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ORIGINAL ARTICLE

Aneurysms in the portal venous system, either in

localized fusiform or saccular dilatations, represent

only 3% of all aneurysms of the venous system.1

Portal vein aneurysms are usually asymptomatic

and detected incidentally during diagnostic work-

up. With the emergence of noninvasive imaging

tools, portal vein aneurysm is increasingly found in

clinical practice.2–4 They are known to be located

more frequently in the extrahepatic rather than the

intrahepatic segment.5,6 We encountered a case of

potential live liver donor who was incidentally

diagnosed to have an intrahepatic portal vein an-

eurysm with the right deviated umbilical portion

(Figure 1A). To determine if the operation would

be safe, a scientific tool was employed as an aid

to help us make the right surgical decision. To

this end, the computing-and-imaging technique

was proposed in this study and was demonstrated

to be a useful modality in the current difficult

clinical selection of the live liver donor.
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Background/Purpose: Intrahepatic portal vein aneurysm is rare and its natural history is unknown. A 22-year-
old healthy man, who wished to donate part of his liver to his diseased father, was incidentally diagnosed
to have an intrahepatic portal vein aneurysm. The surgical decision of performing live donor hepatectomy
for such a patient is normally difficult. We combined modern imaging reconstruction technologies with
scientific computing as a new modality to foresee the risks of surgical complications.
Methods: Cross-sectional computed tomography images were used to reconstruct the three-dimensional
image of portal vein distribution using the 3D-Doctor v3.5 software. The reconstructed images were further
employed to generate surface and interior meshes with CFX software. Simulated hemodynamic changes in
velocity, pressure, and wall stress were determined for the right lobectomy case pre- and postoperatively.
Results: The simulation results indicated that aneurismal pressure would be elevated significantly to
12.03 mmHg after operation. The left segmental portal venous blood flow would increase from 2.95- to
4.25-fold. The area near the branch point of one left segmental portal vein, which supplies blood to liver
segment 4, and the portal vein aneurysm would endure high shear stress gradient. The resulting elevated
aneurismal pressure may cause the thin wall to enlarge and rupture, while the high shear stress gradient
would lead to vascular endothelial cell injury. Living donor surgery was not recommended hemodynamically
based on the simulated results.
Conclusion: Scientific computing and modern imaging technologies can be applied together to aid surgeons
to make the best decision in difficult clinical situations. [J Formos Med Assoc 2007;106(8):617–623]
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Methods

Patient
A 22-year-old healthy male was admitted for live

liver donor evaluation for his father who was 

diagnosed to have end-stage liver disease.

Liver imaging
Serial transverse scans of the liver were taken with

a GE CT/T 8800 (GE Medical Systems, Milwaukee,

WI, USA) at 3-mm intervals. All slices of the liver

were traced on an exact direct proportion between

weight and area. The paper weight of all the he-

patic areas was measured with a microestimation

balance, and the total area of them was gained

from the proportional line. Portal phase images

were captured to facilitate the computer-assisted

simulation. An intrahepatic portal vein aneurysm

is shown in Figure 1B.

Portal vein velocity measurement
The sonographic examination was performed us-

ing an ultrasound HDI 3500 system (Advanced

Technology Laboratories Inc., Bothell, WA, USA)

with a 3.75-MHz sector transducer. A longitudi-

nal image of the portal vein was obtained. The

portal vein color Doppler was recorded under an

angle of less than 50°. The main portal vein ve-

locity was measured to be 10 cm/sec (Figure 1C).

Visual vascular reconstruction
Image segmentation was conducted to divide the

image into different subregions. With the help of

AMIRA® 4.0 (Mercury Computer Systems Inc.,

Chelmsford, MA, USA), segmentation was made

by firstly selecting voxels and then assigning them

to a particular material. The labels were stored in

a LabelField. The Segmentation Editor enables us to

edit the resulting label field so as to render the

polygonal surfaces using the SurfaceGen module.

Computer-assisted data processing
Our blood flow simulations used mesh generated

from the portal vein geometric model using the

computational fluid dynamics package CFX® mesh

generator software (CFX-F3D; AEA Technology,

Harwell, UK). CFX mesh generator supports the

fully automatic generation of meshes starting from
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Figure 1. (A) An intrahepatic portal vein aneurysm
(arrow) shown on coronal magnetic resonance im-
aging. (B) Intrahepatic portal vein aneurysm (arrow)
shown on abdominal computed tomography. 
(C) Ultrasound measurement of portal trunk velocity.



domain definitions including non-manifold geo-

metric models and discreet representations. CFX

is implemented as a validated toolkit system7,8 that

supports the mesh generation and modification

procedures including: (1) automatic anisotropic

size control, (2) boundary layer meshing for portal

flows, and (3) adaptive mesh refinement.

The model was simplified in that it does not

take into account the full structures and branches

of the portal vein. The vessel was hypothesized

to be inelastic and without consideration of the

neighboring effect of liver parenchyma. Boundary

conditions specified at the portal outflows were

hypothesized to be stress-free. Blood flow was

Newtonian flow. The right portal vein was removed

from the portal vein model so as to be able to make

a comparison of the hemodynamic results for the

model constructed prior to the operation. Our

aim was to assess the feasibility of the living donor

right lobectomy. The velocity, pressure, and shear

stress distributions could be scientifically com-

puted pre- and postoperatively from the working

equations governing the mass and movement

conservations.

Results

An aneurysm, 2.4 cm in diameter, was observed

at the umbilical portion of the left portal vein.

Figure 2 shows the reconstructed three-dimensional

image of the left portal vein aneurysm. The pre-

and postoperative portal veins, schematically

represented in Figures 3A and 3B, respectively,

were constructed by using the CFX mesh generator

software. The simulated velocity, pressure and shear

stress distributions are separately shown in Figures

4, 5 and 6, respectively. The simulated results in-

dicated that aneurismal pressure would be elevated

significantly to 12.03 mmHg after operation. The

left segmental portal venous blood flow would

increase from 2.95- to 4.25-fold. The area near

the branch point of one left segmental portal vein,

which supplies blood to liver segment 4, and the

portal vein aneurysm would endure high shear

stress gradient. The area near the junction of one

left segmental portal vein (labeled L3 in Figure 3A),

which supplies blood to liver segment 4, and 

the portal vein aneurysm would bear high wall

shear stress gradient. The pre- and postoperative

changes in blood flow patterns are more precisely

summarized in the Table. The resulting elevated

Computer simulation of hemodynamic changes after right lobectomy
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Figure 2. The reconstructed intrahepatic portal vein an-
eurysm (arrow). The main portal vein is marked with an 
arrowhead.
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Figure 3. (A) Reconstructed geometric model of the portal vein with aneurysm. (B) The postoperative reconstructed
geometric model of the portal vein.
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Figure 4. Simulated particle tracers in the portal vein branches and aneurysm: (A) preoperatively; (B) postoperatively.
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Figure 5. Simulated pressure contours in the portal vein branches and aneurysm: (A) preoperatively; (B) postoperatively.
The predicted maximal aneurismal pressure increased from 10.21 mmHg preoperatively to 12.03 mmHg postoperatively.
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Figure 6. Simulated shear stress contours in the portal vein branches and aneurysm: (A) preoperatively; (B) postopera-
tively. The branch point of the left medial segmental portal vein with the blood supplying liver segment 4 and portal vein
aneurysm endured high shear stress gradient postoperatively (arrow).

Table. Predicted portal vein flow rates pre- and postoperatively

Studied vessel*
Preoperative flow Simulated postoperative flow Ratio of simulated postoperative flow 

rate (kg/sec) rate (kg/sec) rate to original flow rate

Main portal vein 0.01583 0.01583 1
Right portal vein 0.01348 – –
R1 0.0113686 – –
R2 0.00076527 – –
R3 0.0113686 – –
L1 0.0017745 0.00701343 3.95
L2 0.00164634 0.00700215 4.25
L3 0.00152723 0.00451874 2.95

*Vessel sectors as marked in Figure 3.



aneurismal pressure may cause the thin wall to

enlarge and rupture, while the high shear stress

gradient would lead to vascular endothelial cell

injury. This patient was not recommended to be

a live liver donor for his father based on the sim-

ulation results. The size of the aneurysm remained

unchanged after 12 months of follow-up.

Discussion

In our study, aneurismal pressure was observed to

elevate to 12.03mmHg postoperatively. Portal vein

pressure normally ranges between 5 and 10mmHg.

Under portal hypertension (> 12 mmHg), the an-

eurysm may be enlarged and this could result in

complications such as rupture. Portal vein aneu-

rysm is a structure with a thin wall with markedly

reduced tunica intima and media.9 In Brock et al’s

report,10 it is a heterogeneous structure with some

areas of irregular media. Evidence that could sup-

port the hypothesis of portal hypertension is dem-

onstrated in the work of Mucenic et al.11 They

showed that portal vein aneurysm diameter was

significantly reduced after splenectomy in the case

of hepatosplenic schistosomiasis. According to

Laplace’s law, aneurismal wall tension (T) is ex-

pressed as the transmural pressure (TP) multi-

plied by the radius of the aneurysm (r) divided by

aneurismal wall thickness (w):

T = TP × r/w

The diameter of the portal vein aneurysm at the

umbilical portion, ranging from 1.5 to 2.2 cm, is

normally smaller than that of extrahepatic an-

eurysm.5 As the size of the aneurysm grows with

the thinning of the vessel wall, wall tension in-

creases and can result in a greater risk of aneurismal

perforation. This observation is consistent with the

previous ones that larger aneurysm size accom-

panies a higher risk of complications.1,2,4,12–14

The area in the vicinity of the branch point of

the left segmental portal vein (labeled L3 in Figure

3A) and portal vein aneurysm bears high shear

stress gradient postoperatively. The physiologic

range of the shear stress in a normal vein discussed

in Ishida et al’s study15 was 1–6 dyne/cm2. Physio-

logically, the shear stress will activate mechano-

sensors (e.g. integrins, caveolae, receptor tyrosine

kinase) which, in turn, could transduce physical

stimuli to biochemical signals through Akt/PKB

and MAPK pathways.16,17 These signals will activate

shear-stress mediated transcription factors and reg-

ulate the expression of genes such as the shear stress

responsive element (SSRE) and the antioxidant

response element (ARE),15,18,19 which could further

cause nitric oxide production, heme oxygenase-1

(HO-1) and transforming growth factor-β (TGF-β)

induction.16,20 These factors will inhibit throm-

bosis, coagulation, and migration of leukocytes,

while at the same time promote endothelial cell

survival.16,20–23 Adequate shear stress, therefore,

has an antithrombotic effect.19,23–26 Of special

interest is the favorable effects of disturbed flow

on thrombosis at some branch points and geo-

metric alterations. These sites share the common

characteristics of hemodynamic disturbance, in-

cluding the very small shear stress, oscillating shear

stress, and high shear stress gradient.27,28 Shear

stress with a magnitude >70dyne/cm2 in artery will

also cause endothelial erosion and neointimal

growth.20,29

To our knowledge, there is, however, no relevant

information about the physical properties of the

portal vein. The branch area of L3 in our case was

simulated to take a relatively high shear stress

(0.8 Pa = 8 dyne/cm2), as compared with 6 dyne/

cm2, and high gradients postoperatively. A model

developed by DePaola et al28 for large shear stress

gradients shows that endothelial cells migrate away

from the area of large gradient while the remain-

ing endothelial cells divide at a high rate. The L3

region of high shear stress gradient is, therefore,

the predilection site for thrombosis.

The simulated blood flow to left portal vein

branches was increased by an amount of 3- to 

4-fold postoperatively in our study. Portal hyper-

perfusion has been considered to be responsible

for the organ damage frequently observed after

reperfusion of small-for-size liver grafts in liver

transplantation.30,31 This can result in hepatocyte

Computer simulation of hemodynamic changes after right lobectomy
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ballooning with tremendous mitochondrial swell-

ing, irregular large gaps between the sinusoidal

lining cells, and collapse of the space of Disse.32

The so-called small-for-size-syndrome (SFSS) has

been recognized to be the main factor that could

lead to graft dysfunction and poor survival in adult

living donor liver transplantation with extreme

size mismatch.31,33 The mechanism of injury, in-

cluding both enhanced injury and reduced meta-

bolic and synthetic capacity of parenchymal cells,34

has been postulated to be comparable to the one

that could result in progressive necrosis of the

liver remnant after 85% hepatectomy in the rat.35

Postoperative focal portal hyperperfusion in our

case, therefore, could possibly yield similar com-

plications as SFSS.

The currently investigated etiology of intrahep-

atic portal vein aneurysm may be congenital in

origin. This hypothesis was supported from find-

ings of in utero portal vein aneurysm.36 In the case

of portal vein aneurysm present at the umbilical

portion, it is commonly associated with portal

vein anomalies such as the rightward deviation

of the umbilical portion or right anterior segmen-

tal portal vein arising directly from the left portal

vein.5 This case was not recommended to be an

appropriate live liver donor based on our simu-

lated hemodynamic results. A regular follow-up

of the aneurysm is, however, recommended in

asymptomatic patients.37 Spontaneous rupture

or thrombosis of the aneurysm, which is usually

characterized by the presentation of abdominal

pain,13,38 needs only medical treatment. In view

of the size reduction of the aneurysm noticed after

these complications, the aneurismal wall tension

or pressure was found to be relieved and laminar

flow was restored.13,37

This study has some limitations. The proposed

operation was not performed for safety reasons

based on the simulated postoperative results. We,

therefore, do not have the actual postoperative

measurements for real-life validation. Only the

preoperative measurement for portal vein velocity

was available; the other hemodynamic charac-

teristics were calculated. However, we provided 

a potential explanatory mechanism for those with

complicated portal vein aneurysm observed in clin-

ical practice and hope we can avoid that. Narracott

et al39 had developed validated models of throm-

bosis in cerebral aneurysm formulated within CFX.

The methodology can be applied further to illus-

trate the postoperative change in hepatic hemo-

dynamics in hepatic resections or living-related

liver transplantation.

In conclusion, the postoperative aneurismal

pressure would have increased significantly in the

potential live liver donor under the current in-

vestigation. The branch area of the aneurysm and

the left segmental portal vein with the blood sup-

ply to liver segment 4 would have borne very high

shear stress gradients postoperatively. It was dem-

onstrated that the scientific computing and imag-

ing reconstruction technologies can help surgeons

in their decision-making for some difficult clinical

situations.
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