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1. INTRODUCTION 

Let Q be a bounded open set of R”, n 2 2, with points x = (x, . . . . x,). N 
is an integer > 1, ( 1 )k and 11. Ilk are the scalar product and the norm in Rk. 
We will drop the subscript k when there is no fear of confusion. 

If U: Q + RN, we set DU = (D,u, . . . . D,,u), where, as usual, Di = a/axi. 
Clearly, Du E RnN and we denote by p = (pi, . . . . p”), pi E RN, a typical vec- 
tor of RnN. 

H’ = H1,2 and HA = Hk2 are the usual Sobolev spaces. 
Let us consider the non-linear differential operator of second order 

Eu = 1 D,a’(Du), (1.1) 

where a’(p) are vectors of RN. Suppose that 

ai E C’( RnN) (I.21 

a’(0) = 0 (1.3) 

(1.4) 

where M and v are suitable positive constants. 
Then, we say that operator (1.1) has “2-non-linearity” [6]. 
From (1.3), (1.4) it easily follows that 

Ibi(P G MII PII, Vp E RnN. (1.6) 

A solution of system Eu = 0 in IR is a vector u E HI(Q), such that 

(a’(Du) 1 D,cp) dx = 0, Vq E H@l). (1.7) 
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For the sake of simplicity, we will confine ourselves to considering 
second order operators even if, as will be proved, they could be extended to 
systems of order 2m. 

Now, consider the theory of the regularity, in the .P’**‘-spaces’ (in 
particular the theory of Co,’ -regularity), for the solutions to non-linear 
elliptic systems 

1 D;a’(x, u, Du) = aO(x, u, Du); (1.8) 

it is known that systems of type 

c D,a’(Du) = 0 (1.9) 

play, in that theory, a role quite analogous to the one played, in linear 
theory, by systems with constant coefficients and reduced to the principal 
part, i.e., 

U’(P) = 1 A, P’, (1.10) 
i 

where A, are Nx N constant matrices. 
This is the reason why it is important to obtain, for the solutions of 

system (1.9), the Y2,‘-regularity and above all the so-called “fundamental 
estimates” for both the vectors u and Du. 

In [4, 51 such a problem has been studied in the interior. In Section 3, 
we will recall and even improve some results obtained in [4, 51: 

Define 

B(xO,a)=(x:Ilx-xOll<a). 

If u E H’(G) is a solution of system (1.9), then there exists an E(V, M, n) E 
(0, 1) such that, for every ball B(o) = B(x”, 0) c B and Vt E (0, l), we have 
the following interior fundamental estimates, 

5 1) Dull ’ dx < ct’ 
5 llD~ll* dx, (1.11) 

E(to) B(a) 

where 

Furthermore, we have 

A= min(2 + E, n). (1.12) 

s (Iu--~(~~,~J’~x~c~‘+~ 
s Ilu- Q~J* dx, (1.13) 

B(m) B(o) 

‘See [Z] and [Q, p. 131. 
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where 

Ug= f u(x) dx. 
B 

And hence, if 2 < n < 4, we get 

The constants c, which appear in (1.1 1 ), (1.13) (1.14), depend neither on 
t, 0 nor on x0. 

In particular, from (1.13) it follows that u E 9’:;:+ 2(Q), so that, if 
2<n<4, 

u E c”qQ) 
n-l 

with cr=l--. 
2 

(1.15) 

Note that this regularity result for the vector u is the best possible. Indeed, 
if n > 4, the vector u is only partially Holder continuous in Q (see [4]). 

Finally, inequality (1.14) is a cornerstone in proving the maximum 
principle of Section 8. 

In Section 5 we will prove that a fundamental estimate, quite analogous 
to (1.1 1 ), also holds for the solutions of system Eu = 0, in the hemisphere 

B+(l)= (xEB(O,l):x,>o}; 

such solutions vanish on the flat part r of the boundary 

r= {XEB(O, 1):x,=0}. 

Indeed, under the hypotheses (1.2)(1.5), we will prove again that 
u E H2*2(B+ (a)) for every cr < 1 (Section 4). Then, there again exists an 
E(V, M, n) E (0, 1) such that, Vo E (0, 1) and Vt E (0, 1 ), we have 

s B+(to) 11~412 dx G d f IID412 dx, (1.16) 
B+(o) 

where I = min(2 + E, n). The proof of this inequality is not elementary. 
The interior fundamental estimate (1.11) allows one to obtain the follow- 

ing regularity result (Section 3). 
Let a’(~, p), i= 1, . . . . n, be vectors of RN, defined in Sz x RnN, of class C’ 

in p, which satisfy conditions (1.4) and (1.5) for all (x, p) E 52 x RnN and 
a’(~, 0) = 0 for x E Q. Moreover, for every x, y E Sz and p E RnN, we suppose 
that 

c lb’(T PI - 4A PNI G 4IIx - A) . IIPII, (1.17) 
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where o(t), with t > 0, is a bounded, non-decreasing function which con- 
verges to zero when t --) 0. If u E H’(0) is a solution of the system 

1 D&(x, Du + Dg) = 0 in Q (1.18) 

and g E H’,‘P”(Q) with 0 6 p < 1, then Du E I;?d,“(Q). 
Likewise, from the fundamental estimate (1.16) it follows that, if the 

vectors a’(~, p) verify, in B+( 1) x RnN, all the conditions listed above, and 
if u E H’(B+( 1)) is a solution of the problem 

u=o on I- 

c Dia’(x, Du + Dg) = 0 
(1.19) 

in B+(l), 

where gEH’.‘P’)(B+(l)), O<<<<, then Du~L~+(l?+(o)) for every 
r~ E (0, 1) (see Section 6). 

By a usual covering argument, from the previous interior, or near the 
boundary, regularity results, we deduce the following (see Section 7): 

If Q is of class C2 and u E H’(R) is the solution of the Dirichlet problem 

u-gEH;(Q) 

1 D,u’(D~) = 0 
(1.20) 

in Q, 

where gEH , ‘*‘r)(Q) 0 <p < 2, then Du E L’3P(Q); moreover, the estimate 

IID L+a) < C lIDgIl Lo(n) (1.21) 

holds. In particular we get u E 3’32+0(Q). As a consequence, if 

then 

2<n<4 and n--2<p<1 

u E COqQ) n-p with cc=l--. 
2 

(1.22) 

Sections 4, 5, and 6 are necessary as, to date, the boundary 
Y2x’-regularity for solutions to non-linear systems with Dirichlet boundary 
datum has not been stated. By the same procedure, it is certainly possible 
to study this boundary 6p2,’ -regularity for systems of general type, such as 
(1.8) also. But we will not deal with this topic in this paper. 

Finally, (1.21) and the fundamental estimate (1.14) allow one to obtain 
the maximum principle contained in Section 8. 

This maximum principle is analogous to the one proved in [9] for linear 
systems with constant coefficients and it is the aim of the present paper. In 
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fact, this. maximum principle is an important step in studying the partial 
regularity of the H’ n L”(Q) solutions to system (1.8) when a’(~, U, p) has 
quadratic growth (see [lo] for the quasi-linear systems). 

2. PRELIMINARIES AND NOTATIONS 

We define 

B(xO, a)= {x: IIX-x01) <a}; 

moreover, if xX = 0, 

We will simply write B+(a), T(o), and r instead of B+(O, G), r(O, a), and 
f (0, 1 ), respectively. 

Throughout the present paper, 52 will denote a bounded open set of R” 
with diameter dn, 

If u E L’(a), B is an open non-empty set of a, then 

f 
1 

Id*= u(x) dx = - 
a meas 93 I 

u dx. (2.1) s 

If UEL~(!S), we define 

114 m.R = esszup IIu(x)I\. (2.2) 

If 24 E C”*a(!3), 0 < c( < 1, we set 

(2.3) 

and we will say that u E C’+(sZ) if u E CoVa(W) for every compact subset 
Ddca. 

If u E L2*“(sZ), 0 < A < n, or u E Z2*“(sZ) with 0 < A < IZ + 2, we define, as 
usual (see [Q]), 

II4;2*i(Q,= sup CA I14x)l12 dx (2.4) 
xoEi2 s R(xO.a) 

O<O~dO 

Cul L?qLq = sup 0-A II 4~) - ~a(xo,ajll~ dx, (2.5) 
XOEQ s n(xo 

,D 
) 

where sZ(x’, B) = 52 n B(x’, 0). 
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We say that u E H ‘,‘“)(sZ), 0 < 2 <n, if 

u E H’(Q) and Du E L2.“(Q). (2.6) 

When UE H’(Q), we define 

(2.8) 

The lemma which follows is a very particular case of Theorem 2.1, p. 15, 
of [Q]; clearly, it holds even if the ball B(x”, a) is replaced by the 
hemisphere B+(x’, a). 

LEMMA 2.1. Fix a ball B(a)= B(x’, 0) c R”. If u~dp’,‘(B(a)) with 
n < A< n + 2, then u E C’,“(B(a)), with a = (A - n)/2, and 

Cula,~G c(nK~l~qB~d~. (2.9) 

The following Caccioppoli-type inequality is well known. 

LEMMA 2.11. Zf UE H’(Q) is a solution, in 0, of system (1.9) under the 
hypotheses (1.2)-( 1.5), then for every ball B(2o) = B(x’, 20) c 52 

IDUl O.B(a) G c(v, Ml 0-l IIU- ~B(20~llo,B(2~). (2.10) 

In fact, after the (Nx N)-matrices 

B,= (By), where Bhk = IJ 

have been introduced, system (1.9) can be written 

c Di(B,(Du) D,u) = 0 in Sz (2.12) 
il 

so that u E H’(R) is a solution, in Sz, of a linear elliptic system, whose coef- 
ficients B,(Du(x)) belong to L”(Q). 

Then, (2.10) is a very particular case, for instance, of (1.40), p. 46 
of CQJ 

LEMMA 2.111. If u belongs to L’(B+(R)) together with its derivatives 
Diu, i= 1, . . . . n- 1, and if 

(ulDncp)dx G~ldo,B+,rv, Vq E C,“(B+(R)) (2.13) 
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then, for every g < R, u E H’(B+(a)) and 

n-1 

llDn4l ‘%JI + IUIO,B+(R) + 1 IDiUl~,~+(~) 2 (2.14) 
i=l 

where the constant c depends on (R - a). 

For this lemma see, for instance, [ 1, Lemma 9.3, p. 1123. 

LEMMA 2.IV. If u E H’(B+(o)) is a solution of the system Au =O, and 
u=O on r(a), then, Vtg (0, l), 

ID4 o,~+(to) G ct” lD40,,+(,). (2.15) 

The constant c depends neither on r nor on r~ (one can prove that c = 1). 
This lemma is proved in [Z, p. 3521. 

Let AU(x), ij= 1, . . . . n, be N x N matrices, defined in B+(o), which 
belong to L”(B+(a)), and suppose that 

w 
M= sup c IIA,I12 

{ 1 B+(o) ly (2.16) 

v > 0, Vx E B+ (a) and V< E RnN. 

LEMMA 2.V. If UE H’(B+(a)) is a solution of the system 
xii Di[AijDju] =O, and u =0 on T(o), then VIE (0, 1) 

(2.17) 

See, for instance, [2, Lemma 5.111, p. 3291 for the case of only one 
equation (N= 1). The proof of this lemma remains unchanged in the case 
of several equations (N> 1). 

Denote by A: the adjoint of the matrix A, and set 

LEMMA 2.VI. For every ,u >, 0 and l E RnN 

(2.18) 

Wf+/G'-&$# 1’2~{M-v++~}-~(~/~. (2.19) 
i 
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Moreover, if ,u > (A45 - v2)/2v, then 

K(P) = 
M-V+JjZZ<l 

M+P 

(2.20) 

Because it concerns inequality (2.19), see [Q], Lemma 8.111, p. 881. To 
verify (2.20), an elementary calculation is enough. 

The following existence lemma is well known. To obtain its proof it 
suffices, for instance, to argue as in Lemma 2.X1 of [S]. 

LEMMA 2.VII. Under the hypotheses ( 1.2)-( 1.5), for every g E H’(l2) and 
fiEL2(L-2), i= 1, . ..) n, there exists a unique vector u E HA(Q), which is the 
solution of the Dirichlet problem 

u E H;(Q) 

1 D,a’(Du + Dg) = 1 Di f i 
(2.21) 

in Q. 
I I 

Moreover, the inequality 

(2.22) 

holds. 

3. INTERIOR FUNDAMENTAL ESTIMATES AND AN INTERIOR 
REGULARITY RESULT 

Let UE H’(Q) be a solution of the system 

c D,a’(Du) = 0 in 52 (3.1) 

in the sense that (1.7) holds. The vectors a’(p) satisfy the conditions 
(1.2)-(1.5). Then, it is known (see, for instance, [S, Theorem 1.11) that 

u E H:,,(Q); 

moreover, for every ball B(2o) = @x0, 20) c c D 

ID4 LB(~) G c(v, Ml 6-l IDu - (D~)B~z~~~o.B~z~v (3.2) 

If we consider (1.7) at cp = D,$, s = 1, . . . . n, with II/ E C;(B(a)), then we 
obtain 

(D,ai(Du)IDi$)dx=O; 
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in addition, for i, j= 1, . . . . n and h, k = 1, . . . . N, we set 

A,= {AF} 
w(p) 

with Ar(p) = -. 
api, 

(3.3) 

Then, we have 

(AJDu)DiD,ujDill/)dx=O, s = 1, . ..) n, v* E qqB(o)). (3.4) 

Furthermore, we define 

U=Du 

n2 (N x N)-blocks. (3.5) 

Then, from (3.4) it follows that UE H’(B(cr)) is a solution of the system 

s 1 (dv(U) DjU(D,q)dx=O, vv E fG(B(o)). (3.6) 
B(a) 9 

Taking into account (1.2), (1.5), the (nN x N)-matrices d?(p) turn out to 
be continuous and elliptic, i.e., 

Vp E RnN and for every 5 = (<I, . . . . 5”) with 5’ E RN”. Moreover, by (1.4), it 
results that s$( U(x)) E L” (B(a)). 

Hence, a known theorem (see [Q, p. 90, Theorem 8.1)) enables one to 
conclude that there exists an E(V, A4, n) E (0, 1) such that, for every 
t E (0, 11% 

IDuI:,B(,~) 6 ~2” IDul:,B(,) (3.7) 

where the constant c depends neither on t ,  D nor on x0. 
Now, we can prove the following theorem, which improves, in case n = 2, 

the result of [4, 5-J. 

THEOREM 3.1. If u E H’(Q) is a solution of system (3.1) then, for every 
ball B(a) = B(x”, CT) c 52 and b’t E (0, l), we have 

607/66/J-6 
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where 

1= min(2 + E, n) 

and the constant c does not depend on t, 0, x0. 

(3.9) 

Prooj The cases n > 2 and n = 2 will be considered separately. 
If n > 2, let us suppose 0 < t < z < 5. Then 

On the other hand, by Poincare’s inequality and (3.7) 

Taking into 

IDu - (WB~ra~l,?.B~ro, G c(nW)* ID4~,B~,,~ 
< CT~+‘O~ IDuJ&,,,,. \ 

account inequality (3.2), from (3.10), (3.11) we get 

(3.11) 

Then, since R > 2 + E, by Lemma 1.1, p. 7, of [Q] 

Taking the limit for t --) +, we obtain inequality (3.8) Vt E (0, f). However, 
(3.8) is clearly true for $ < t < 1 too. 

If n = 2 the proof is slightly more complicated. First of all, taking into 
account Poincare’s inequality and (3.2), from (3.7) we deduce that for 
every ball B(o) = B(x”, a) c Q and Vt E (0, 1) 

Then, DUE 9$f+“(SZ) or, due to the properties of the 92,“-spaces (see 
Lemma 2.1), DUE C”,“/2(f2). Furthermore, from (3.12), we get that, for 
every ball B(a) = &x0, g) c Q 

~2+ECDul~,2,~~~lD~I~.~(o), 

where the constant c depends neither on 0 nor on x0. 
Then, for every ball B(G) = B(x’, 6) c Q and Vt E (0, +) 

ID4 ,&,uj G I” lIW~,Bo2,. 

(3.13) 

(3.14) 



NON-LINEAR ELLIPTIC SYSTEMS 301 

On the other hand, 

0” ll~41&l(a,z) G 2~2+“Cw:,2,1q73+ c(n) I~~l;,B(o,. (3.15) 

When O-C t ~4, taking into account (3.13), from (3.14) and (3.15) the 
thesis (3.8) still follows. Obviously, (3.8) is true also for 4 < t c 1. 

We now give the interior fundamental estimate for the vector U. 

THEOREM 3.11. zfu~ZZl(Q) is a solution of system (3.1) and 

2Gn<4 

then VB(a) = B(x”, c) c S2 and Vt E (0, 1) 

(3.16) 

14tL3(to, G ct” 14&T)~ (3.17) 

where c depends neither on CT, t nor on x0. 

Proof. By PoincarC’s inequality and Lemma 2.11, from (3.8) it follows 
that for every ball B(a) = Z?(J?, C) c 0 and Vt E (0, 1) 

I#-24 B(r&,B(ra) G ct2++- ~S~&,B(~)~ (3.18) 

where A is defined as in (3.8). Then, it is sufficient to repeat the proof we 
have given in the previous theorem for the case n = 2. 

Inequality (3.18) implies that u E 9;;: +2(Q) and for every ball 
B(xO, a) c 52 

a2+“Cul12.2+4B(a,2)) G c bl:,,(,). (3.19) 

Then, because n< I + 2, having set a = 1 -(n- 1)/2, by Lemma 2.1 we 
have that 

02+qu] cr,zcq) G c bl;,B(o)~ 

where the constant c depends neither on r~ nor on x0. 
From this we obtain that, for every ball B(o) and Vt E (0, $), 

(3.20) 

Finally, inequality (3.17) trivially holds if t < t < 1. Remark that 
condition (3.16) cannot be weakened unless system (3.1) has a particular 
structure. For instance, for the linear systems (l.lO), with constant coef- 
ficients, estimate (3.17) holds without any condition on n. 
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We now consider the operator 

c D,a’(x, Du), 

where the a’(x, p) are vectors of RN, defined in A = Q x RnN, continuous in 
x and of class C’ in p; such vectors satisfy assumptions (1.3t( 1.5), i.e., 

a’(x, 0) = 0, vx E f2 (3.21) 

(3.23) 

for every (x, p) E ,4 and Vt E RnN. 
From (3.21) and (3.22) it again follows that 

II44 P)II d Mllpll, V(s, p) E A. (3.24) 

Furthermore, we supose that there exists a bounded non-negative function 
o(t), on t > 0, which is non-decreasing and converges to zero when t + 0, 
such that Vx, y E Q and p E RnN 

l/2 
7 lla’k PI-4.i: PJII’ ~~(Il~~-Al)~ 11~11. (3.25) 

The fundamental estimate (3.8) enables us to obtain the following 
interior regularity result. 

THEOREM 3.111. Let u E H’(R) be a solution of system 

1 D,a’(x, Du + Dg) = 0 in Sz (3.26) 

under the assumptions (3.21)(3.25), and suppose that gE H’,‘“‘(Q) with 
0 < ,u < 1. Then, for every open set Q* c c Q, we have that Du E L2.@(f2*) 
and inequality 

llD4L+~, ~cc(lD4o,,+ lIW~~.~~a~} (3.27) 

holds, where the constant c depends also on d=dist(Q*, &2). 

Proof Fix B(a) = B(x’, 0) with x0 E Q* and CJ d d. In B(o) we decom- 
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pose u as u - w; w  is the solution of the Dirichlet problem (recall Lem- 
ma 2.VII) 

w  E fG(44) 

1 DiU’(XO, DW + DU + Dg) =C D~u’(x, DU + Dg) 
(3.28) 

1 I 

while u E H’(B(a)) is a solution of system 

1 Diai(xo, Do + Dg) = 0. 

From (2.22) we get 

(3.29) 

ID4 ;,B(ri) d c(v, Ml 1 I+, Du + Dg) - a’(~‘, Du + WI:,,,,,. 

Then, taking into account hypothesis (3.25), we have 

ID4 ;,~(o~-(v, Wu2(4~lD~l;,,~,t+ IDgli&,,~~ (3.30) 

As far as (u + g) is concerned, the hypotheses of Theorem 3.1 are fulfilled ; 
then Vt E (0, 1) 

IDo + Dgl;,,c,o, d ct”lDu + Dgk&,, 

and so, Vt E (0, 1 ), 

ID4 &t(m) d cf’IDul;.,(,, + c ID&r,,,. (3.31) 

From (3.30) and (3.31), Vt E (0, 1) it easily follows that 

lD4&qra) G c{ f” + o*(4) ID4 ;,B(c,) + cc+’ II&Al ;zr(n). (3.32) 

Hence, by Lemma 2.VII of [S], it follows that Vr E (0, 1 -p) there exists a 
positive or < d such that, if (T < (T, and t E (0, 1 ), 

P~,B(,,, < (1 +c) t”-’ IDuL&,, 

+ NC, ~,5 I)” IIW~~.r~c.a~~ 

This implies that for every CJ < or 

PI o,B(rr)n~*~c~~(~,~lD~I~,,+ IIDgllZLucra,). (3.33) 

Therefore, recalling (2.4), Theorem 3.111 is proved. 
Note that, if o=O, in particular if a’=&), then 6, = d (see [Q, 

Lemma 1.1, p. 71 or [S, Lemma 2.VI]). 
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4. DIFFERENTIABILITY NEAR THE BOUNDARY 

In the hemisphere B+( 1) let us consider the problem 

uEH’(B+(l)) 

u=o on r 

1 D,a’(Du) = 0 in B+(l). 

The last equality means that 

I 1 (a’(Du) 1 Di’p) dx = 0, vcpEH;(B+(l)). 
B+(l) i 

(4.1) 

(4.2) 

Let us suppose that the vector mappings p--i a’(p) satisfy the conditions 
(1.2)-( 1.5). Then, we want to prove the following differentiability theorem: 

THEOREM 4.1. If u E H’(B+( 1)) is a solution of problem (4.1), under the 
conditions (1.2t( 1.5) for every CT < 1 

and 

uEH*(B+(a)) (4.3) 

Proof Define 
z,,,u(x) = 24(x + pe’) - u(x), 

where {e” jr.= 1 ,.....” is the standard base of R”. 
The proof will be divided into two steps. First let us suppose that 

r=l , . . . . n - 1. (4.5) 

In this case one argues exactly as in the interior differentiability case. Let us 
choose 

CT< 1, 
l+o 

00=2, IPI < 1 - fJo2 

and the function 8 E CF( R”) fulfilling these properties, 

0<8<1, 6 = 1 in B(a), 8 = 0 in R”\B( a,); (4.6) 
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then, taking into account the fact that u = 0 on r, in (4.2) we can assume 

cp = ~r,-p(~2~,*puh r = 1, . ..) n - 1, 

and we obtain 

s 1 (T,,~‘(DU)( Di(02T,pu)) dx=O. (4.7) 
B+(1) j 

Setting 

B?(~) = I,' aai(Du -&Tryp D") dt, B,= {B;?}, h, k= 1, . . . . N (4.8) 
k 

we have that 

z,,a’(Du) = i B@T,,~ Dju. 
j=l 

Then, from (4.7), we obtain 

=- I 1 B+(l) jj 
(Bij~r,p Djul z,,~u. Dj02) dx. 

By keeping in mind (1.5) and (1.4), from (4.9) we easily obtain 

(4.9) 

I 
c(v, M) II+W/2d~~(1 +)2 I I/~,,pul12 dx B+(o) B+(ao) 

+$ IpI2 jB+,,, lPl12 dx. 

From this, because of Nirenberg’s well-known lemma, we conclude that 
there exists D, Du E L2(B+(a)), r = 1, . . . . n - 1, and 

c(v, Ml - D,Dulj2dx<(1-6)2 i B+(1) llD~l12d~~ (4.10) 

In case r = n, we argue as follows : 
Fix 0 c cr < R < 1 and 0 < p < (1 - R)/2. We want to estimate the integral 

s (D,ul Dncp) dx> cp E C:@+(R)). (4.11) 
B+(R) 
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For this purpose, we observe that Vx E Bt (R) + pe” 

n-l 
7 n,--pun(~~)= B,,C~n.-, D,ul+ 1 B,C7,-, D,ul, 

J=I 

where the B, are defined as in (4.8), p being replaced by --p. 
Now, the B,, is a non-singular matrix; in fact, assuming 5: = (0, . 

from the ellipticity condition (1.5) we deduce 

(B,,(x) i”” It”) 2 v 115”112~ V<“gRN and VXEB+(~), 

so that 

.., 

(4.12) 

0, 5”), 

det B,,, # 0 and fi lIKzl(x)ll GT, VXE B+(l).’ 

In conclusion, from (4.12) we get 

7,,,-$,+ = B,‘[T,,-,a”(Du) + G(Du)], VXE B+(R) + pen, (4.13) 

where G(Du) = -I;:{ B,[T,._, D,u]. 

On the other hand, taking into account (1.4) and (4.10), from (4.2) it 
follows that D,a”(Du) exists and belongs to L2(B+( R)), VR < 1. Moreover, 

(4.14) 

Finally, integral (4.11) can be estimated as follows : 
Set s%‘(R,~)=B+(R)~[B+(R)+~“]. For every ~EC$‘(B+(R)) we 

have 

5 B+(R) (D,ul7,,,c~) d-x 

=s ~+,Rp) (D,u(x-pen)I(P(x))dx-fB+iR, (Dnulp)dx 
= s la+(Rp)(7,.-PD,iu14a)dx- j (D,zu I rp) dx. B+(R)\J+(R.P) 

If p is small enough, the last integral vanishes because q has a compact 

* Recall that, if C = { Chk ), then llCll = {&k ICh”l’}1’2~ 
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support in B+(R). Then, taking into account (4.13), (4.14) and (4.10), if p 
is small enough we get3 

c(v, M) 
<(l-R) P ’ bIO.B+(R) ’ IDuIO.B+(l). 

From this, by dividing all sides by p and taking the limit for p -P 0, we 
obtain that for every cp E CF(B+(R)) 

(~nul~rzcp)dx ++ IDUIO,B+(~).I(PIO,B+(R). (4.15) 

Now, we only need to apply Lemma 2.111 to obtain that D,u E H’(B+(a)), 
Va-cRc1, and 

s 
c(v, M) 

B+(o) II~nn~l12 dx< t1 _ oJ2 s IlW2 dx. B+(,) 

From (4.10) and (4.16), Theorem 4.1 follows. 

5. THE BOUNDARY FUNDAMENTAL ESTIMATES 

Let u E H’(B+( 1)) be a solution of the problem (4.1). Having stated in 
Section 4 that u E H’(B+(o)) for every (r c 1, we can argue as in Section 3. 

We set U = DU (that is, u” = Dsu, s = 1, . . . . n) and we define the matrices 
A,, ij= 1, . . . . n, as in (3.3). Fix (T < 1. Each vector U” belongs to H’(B+(rr)) 
and is a solution in B+(a) of the system (see (3.4)) 

~Di(z4$J)DjUs)=0, s= 1, . . ..n. (5.1) 
lj 

3 (B;‘)* is the adjoint of the matrix B;’ 
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Furthermore 

v=o on r for s= 1, . . . . n- 1. (5.2) 

THEOREM 5.1. Zf u E H’(B+( 1) is a solution of the problem (4.1) under 
the assumptions (1.2)-( 1.5), then rhere exists an E(V, M, n) E (0, 1) such that, 
for every t, 0 E (0, 1) 

I~4:,B+(ro,~ Cw&!+(a) (5.3) 

where c depends neither on t nor on CT. 

Proof. Fix 0 E (0, 1) and choose 

M2-V2 

p=-T-. 
(5.4) 

We decompose each vector US, s = 1, . . . . n - 1, as V + W, where W is the 
solution of the Dirichlet problem 

WE z-z;(B+(a)) 

(M+/L)AW=CDi 
i 1 

(5.5) 
(M+/L)DiU”-CAij(U)DjU” in B+(o), 

J 

whereas VEH’(B+(~)) is a solution of the problem 

v=o on T(o) 

AV=O in B+(o). 

Then, as is well known, W verifies the inequality 

(5.6) 

(M+,u)DiU’-FA,D,li’ ‘dx; 
(I 

therefore, by Lemma 2.V1, 

IDW o.B+(o) G K(P) lDWo,~+w. 

Taking into account Lemma 2.IV, V verifies the inequality 

IDVI o,B+(ro) d ctn” IDVIO,B+W, VtE (0, 1). 

(5.7) 

(5.8) 

Because u” = V+ W, from (5.7) and (5.8) it follows easily that Vt E (0, 1) 

IDu”l O,B+(to) d (41 + fO t”‘* + K} . IDUSIO,B+(v). 
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Because of (5.4), the constant K is < 1; then by Lemma l.V, p. 12, of [Q], 
there exists q E (0, 1) such that for every t E (0, 1) 

IDUSI~,B+(Io)~cfqn lDusl;,B+(o)~ s=l, . . ..n-1. 

Set E = qn. We can suppose that E E (0, l), then we conclude that Vt E (0, 1) 

Because Dj U’ = Di Uj, to obtain (5.3) we need only to estimate the integral 
of the vector Dnnu. 

Remark that A,,(p) is a non-singular matrix; in fact, from the ellipticity 
condition (1.5), we deduce 

and so 

det A,,(P) f 0 and fi ll4i’II Gy’ Vp E RnN. 

On the other hand 

D,a’(U)= i A,(U)DjU’, i=l n. , *--, 
j=l 

In particular 

n-1 

D,,a”( U) = A,,(U) D, U” + 1 A,& U) Dj U”. 
j=l 

Moreover, from system (1.9), 

n-1 n 

D,a”(U)= - 1 1 A,(U)DjU’. 
i=l j=1 

Then, from (5.10), (5.1 l), we get 

n-1 n n-1 

D,U”= -A,‘(U) 1 1 A,(U)DjUi+ 1 A,(U)DjUn 
i=l j=1 j=l 

so that 

n-l n 

llD,~nII Gc(v, M) c C IIDjUill. 
i=l j=l 

(5.10) 

(5.11) 

(5.12) 
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From (5.12) taking into account (5.9) it follows that Vlt~ (0, 1) 

Clearly, (5.3) follows from (5.9) and (5.13). 
Now, we are ready to prove the following boundary fundamental 

estimate. 

THEOREM 5.11. Zf u E H*(B’ ( 1)) is a solution of the problem (4.1) then, 
for every 0 < 1 and Vt E (0, 1) 

IPUI;,B+(,a) < cti Iw&3+(a) (5.14) 

where 

A = min(2 + E, n) (5.15) 

and the constant c depends neither on t nor on (T. 

Proof Inequality (5.14) is clearly true for 4 6 t < 1. Then it is enough to 
consider the case 0 < t < i. 

Taking into account Poincart’s inequality and (4.4), from the estimate 
(5.3) we get that, for every u E (0, 1) and t E (0, i) 

(Du - (Du) B+(r~,l~,B+,ro)~Cf2+E lPul;,B+,o,. (5.16) 

That being stated, if n > 2 the inequality (5.14) follows by arguing as in the 
analogous case of Theorem 3.1. Conversely, if n = 2, from (5.16) and the 
interior estimate (3.12) it follows that 

DuEo4p2~‘+~(B+(a)), Vo<l 

and so (cf. Lemma 2.1) for every cd 1 

~2+“C~~l~,2,~~c lP4.B+,o,~ 

On the other hand, 

(5.17) 

8 llD~Il~,~+~~,~~ G 2~2+eC~~l~,2,B+~a12~ + c(n) IWi.B+caj. (5.18) 

NOW, we conclude as in the analogous case of Theorem 3.1: for every G d 1 
and t E (0, +) 

IP&f+,ro, d ONto)” II~~II~,B+,,12~ 

<c(n) fn{a2+ECDUl~~2,B+,a,2)+ IW&+fojl 

d Ctn(DUI;,B+,o). 
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6. A BOUNDARY REGULARITY RESULT 

We now consider the operator 

1 D$‘(X, Du), 
I 

where the a’(~, p) are vectors of RN, defined in n + = B+(l) x RnN, 
continuous in x and of class C’ in p; such vectors satisfy conditions 
(3.21)-(3.25), where /i is replaced by A+. 

The fundamental estimate (5.14) enables us to obtain the following 
boundary regularity result, which is quite analogous to that of 
Theorem 3.111. 

THEOREM 6.1. Let u E H’(B+( 1)) be u solution of the problem 

u=o on r 

$ D,a’(x, Du + Dg) = 0 
(6.1) 

in B+( 1). 

Let us suppose that gg H 1,(/1) B+ 1)) with O<p<A. Then,for every R< 1, ( ( 
Du E L’,“( B+ (R)) and the inequality 

llD~ll~~q~~+~,t~~~ c( IWO,B+(~,+ IIDgll.~.~~,+~,,,} (6.2) 

holds. 

ProoJ: We will reason in the same way as in Theorem 3.111. Fix R, 
0 < R < 1. In any hemisphere B+ (x0, G), with 0 < 1 - R and centered in 
X’E T(R), we write u = v - w, where w  is the solution of the Dirichlet 
problem 

w E H;(B+(x’, a)) 

1 Diai(xo, Dw + Du + Dg) = c D&(x, Du + Dg) 
I  I  

whereas v E H’(B+(x’, a)) is a solution of the problem 

v=o on f(xO, 0) 

c Diai(xo, Dv + Dg) = 0 in B+(x’, 0). 

(6.3) 

(6.4 1 

Taking into account (2.22) and hypothesis (3.25), we have (see (3.30)) 

lDwl~,~+(x0,,~ < c(v, Ml 02(4{ IPl;,~+~x~,o~ + l&l;,,+~.x~,cJ (6.5 1 
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Because of the fundamental estimate (5.14), the inequality 

lw,B+,xo,m) d ct” Iw?,B+(xo,o) + a%G,B+(x?~)~ Vt E (0, 1) (6.6) 

holds for the vector u (see (3.31)). 
And so, Vt E (0, 1) 

IPI;,B+(.X?td <c{tA +02W} IW;,g+(.xo,o) +a+ Il~gllt~.~~~.~,,,. (6.7) 

Hence, by Lemma 2.VII of [S], it follows that Vt E (0, II -p) there exists a 
positive or < 1 -R such that, if G < gr, 

IP4L9+~&, ~ca~‘(a;~lIDul~,.+,,,+ II~gllt~.P(B+(I),~. (6.8) 

We now consider the case of x0 E B+(R) with xt > 0. Fix 6, 0 < G G aJ2. 
If XII d 0, then B(x”, a) n B+(R) c B+(..f’, 20), where X0 = (xy, . . . . xi-i, 0), 
and so, because of (6.7), 

IDuI&~o.~~~~+~~~ < c~~{~,~I~~~,,+,,, + II&dtzrc~+c~,,). (6.9) 

On the contrary, if X: > (T, then B(x’, a) is an interior ball of B+( 1); 
therefore, because of the interior regularity result (3.33), with Q replaced 
by B+(l), estimate (6.9) still holds. 

We conclude that, in any case, if x0 E B+(R) and (T < rr,/2, inequality 
(6.9) holds. However, (6.9) is trivially true for a,/2 < 0 < IJ= too. 

Recalling (2.4), Theorem 6.1 follows from (6.9). 

7. A GLOBAL REGULARITY RESULT 

Let u E H’(Q) be the solution of the Dirichlet problem 

u-gEH$2) 

1 D,a’(Du) = 0 
(7.1) 

in Q, 

where g E H ‘T(~)(Q) with 0 6~ < ;1; the open set Q is of class C2 and the 
vector mappings a’(p), i= 1, . . . . n, belong to C1(RnN) and satisfy the 
conditions (1.2)-( 1.5). 

Note that, assuming w  = u - g, problem (7.1) can be written in the 
equivalent form 

w E H;(Q) 

1 D,a’(Dw + Dg) = 0 
(7.2) 

in Q. 
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We premise some notation and remarks. As 52 is of class C*, if x0 E aQ, 
about x0 there is an open neighborhood W such that B is mapped, by a 
mapping F of class C* together with its inverse, onto the ball B(0, 1) and, 
in particular, D n W is sent in B+ (1) and 852 n ~8 in r. 

We set 

moreover, for all y E B(0, 1) and p E RnN, we define 

Q(Y) =z (~--‘(YN 
PijO) = (2;) CT--‘(Y)) I 

4'(.Yv PI' f arj(Y)P' 
r=l 

4cJG p)=(ql, ---9 4") 

A"(Y, P)' i PAY) ai(d.Y7 PI). 
i= 1 

(7.3) 

Clearly, qj and A” are vectors of RN defined in B(0, 1) x RnN; moreover 
aii and fiij are functions of class C'(B(0, 1)). Then, by definition (7.3) and 
assumptions (1.2k( 1.5), it is not difficult to prove that the vectors A”(y, p) 
verify all the conditions (3.21 b(3.25), where v, M and w(t) are replaced by 
c(F) v, c(F) M, c(F) t; c(F) being a suitable positive constant which 
depends on F. 

The following notation will be suitable : if y E B + (1) and u is a vector 
function defined in 9J n 52, then 

W) = w-w. 

That being stated, from (7.2) we get, in particular, 

I c (a'(Dw+Dg)ID,cp)dx=O, for all cp E HA(Q n a); 
Rnl i 

then, making use of the transformation of co-ordinates y=F(x), we 
obtain that W is a solution of problem 
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wEH’(B+(l)) 

w=o on r 

~D,A”(y,DW+DG)=O 
(7.4) 

in B+(l). 

As 9 is of class C2 and g E H ‘,cP’(Q n g), then also G belongs to 
H’,(P)(B+(l)) and 

(see [2, Theorem V, p. 3753). Then, we may apply Theorem 6.1 and we 
get, for all R E (0, 1 ), 

Consequently, 

GUI S?2J‘+2(E+(R)) 6 C{ lDUto.~+(,j + II~GIL~.q~+,,,J. (7.7) 

Denote by W(R) the inverse image of B(0, R). Since the mapping F of 
class C’ preserves the desired Y’,“-properties [2, Theorem V, p. 3751, 
from (7.6) and (7.7) we derive 

[UlL@‘+‘(i2,J(R)) + IIDuliL24’(C2nJ(R,, 
(7.8) 

Using this local regularity result near the boundary together with 
Theorem 3.111, we can prove, by a usual covering argument, the global 
regularity result which follows. 

THEOREM 7.1. Let u E H’(Q) be the solution of Dirichlet problem (7.1) 
and suppose that 

Q is of class C2, 

gEH ‘,(P)(Q) with 0 < ,a < 2 
(7.9) 

then 

and 

u E H’-‘“‘(Q) n Y2J‘ + ‘(a) (7.10) 

C~l+.r+qa, + IIWI L~~CQ) d c lIDgIl L*+(Q). (7.11) 
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In particular, if 

2<n<4 and n-2<jJ<il 

then u E C’s’(a), with o! = 1 - (n - p)/2, and the inequality 

(7.12) 

holds. 

Cul,,s? G c IlWl Lzqn) (7.13) 

Proof. Around every x0 E &2 there is an open neighborhood !?8 such 
that 3 is mapped, by a mapping Y of class C2 together with its inverse, 
onto B(0, 1) and, in particular, %J n Sz is carried in B+ (1). Since &2 is a 
compact, only a finite number of such neighborhoods are needed to cover 
it, say &, . . . . 9YW. 

For each Bj, we can suppose that R is close enough to 1, such that 
a,(R), . . . . g,,,(R) still cover XX 

Then there exists an open set G?, c c Sz such that Sz,, g,(R), . . . . g,,,(R) 
cover 0 

Theorem 3.111 can be applied to the open set Qo; therefore, from (3.27), 
taking into account that u = w  + g, we have 

[Ul.@.r+qRo) + IIwLqn,l) G W40,R + llQ=YllLw2,~. (7.14) 

Inequality (7.8) holds for each of the mapped neighborhoods 9fj(R), 
j= 1, ..,, m, so that 

Cul L&r+2(nnBj(R))+ ll~~ll~~.P(~n~,;(R))~~{l~~lO,R+ II~&+2J. (7.15) 

Now, by Lemma 2.VI1, we get 

I~ulo,, G IWO,, + Pglo,, G c(v, Wl~glo,,. (7.16) 

Inequality (7.11) follows from estimates (7.14), (7.15), (7.16). Finally, 
(7.13) is a consequence of (7.11) and Lemma 2.1, where the ball B(a) can 
be replaced by an open set 52 of class C2 (see [Q, Theorem 2.1, p. 151). 

Remark 7.1. Theorem 7.1 holds also for the solution of the Dirichlet 
problem 

u- gEH#2) 

C D,a’(x, Du) = 0 in 52, 
i 

where the vectors a’(x, p), i= 1, . . . . n, verify the assumptions (3.21)-(3.25) 
instead of (1.2)-(1.5). Even the proof remains unchanged. However, we 
confine ourselves to considering only this case, which will be useful in next 
section. 

60716613.7 
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8. A MAXIMUM PRINCIPLE 

In this section we will prove a maximum principle, which is the main 
purpose of the present paper. The principle concerns the non-linear elliptic 
operators Eu = xi D,a’(Du) which, as mentioned in the Introduction, play 
a role analogous to that played, in linear theory, by the elliptic operators 
bu = & D,A, D,u with constant coefficients A,. 

For the case of linear operators bu see [9]. In our case, after the results 
of Sections 3-7 have been obtained, the proof of the maximum principle 
can be carried out using a method similar to that in [9]. 

Of course, we also supose here that vectors a’(p), i = 1, . . . . n, fulfill 
assumptions ( 1.2)-( 1.5). 

THEOREM 8.1. Let UE H’(Q) be the solution of the Dirichlet problem 

u-gEH#-2) 

c D,a’( Du) = 0 in 52. 
I 

(8.1) 

Suppose that 

Sz is of class C2 and convex, (8.2) 

gEH M-2JnLm(Q) and lIDgIl L2.-qn) G c II gll oo,a (8.3) 

2<n<4. (8.4) 

Then, UE L”(Q) and 

Ilull m.R Q c II gll cx3.R. (8.5) 

Proof We need a reason as in Section 2 of [9]. Let x0 EQ; set 
d= dist(x’, X?) and suppose that y”e XJ is such that l/x’- yell =d. 

As 2 <n < 4, by the fundamental estimate (3.17) it results that 

IG,B(.x?td) G 04;,B(x?d~ 6 04&2n.(,?2d) (8.6) 

for every t E (0, l), where the constant c depends neither on t, d nor on x0. 
On the other hand taking into account that 52 n B(y’, 2d) is convex and 

u - g E HA(Q), so that the Poincart inequality is valid, we get 

14~,nnE(.v~,2d~ d 2 1~ - glZ,nnB(y~,2d) + 0) d” Ilgl12,,a 

Gc(n)(d21D(u- g)l~,nnB~y~,2d~+d”IIgll~,n. (8.7) 

Moreover, by the regularity Theorem 7.1 and the hypothesis (8.3) 

2 
I~~~-g~l~,,,.~,o,2,,6~~“~2lI~~~-~~ll~~.~-~~~~~~~“-2ll~ll2,,~. (8.8) 
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From (8.6)-(8.8) we get 

(8.9) 

where c depends neither on t nor on x0. Taking the limit for t -+ 0, from 
(8.9) we obtain 

Il4x”)ll G c II gll m,R 

Therefore, (8.5) is proved. 

for a.e. x”EQ. 

Note that condition (8.4) on n cannot be improved. Moreover, the 
hypothesis that 52 is convex is not crucial. 

The previous maximum principle is just what is needed in the proof of 
the partial Holder continuity of the H’ n L.“(a)-solutions of the non-linear 
elliptic system (1.8) when the vector a’(~, U, p) has quadratic growth. 

See [lo] for the quasi-linear case, namely when 

a’(x, u, p) = c A&x, 24) p’. 
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