d)

where ¢ depends neither on ¢ nor on x°. Taking the limit for ¢ — 0, from
(8.9) we obtain

lu(x°)| <cllgleo forae x°ef.

Therefore, (8.5) is proved.

Note that condition (8.4) on n cannot be improved. Moreover, the
hypothesis that 2 is convex is not crucial.

The previous maximum principle is just what is needed in the proof of
the partial Holder continuity of the H' n L®(£2)-solutions of the non-linear
elliptic system (1.8) when the vector a°(x, u, p) has quadratic growth.

See [10] for the quasi-linear case, namely when

a'(x,u, py=Y Ayx,u) p’.

J
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