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Abstract

We define a homomorphism 6 on H*((RP™)"; F;) having the property that it is zero on
elements hit by the positive degree elements of the Steenrod algebra. We describe the subalgebra
(Im 8)x of Steenrod-annihilated elements of Hx((RP°°)"; [F,) and in particular we show that
it is nilpotent of order n + 1. We make some conjectures as to properties of H«{((RP>)"; ;)
including a nilpotency conjecture that is a strengthening of the conjecture of Peterson, proved by
Wood, concerning the degrees containing elements not hit by positive degree Steenrod operations.
© 1998 Published by Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 55810

0. Introduction

The classifying space of the group Z/2Z is RP*°. The multiplication and diag-
onal group homomorphisms 7/27 x 7/27 —7/27 and Z/27 —Z/27Z x Z/2Z induce
maps RP>* x RP>* — RP> and RP*° — RP> x RP> which turn Hx((RP>°)"; F,) into
a Hopf algebra. Let P(n)=F[xy, xa,..., x,]ZH*((RP>®Y"; F,). In the Hopf algebra
structure on P(n) all of the generators are primitive and the action of the Steenrod
algebra on P(n) is determined by S¢'(x;)=x7 and Sg“(xy)=3_,,,_, S¢'(x)Sq’(»).
The dual to P(n) is given by P(n)x=TI[x|, x2,...,x,], where I'[S] denotes the divided
polynomial algebra on S. Explicitly, I'[x;, x5,...,x,]= @_, I'lx;] where I'[x] has a
basis {yx(x)}i>0 with multiplication given by 7;(x)y(x)= (’f" )y,-ﬂ-(x) and comultipli-
cation given by Y(y,(x))= Zl_ﬂ.:k 7i(x)®7y,(x). We will often write simply P for P(n)
when there is no possibility of confusion.
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Let .o/ denote the mod 2 Steenrod algebra and let /o7 be the augmentation ideal in
/. The opposite algebra of the Steenrod algebra acts on Px by means of (Sgia, x)=
{a, Sq'x). In particular, Sq%(y(x))= (k;")yk_q(x).

Peterson’s problem is to find a basis for P/((1</)P). The equivalent problem after
dualizing is to find a basis for (P/((1.</)P))«, which is the same as Ann P, the ele-
ments annihilated by all Steenrod operations. One advantage of working with the dual
is that it has additional structure; Ann Py forms a subalgebra of Px.

In the case n=1, Peterson’s problem is trivial, and complete solutions have been
given for n=2 [4] and =3 [3]. When n=1, a basis for Ann P(1)x is {72 _1(x)|
t > 0}. The images of the generators of Ann P(1)s under the various compositions of
iterated diagonal maps and inclusions RP> — (RP>°)" generate a subalgebra of Ann Py
which we denote by #(n) or simply .. The generators of ., denoted A7 € %, |, are in
one-to-one correspondence with pairs consisting of integers ¢ and subsets S C{1,....n}.
We shall describe a homomorphism 0 on P/((/.</)P) having the property that (Im 0)y =
&. This separates out the relatively easy to compute part of P/((/.</)P), Im 8, from the
unknown and possibly unknowable portion, ker ), much as the J-homomorphism sepa-
rates the homotopy groups of spheres into the known and the unknown. The subalgebra
& of Ann P« has some nice properties which we shall describe. Although in this paper
we compute it completely only “stably”, its computation seems to be quite tractable.
In contrast, ker 0 seems to be very unwieldy in general.

Examining the known cases, the dimensions of (P(n)/((I.</)P(n)))* form a fairly
easy-to-understand pattern for n=1 and »=2, while for n=3 the pattern seems to
be disrupted by an irregularity in dimensions 8,19,41,...,2/72 +3(2~' — 1),... This
reflects the fact that ker@=0 when n < 3 and that when n=3, ker 0 has dimension 1
in the degrees listed above and is O in other degrees. It appears to us however that
the number of such irregularities (i.e., the dimensions of ker6) increases dramatically
with n.

The homomorphism 6 will actually be defined on P and shown to have the property
that O((1.«/)P}=0, thus inducing the homomorphism referred to above as (). Therefore,
for xe P, 8(x)=0 forms a necessary (but not sufficient) condition for x to be a “hit”
element of P; that is, one in the image of positive degree Steenrod operations.

For k€N, define «(k) and f(k) as follows. Let x(k)=number of 1’s in the dyadic
expansion of k=least » such that £ can be written as a sum of » numbers of the form
2'. Let B(k)=least r such that & can be written as a sum of » numbers of the form
2! —1. Clearly B(k+m) < B(k)+ p(m). Also from the definitions one gets a(n+4k) < n
if and only if (k) < n (see Lemma 1.1).

Peterson’s conjecture, proved by Wood [5], states that in degree k

(P(M((LZ)P(n))Y =0 ifa(n+k)>n
or equivalently,

(P(m)/((IZ)YP(n)))k =0 if f(k) > n.



J. Repka, P. Selick!Journal of Pure and Applied Algebra 127 (1998) 273-288 275

The algebra & satisfies the stronger statement that it is nilpotent of order n + 1 (see
Theorem 2.3). Since all of its generators are in degrees of the form 2/ — 1, it is clear
that this implies that & satisfies the Peterson conjecture. We propose the following
strengthening of the Peterson conjecture for P(n)/(({.sf )P(n)).

Conjecture 0.1. Ann(P(n))« is weighted nilpotent of order n+ | where algebra gen-
erators in degree k are assigned weight B(k).

By weighted nilpotent of order n+1 we mean that if x can be written as x =xx; - - - x,
where x;€ Ann(P(n))x for all i and wi(x)) + wt(xa) + -+ + wt{(x,) > n + 1 then
x=0. Thus, for example, when n=3 the generator in degree 8 counts 2 against the
nilpotency limit of 3 and so according to the conjecture not only is any 4-fold product
in Ann P(3)x equal to 0, but so is any 3-fold product containing the exceptional
generator in degree 8. It is clear from the definitions that a positive solution to this
conjecture implies Wood’s theorem (the Peterson conjecture). The known calculations
(cf. [3, 1]) show that the conjecture holds for n < 3.

Letting SAT denote the symmetric difference of the sets S and T we will show
that the generators of & satisfy

ASA] = AT2TAT (1

when j < k, and that generically this is the only relation in .% (see Theorem 3.2 and
Corollary 3.11). Kameko has conjectured

Conjecture 0.2 (Kameko [3]). For all k and n,

Dim (P(n)/((1ZYP(n))Y < 1.3-7---(2" 1 —1). (2" —1).

Carlisle and Wood [2] have shown that for each n there exists a uniform bound &(n)
for Dim (P(n)/((I1s/)P(n)))". It is a consequence of (1) that .# satisfies Kameko’s
conjecture. In fact, it is easy to see that the number of clements {A5 A% ... A% | §;C
{1,...,n}} one can obtain as products of n symbols satisfying relation (1) is precisely
1-3.7---(2"71 —1)-(27 — 1). Recalling that .#(n) is nilpotent of order n+ 1 shows that
this is an upper bound on Dim &(n); for all . It also follows from the discussion above
that 1-3-7---(2"7" —1) - (2" — 1) is the best possible uniform bound for Dim #(n);
and thus best possible for Dim (P(n)/((1/)P(n))Y (see Corollary 3.12).

The outline for this paper is as follows. Section 1 contains some elementary number-
theoretic facts. The definitions of 6 and % appear in Section 2. Section 3 is devoted
to a description of .. The paper concludes with a few examples in Section 4.

1. Preliminaries

We begin with some preliminaries on mod?2 binomial coefficients and properties of
the functions o and f.
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Lemma 1.1. For n, keN, a(n+ k) < n if and only if Bk) < n.

Proof. Suppose «(n + k)=r where » < n. Then the binary expansion of n + k is
n+k=2"+2% 4 ... 42" where t{ <f, <--- <{,. Since n + k > n one can keep
subdividing the powers of 2 appearing in this expression until one obtains an expression
n+4 k=24 + 2% 4+ ... + 2% containing n terms (with possible repetition). But then
k=20 —142% —1+---42%—1 and so (k) < n. Conversely, if f(k)=r where r <n
then we can write A =2" — 1 422 — 1 4 - 20 — | 42000 — 1 4202 ] 4. 420 ]
where ;=0 for i > r. Then n 4+ k=2" +22 + ... + 2" and so a(n + k) < n.

Lemma 1.2. (a) If (20 —1)+(22—1)+---+(2" —1)=(21 = 1)+ (22— 1)+ - -+(2" = 1)
with0 <t <ty <---<toand 0 < <th <. .- <¢, then ;=t] for all i=1,...,r.

) IFQR"— 1)+ 1)+ + (2 =)= = 1)+ Q2= 1)+ + (2 = 1)
with0 <t) <t <---<toand 0 <t] <t <--- <t then r=r.

Proof. (a) Let x=(2" — 1)+ (22— 1)+ - -+ (2" — 1) and let m=2" 422 4 ... 4
2r=x +r=21 42"+ ... 4 2%, Since the #s are distinct, 21 + 2" 4 .. + 2" s the
binary expansion of m and so is the only way of writing m as a sum of powers of 2
using only » terms. Therefore, t;,=¢/ for all i=1,...,r.

(b) Suppose ¢ > ¢/, Then we get the contradiction (2" — 1)+ (2? — 1)+ .-+
(2r —1)>20 =12 — 1 — =1 434+T+ 4+ (2 —1) > (24 — 1)+ (2% -
+-- ‘+(2’:' —1). Similarly, 1, > ¢, yields a contradiction and therefore 7, =¢/,. After
cancelling the 2" — 1 term, proceeding by induction gives r=r/. [

The following lemma is easily verified.

Lemma 1.3. [f 0 <qg <2'— 1, then

(2[ -1 q) =0 (mod2).
q

From this it follows that a basis for AnnP(1)x is {y2—1(x)};>0.

Lemma 1.4. If a+b+c=2—1+2F — 1 for some j and k with j < k and a,b,c > 0,

then
b B c
(zf —1 —a) = <2f —1 —a> (mod2).

Proof. Let &’ and ¢’ be the reductions of 4 and ¢ modulo 2/. Then

b B b
(2/’— 1 —a> = <2_/_ 1 _a> (mod 2)
and
I c
<2j—1—a> (2/’—1—a> (mod2).
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We may assume a + & + ¢ > 2/ — 1 since otherwise » and ¢’ are less than 2/ —

| — a so that both sides are zero. Therefore, 2/ — 2 < a + & + ¢’ < 3(2/ — 1). Since
a+b +c'=—2(mod2/), this implies a + &' + ¢’ =2/t! — 2. In other words, without
loss of generality, we may assume j=k. We proceed by induction on b. We begin
the induction with #=0 in which case the relation @ + ¢=2/"' — 2 together with the
inequalities @ <2/ — 1, ¢ <2/ — 1 forces a=2/ — 1, ¢=2/ — | and so both sides are
1. Set d=2/ — 1 — a. If d=0, then both sides are 1 so assume d > 0. Assuming now
that when b is replaced by b — 1 the formula is known for all d we have

b+c_b—l+b~l+c+17c
d d) d d—1 d d—1
b—1 b—1 c+1 ¢
(")) () () e
=0 (mod2)
since the first and third terms are congruent and the second and fourth terms are

congruent by the induction hypothesis. [J

Lemma 1.5. If a+b+c=2 —1+2*" — 1 and a,b,c > 0, then

b c a .
(2/‘ 1 a) + <2-f— 1 —b) + (2»/— 1 —c>:0 (mod2).

Proof. Applying Lemma 1.4 and using b —(2/ — 1 —a)=a+b— (2 - 1)=2""-1-¢
gives that the following expressions are equal modulo 2:

b c b ¢
2 —1—a) 2 —1—a)’ 2~ ) 28 1 —p )

Similarly, there are equivalent expressions for each of the other two terms. Since
a-+b-+c>2+"£2/— 3 it is not possible to have all of a <2/, b < 2/, and ¢ < 2/,
So assume that at least one of a, b, ¢ is greater than or equal to 2/; say a > 2/. If
a> 2t then

b a a— 2!
(2»’-lwa>_0 and (2/.‘1;0):(2]1*6):0 (mod?2)

since atc<a+b4c=2"4+2/-2<2M 2/ —JTandso2/—1—¢>a-2/"",
Similarly,

)= ()
) = _ =0 (mod2)
2/ —1-b 2/ —1-b

so again all three terms are congruent to 0. Therefore, suppose 2/ < a < 2/7!. Then

b
X =0
2/ —1—a
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a a C
. _ _ (mod 2),
(2«/—1—c) (2»’+'~l—c> (2»/—1—1;)

using that

x x
= _ (mod 2)
<y> (y+2”>

when 0 < y <2/ <x <2/t [0

and

I

I
SN
<
~——
Il

2/ - 1-5

2. The homomorphism € and its dual

Let B be the free Boolean ring on {xi,x3,...,x,}. That is B=P/J where J is
the ideal generated by {x — x*},cp where the grading on P is ignored. Let 7:P — B
be the canonical projection. For a monomial @ € P, we can regard n(a) as a subset of
{1,....n} in the obvious way. We remark in passing that n(S¢'(x)) = (¥)n(x) if x € PX.

Consider a partition {k;, ky,..., &} of a positive integer k into positive integers of

v’ projection

Pk p ;l P®r Pkl ®Pk3 @ - ®Pk" TR QI

B%".
We use the maps Oy, 4,4 to define a map

0:P*— P B
ki, kay ke
k,‘:zl’—l
>0

where the sum is indexed over all arbitrary length partitions of k into strictly positive
integers of the form 2’ — 1. Define 4 to be the map whose projection to the factor
indexed by {k[, kz,..., kr} is ()(k“/‘-zmq/‘-/). Extend 0(/(],/(2‘”_)1(,_) and Hk to all of P by
defining them to be 0 outside of gradation k. Define # to be the map which in gradation
k is 0.

Theorem 2.1. O, ,.. i (P(x))=0 for ki, ka,..., k. of the form 2' — 1, ®€l/, and
x€P.

Remark. The theorem has content only when & = |§(x)|.
Corollary 2.2. 6((I4)P)=0.

Proof of Theorem 2.1. Assume k =|®(x)|. It suffices to consider the case when
& = Sq? and x is a monomial. The projection of " ~'(Sg¢%x) onto P @ P @ ... @ Pk
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is a sum of terms each of which lies in Sg?'Ph—9 @ Sq?Ph—9 ... @ Sq¥Pk—d-
for some qy,492,...,q, with ¢ + g2+ --- +¢,=q and g; > 0 for all /. It suffices to
show that the sum of the terms from each such partition contributes 0, so fix a par-
tition ¢1,g2,...,4,. Let Sqg?'y; ® Sq”y, ® --- ® Sq*y,, where yJEP"f—‘b, be a term
in "~ '(Sq?x) coming from the partition gy, g2,...,q,. Since m keeps track only of
which variables appear and S¢™ does not change this, the contribution from this parti-
tion is e; () ® e2n()2) ® - - - ® e, (¥, ), where ¢; is the number of terms in Sqg%(y;).
Therefore,

ki — g 2" —1—gq
€= = s
qi qi

where k; =2% — 1. Therefore, by Lemma 1.3, ¢; =0 unless g; =0. However, the g;’s
cannot all be 0 since they add to g. Thus, ¢; equals 0 for at least one i and therefore
en(y)®@en(y2)& - @en(y,)=0. U

For each nonempty subset S of {1,...,n} we have an inclusion is:(RP>)IS| —
(RP>Y'. Thus, each such subset gives rise to a “diagonal map” ° defined as the
composite RP(’Cm (RP>=)iSI LN (RP>Y". We extend the notation by setting ?
to be the zero map. For each subset S and for each integer ¢ define an element
A7 € (Pe)y 1 by A7 =¢S5 (32— 1(x)). Explicitly, A7 =77, (x1)7:,(x2) - - ;,(x,) where
the sum runs over all sequences iy, i,...,i, of positive integers such that Z:n:l in=2'—
1 and i, =0 for m¢ S. Since y2_1(x) belongs to Ann P(1)x it follows that A5 lies in
Ann Py. Let & be the subalgebra of Ann Py generated by the elements {45 |t > 0, S C

{1,....n}}.
Theorem 2.3. ¥ is nilpotent of order n+ 1.

Proof. All of the generators of % have odd degree and the product in Px of any n+ 1
elements of odd degree is 0. [J

Corollary 2.4. ¥, =0 whenever (m) > n.

This is immediate from Theorem 2.3 and the fact that the generators of & are in
degrees of the form 2¢ — 1.

Lemma 2.5. For a monomial Y € P, having degree 2! — 1, (AS,Y) =1 if and only if
n(Y)cS.

Proof. (A7,Y)= (Y2 (y21(x)), ¥) = (y2_1(x), 5 Y). Since 3" sends variables in S
to x and those outside of S to 0, the lemma follows.
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Corollary 2.6. For a monomial Y € P,, (Aﬁ‘Afj . --Aﬁ",Y ) = number of terms v ©
V2 ® @y, in Y such that |y;| =2/ — 1 and n(y;) CR; for all i=1,...r.

Fix a positive integer » and positive integers i, ja,..., j,; given x € P and a collection
€={51.5,....5,} of non-empty subsets of {1, 2,...,n}, let cz . be the coefficient of
$1@85 @ ®S8 in Oy 130, _2m_1(x).

Lemma 2.7. If A= A»fl‘/lfj e AIS €Y, then (A, x)= > cg., where the sum runs over
all &' ={58{,85,..., S} such that S/ CS; for all i=i, ...,r.

Proof. By Corollary 2.6, in computing (A, x) there is a contribution of 1 for each
term in Y " 'x of the form a; ©® a; @ -+ @ a, where la;|=2/ — 1 and n(a;)CS,.
Such a term also contributes 1 to the sum on the right-hand side through ¢z, for
&' ={n(ay),n(az),....n(a,)}. Conversely, by the definition of 0, every contribution to
the sum on the right comes from such a term in "~ 'x. 0O

Theorem 2.8. (¥, x) =0 if and only if x € ker 6.

Proof. If x ckerd, then ¢z, =0 for all S and so it follows from Lemma 2.7 that
(&, x) =0. Conversely, suppose that {#, x) =0. Then for every product of generators
A :Afl‘Aiz e Af)f‘ €Y, 0={(A,x)=> cz . where the sum is as in Lemma 2.7. We
wish to show that 6(x) =0 or equivalently that ¢z, =0 for all S. It suffices to consider
the case where x is a monomial. For &={S,5,,...,5,}, let N(&)= >"7_,|Si|. To
show that cg , =0 for all S containing r sets we proceed by induction on N{(EZ). We
begin the induction with N(&)=r. In this case, each set §; is a singleton and so has
no proper subsets. Thus, cz , is the unique term on the right-hand side of the sum
in Lemma 2.7 and so cz , =0. Now suppose by induction that ¢z’ , =0 holds for all
&’ such that N(&") < N(S). Then cgr, =0 for all &' such that & = {S], Sj,..., S’}
where S! is a proper subset of S; for some i=1,....r. Therefore Lemma 2.7 yields
0=cz.,+0 and so ¢z, =0 to complete the induction. [

Corollary 2.9, ¥ = (Im 0).

3. Relations in &

Theorem 3.1. Let S and T be subsets of {1,2,...,n} such that SUT ={1,2,...,n},
and let m be a monomial in P* ='*¥ =1 Write m =mymyms where m, is the product
of the factors of m which contain variables from S — T, m, contains those from SNT,
and ms contains those from T — S. Then

|ma|
ASAT m) = . .
WAAsm) (2/—1—|m1|
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Proof.

(ASAL m) = (A5 @ AL Om Wp(ma Wp(m3).

- < e ALY ST S, @l o i Yo '"3’”>
y4 q r

</2/ 1(x) @ y2x 2y (x), Z s (ml oy, m3 Yoyt (m]pm’z’qmg’,‘)>.

pq.r

Since 77 projects onto the factors corresponding to the subset 4, terms with m} # | or
m{ # 1 give 0. Therefore,

(AFAL m) = <-,vz/1<x> ©p2_1(), Y W5 (mim) ) @ wT‘(mai,m3)>
q
=3~ (@ mmy)) (o (07 (0 m3) )
q
—Z (120200 X (), 6
—ZO';]"Z” ey

Since |mi| + [m) | + |my | +|m3| =2/ — 1+ 2% — 1 for each ¢, |m| + |m) | =2/ — 1 if
and only if |m} | + |ms| Y Therefore,

dmim} | Ims ms| |mym) | [mim; |
% 2,7 y 4
Oy "0y =0 =0y

for each ¢. Thus,

S 4T lmlm | 3, | 2]
<A,/'Ak*m>: 9y 262’ 1=lm | = 2/ = ’

P 1-— [m.(
. my, | . ;
since 3, (3'2,_”]_1”1” counts the number of terms of the form a & b with |a| =2/ —1—|m, |
in the coproduct of mp. [

Let S AT denote the symmetric difference of sets S and T.

Theorem 3.2.
AL =A72TA] (1)

when j < k.
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Proof. Let m be a monomial in P2’ ~'*2'=1 Write m = m;mymyms where m, is the
product of the factors of m which contain variables from S —7, m, contains those from
SN7T, my contains those from T — S, and my4 contains those from {1,...,r} = (SUT).

The Kronecker nrndn(‘t is 01\1911 hv

(A3AL,m) = (A7 © AL, (m)).

If mq+#1 then this is 0 as is the corresponding expression with S A T replacing S.
Assume now that my = 1. Then applying Theorem 3.1 gives

o ,
(ASALmy= | I .
’ 2f—l~|m1|

Replacing S by S AT interchanges the roles of m, and m;. However,

Im;| |m3|
2/ — 1 —|my| 2/ — 1 —|my]

by Lemma 1.4 because |m|=|m| + |ma| + |m3| =2/ — 1+ 2¢ — 1. Therefore, AJA]

and A7 7A] have the same Kronecker product with every monomial and so A5 A] =
SAT

A;5 40 O

Theorem 3.3.

s SASAT SAT
A3 Aj+1 A7 A/+1 + A A/+1

Proof. Let m = m;mymamy be a monomial in P2 ~1+2""' =1 where my, my, ms, and my
are as in the previous proof. As before, if m4# 1 then all the terms are 0 so assume
that m4 = 1. Applying Theorem 3.1 shows that we are required to prove that

| |y m|
, ={ +{ ,
27— 1 — |my] 2/ — 1 — |my) XA

which follows from Lemmas 1.4 and 1.5. O

We will show that generically relation (1) is the only relation in % More pre-
cisely, we will show that if AJS-:AJS-Z2 e AJS :AJS.I‘IAJSE AJS’/ and there is sufficient sep-
aration j, > j,.1®» -+ » /2> j1 > jo=0 between the degrees of the monomials, then
Afl‘AjS;- AJS is obtained from Af]‘/Afj/ e AJS{’ by repeated application of (1). We do
not determine the minimum separation needed precisely, although it will become clear
from the proof that j;»; — j; > n is sufficient. As illustrated by Theorem 3.3, there are
more relations when the separation is small.

Let # be the free commutative algebra on symbols AS and let J be # modulo
relation (1). There is a canonical surjective quotient map Quot — &. Define a partial

order on the monomials of . by A< A’ if A=A’ or if there exist representatives

7

51 48 5 P ASAS A
AIIAJZ Ajr’ A -Ajl Ajz Ajr
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in & such that (51,55,...,5,) <(S1,55,...,5/) in the right lexicographical ordering by
containment; that is, if there exists ip such that S;=3S] for i > iy and S;, & S,-’O .

Suppose j, > j,_1> - > /2> j1 > jo=0. Because the j;’s are strictly increasing,
Lemma 1.2 implies that n=(2/' — 1)+ (22 — 1)+ --- + (2/- — 1) is the unique ex-
pression of # as a sum of » numbers of the form 2’ — 1. Given A= Af]‘AJS-ZZ e Ai'j €7,
using the separation we will describe a monomial X(A) € P, having the properties that
{Quot(A), X(A))=1 and that (Quot(AR' AR .- A¥), X(A))=1 implies A< AT A% ..
A% This will show that if Quot(A)=Quot(Af' A% ... A¥) in T then A=AFAT ...
Af: (see Corollary 3.11) which is what we meant when we said that generically relation
(1) is the only relation in %

Let O ={1,2,4,...,2/'71}. Using the separation hypothesis we may assume j; > |S;|;
choose a surjection ¢: Q0 — §;. For x€ S US, U --- US, define

1 ifxes,
di(x)=
0 ifx¢s;.

For a monomial

e ASUAS L AS g
A= Ajl Aiz A,/r €7,

choose a representative 7(A) = Aﬁ'/lf;2 e Aff‘ € F for A, elements z;(A) ER; —U‘j<i Ry,
and a monomial X(A)€ P, as follows. Let /f:A»,S-;AjS.;‘ . Af and assume that r(/f )
{zi{A)}_,, and X(A) have already been chosen, with z;(A)ER; — Uj<iRj’ Write
A ):A_ﬁlAﬁ’ ~~A_f_". By appropriate application of relation (1), we can find R; such
that

SigR AR pRpR AR in T
Alejz Ajr ﬂA./‘l Ajz AJ} in 7

and z(A)gRy, for i=2,...,r. Set t(A)=ANAR .. A% z(A)=2z(A), for i > 2, and
choose z|(A) to be any element of R;. (The set R, is actually determined by the
previous choices of z;,(A).) For any sets S1,5;,...,S, we can make these choices inde-
pendently of ji, j»,...,j. (subject to 0 =jo <€j; €j2 < --- <,). That is, we may assume
that if 0=jo<j1 <2< -+ <, and 0=y <J, <J, < -+ <], and
Sy 48 S,y AR 4R R,
oAy A ATy = A A
then
Si A4S, Sy AR AR R,
WA AL - A = AGAE - A
and
NI Sy 51 4S s, .
zi(AG A5, A )y =z(AFAT AT fori=1,
Set

X()=x( A" [] (My())*

g€Q
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with M, (A)=¢(q)za(A)z3(A) - -z(A) for g€ Q, where in this expression we have
identified each variable in the polynomial algebra P(n) with its index. For we write X
for X(A), X for X(A), z; for z(A), M, for M,(A), and M for [T oMy ).

Lemma 3.4. (AJ AR A% xy= (A AR ARy (ARAR AR ),
Proof. A term (£)* m ©(%2) my @@ (&)Y 'm, in @M (X )= X (M)
contributes 1 to (Aﬁ'/lff e A_f}‘, X) whenever 2! [%;|+|m;| =2/ —1 and n((;*" m;) C R,
for all i=1,...,r. The first condition is equivalent to requiring both |%;| =2/"/" — |
and |m;| =2/' — 1 (because Q contains no powers of 2 as large as 2/') and the second
is equivalent to requiring both n(%;) CR; and n(m;} C R;. Noting that |X,|=0 so the
requirement 7(x;) C R; is superfluous, we see that these are precisely the same condi-
tions under which the pair X X, & - R X, m K my; ® -+ ® m, contributes 1 to the
right-hand side. O

Essentially the same proof yields
Lemma 3.5. (A% A% A% M) = [T,-) cq where ¢, = (AR AR AT M),
Lemma 3.6. The numbers c, are given by
AT A )
= o€ X, | P(q) € Ro1y and z; € Royyy for i > 1} (mod2).
Proof. This is immediate from the definitions. ]

As before, consider a monomial A= AS'A9 Af €7 with 0=j,<j, <),
< - -+ <j,. By replacing our representative /15‘/15 A5 by t(A), we may assume that
Afl‘/lf2 A,S =1(A). Suppose A’ = AR‘AR /1 " is a monomial in 7 such
that {(Quot(A"), X) =1, where again by replacmg ARIARZ- -A‘R" by 7(A'), we may

assume that AR'A&u'AR =1(A"). Then Quot (AR A% ). X)y=1 and
J1°7 0 Jr Ja—h /1 N / 7l
(Quot(AR‘ AR’ e Aﬁ_’ ), M) =1. We wish to show that 4 < A’. By induction
; R
<Qu0t(/1f7 /IA/: i Ji */1) X> =1

implies that

5 L Ry 4Ry AR, S
AJ _“/1“ Ji A./‘r'7/1 = A/ */lAh v Al'r—_/l m 7.
If
Sz S Ry Y LS g
A/ *lwAh /i /“/1 7é A/ _“/1” vl A_/ﬁ/l m .7,

this implies that 4 < A’ so assume that

S Ss S AR Ry . 4R g
AJ’ /1/111 Ul Al — /1 AI *11/1/3 v AI«—/u m.7.
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Therefore,

Ry Ry AR _ AR 4S5 A4S Ry qRy 4R _ AR 48 4S5
AA - A = AGAG - Ay and A AR - A= A AR A

Since

(Quot (AN A% -+ AT), M) = (Quot(AF AT - AT ), M) =1,

applying Lemmas 3.5 and 3.6 gives that ¢,(R;)=1 for all g=1,...,r, where
cg(R)=|{o€Z,| ¢(q) € As1y and z; € Aoy for i > 1} (mod2),

with 4, =R and 4;=S5; for i > 1. Given R, let W(R)={0 € X, |z; € Aoy for i > 1},
where the 4;’s are as above. Since z; €S; for j < i, any g € W(R) satisfies either (i) >
i or 6(i)=1 for all i>1. We will write the identity of X, as the cycle (1). Then if
o€ W(R), o is a single cycle (possibly the identity) beginning with 1 and having
monotonically increasing entries. In particular, the only element of W(R) satisfying
o(1)=11is (1). For g€ Q, let W(R)={o € W(R) | $(q) € 4o(1)}. Let W(R)=W(R)—
{(1)} and let WI(R)=WI(R) N W(R). Then W(R)={o € W(R)|ds1)(d(q))=1}.
For x € Sy, let

“(R) 1 if x€R,
YN0 i xgr.

The identity is in W%(R) if and only if ¢(g) € R. Therefore, from the definitions and
Lemma 3.6 we get

Lemma 3.7. For x €S1,¢c,(R)=|WI(R)|=x"(R) + |W4(R)| (mod2) for any q such
that ¢(q) =x.

For i=1,...,r set W(R)={o € W(R)|a(1)=i}. Define W;(R), W!(R), and W/(R)
to be the intersection of the corresponding unsubscripted set with W,(R). Note that
WIUR)= 11 (i1 | auotgy=13 WiR) and observe that for i > 1, Wi(R)=W(R).

Lemma 3.8. (a) For m > 1, W,(R) A Wu(RAS,) ={(1 m)}.
(b) For m> i > 1, Wu(R) =Wu(RAS)).

Proof. (a) Let ¢ belong to W,,(R). For j > 1, except for j=0"!(1), z; € Ss;) while
Z;-1(1) € R. Since ¢ € W,y(R), 6~'(1) > m. Unless 6=(1 m), ¢~ '(1)>m and so
Zg-1(1)ESm and thus z,-1)ER — S CRAS,, so that o€ W,(RAS,). However,
if 6=(1 m) is in W,(R) then z,, € RN S,, and s0 Zs(myER A S,, and therefore (1 m)¢
Wa.(RAS,y). Conversely, if o =(1 m)& W, (R) then z,, €S,—RCRA S and so (1 m) is
in W, (RAS,,). By symmetry, the same considerations apply to ¢ € RAS,,. Therefore
Win(R) &5 Win(R A5 S) = {(1 m)}.

(b) Since m > i and ¢ in W,(R) or W,(RAS;) satisfies 6~ (1) > i, the argument
is the same as in part (a) without its exceptional case of the transposition. [
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Theorem 3.9. Given Aﬁ Aiz o -Afl’j, there exists R' such that

RAS: AS = AR A A T
A AR - Ay = Ay AT AT in T

and |W, (R =0(2) for all m > 1.
Proof. Assume by induction that R] has been chosen such that

R S S AR 1S S g
Afl Ajz o Ajr _Aleiz ”'Ajr n 7

and |W,(R))|=0(2) for all m > i.
Set
;R D = 02),
SUTYRIAS O HRD = 12).
By Lemma 3.8, replacing R; by R]_, does not affect W,() for m > i but changes

the parity of |W()| appropriately. Therefore, R’ =R| satisfies the conditions of the
theorem. O

Theorem 3.10. Suppose j, > j,—1> -+ >j2a>j1>jo=0 and let A=AJA-- A7

Jr
Then
(Quot(A), X(A)) =1,
and, conversely,

if (Quot(ANAR . AF), X(A)) =1 then A < AJAT ... AT,

Jr

Proof. It follows from the earlier lemmas that (Quot(A1), X (1)) =1. Suppose now that
(Quot(Aﬁ‘Aﬁ2 e Aﬁ’ ), X(A)) =1. As above we may assume that

Ry qRy AR _ 450 483 A4S o g
Ajz/lj3 /1),}—/1]5/1]-3 Ay in T

Then c,(R;)=1 for all ¢ and so by Lemma 3.7 we get that for x€ Sy, " (R))=1+
|W4(Ry)| (mod2) for any g such that ¢(q)=x. By Theorem 3.9 we can find R’ such
that AR A2 - AT = AT AT .- AY in T and W,(R')=0(2) for all m > 1. Given x €5,
choose ¢ € O such that x = ¢(gq). Then

CERY=1VH PR =1+ Y WuR) =1+ ) 0=1 (mod2).
m>1; m>1,;

dn(d(q))=1 dn(p(q))=1

Therefore x belongs to R’ and so S is contained in R’. Since

R Sz... S 4R SZ... S qR Rz... R, 1 7
Ay A Ay = AGAT - A = A A Ay 0 T

. Ry 4R: R,
this says that 4 < A;'A;7--- A} U
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Corollary 3.11. Suppose Quot(A}' A} -+ A7) = Quot(AN AR ... A%) where j.>
Jr1> o> p> j1>jo=0. Then AJAR - AT = AR AR p% in 7.

Proof. Let jo, ji,..., j- be as stated. Let V' be the subspace of J spanned by the set
of all monomials A3'A% - .. AJS{ . Theorem 3.10 shows that the image under Quot of a

T2
basis for V is linearly independent in ¥ O

Corollary 3.12. Let 3(n) be the least integer such that Dim(P(n)/((I.o/)P(n)))* <
8(n) for all k. Then d(n) > 1-3-7---(2"' —1)-(2" - 1).

Note. As mentioned in the introduction, Carlisle and Wood [2] have shown that
such a d(n) exists for each n.

Proof. The equivalence classes of monomials in {AJS-I' AJS-Z2 . Af S;c{1,...,n}}
are linearly independent in 7 and it is easy to see that modulo relation (1) there
are 1-3-7---(2"7! — 1)- (2" — 1) such monomials. By Corollary 3.11, these are
linearly independent in & whenever j,>j,_ > -->/>/1>jo=0and so 1-3-7---
(2""' = 1)-(2" — 1) is a lower bound for é(n). O

4. Examples

In this section we give a couple of examples of elements in ker 0.
In 3 variables the least degree element in ker 6 lies in degree 8. Let K =xy%? +
By 4 xy:

Bo.n(K)=n(x)® n(x2y3zz) +n(y) ® n(x3yzz2) +(x) ® n(x2y223)
+71(z) @ 1y ) + 1(y) @ n(x*y2’) + n(z) ® n(x?y’s)

=XQXYz+yQ@Xyz+xQxyz+z@ XYz + y®xyz +z® xyz =0.

ssssssssssss

K #0 in P/((I+/)P) we exhibit an element of 4 € AnnPx such that (4, K)=1.
Let [i, j, k] denote the element y,(x)y;(¥)yc(z) € Px. Let A=[6, 1, 1] + [5, 2, 1] +
(3,4, 11+ [3,3,2]. Then (4, K)={[3, 3, 2], x’y*2?) =1 and it is easily verified that
A € Ann Py. Notice that the superficially similar-looking element x7y7z8 +x73%7 +x%y727
is 0 in P/((/./)P). In fact, since B(20)=4 > 3,(P(3)/((I1.+)P(3)))*® has no nonzero
elements.

For a second example, consider K = w'*’z> + w3 y%* € (P(4)/((1.4)P(4)))**. Us-
ing analogous notation, let 4 =[1,1,6,6]+[1,2,6,5]+[1,3,5,5]+[1,4,6,3]+[1,5,3,5]+
(1,6, 1,6] + [1,6,2,5] + [1,6,4,3] + [2,1,5,6] + [2,2,5,5] + [2,3,6,3] + [2,4,5,3] +
(2,5.1,6] + [2,5.2,5] + [2,5,4,3] + [2,6,3,3] + [3,1,4,6] + [3,2,4,5] + [3.3,2.6] +
[3,4,4,3] + [3,5,1,5] + [4,1,3,6] + [4,2,3,5] + [4,3,1,6] + [4.3,2,5] + [4.3,4,3] +
[4,4,3,3] + [5,1.2,6] + [5,2,2,5] + [5,3.3,3] + [5,4,2,3] + [5,5,1,3] + [6, 1, 1,6] +
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(6,2,1,5]+1[6,3,2,3]+[6,4,1,3). Clearly {4,K)=1. A short calculation similar to that
above shows that (X)=0. What our computer regards as a short computation shows
that 4 € Ann Px.

The relatively pleasant-looking form of K in these examples suggests that while Im 6
is best studied by dualizing and looking at %, ker & might be more tractable than its
dual.
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