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Abstract 

We define a homomorphism 0 on H*((RPm)“; Fz) having the property that it is zero on 
elements hit by the positive degree elements of the Steenrod algebra. We describe the subalgebra 
(Im Q+ of Steenrod-annihilated elements of H*((EWoo)“; 5,) and in particular we show that 
it is nilpotent of order IZ + 1. We make some conjectures as to properties of H*((RPw)“; Fz) 

including a nilpotency conjecture that is a strengthening of the conjecture of Peterson, proved by 
Wood, concerning the degrees containing elements not hit by positive degree Steenrod operations. 
@ 1998 Published by Elsevier Science B.V. All rights reserved. 
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0. Introduction 

The classifying space of the group 2/2Z is [wpm. The multiplication and diag- 

onal group homomorphisms Z/22 x Z/22 + Z/22 and Z/22 -+ Z/22 x Z/22 induce 

maps (wPoo x [WPO” + [wp”O and [WP” ---t LWP” x [wp” which turn H*(( RPDs >“; Fz) into 

a Hopf algebra. Let I’(n)=F~[xl, x2,.. ., xn]NH*((RPrXl)n; F,). In the Hopf algebra 

structure on p(n) all of the generators are primitive and the action of the Steenrod 

algebra on F’(n) is determined by Sq](xi)=x; and Sqk(xv)= Cl+j=k Sq’(x)Sqj(y). 

The dual to p(n) is given by p(n)* =T[xr, x2 , . . . ,x,,], where T[S] denotes the divided 

polynomial algebra on S. Explicitly, f [xl, x2 , . . . ,x,J= @I:=, T[xi] where T[x] has a 

basis { Y~(x)}R~o with multiplication given by yi(x)yi(x) = (‘:‘) y,+j(x) and comultipli- 

cation given by rj(yk(x))= Ci+,=k yi(x)c3~~(x). We will often write simply P for P(n) 

when there is no possibility of confusion. 
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Let .d denote the mod 2 Steenrod algebra and let I.& be the augmentation ideal in 

.d. The opposite algebra of the Steenrod algebra acts on P* by means of ($&a, X) = 

(a, Sq’x). In particular, SqY,(yk(x))= (“,y);~~-l,(x). 

Peterson’s problem is to find a basis for P/((Z.d)P). The equivalent problem after 

dualizing is to find a basis for (P/((l.d)P)) *, which is the same as Ann P*, the ele- 

ments annihilated by all Steenrod operations. One advantage of working with the dual 

is that it has additional structure; Ann P* forms a subalgebra of P*. 

In the case n= 1, Peterson’s problem is trivial, and complete solutions have been 

given for n=2 [4] and n=3 [3]. When II= 1, a basis for Ann P(l)* is {;.~l_I(x) 1 

t > O}. The images of the generators of Ann P(l)* under the various compositions of 

iterated diagonal maps and inclusions RP” + (RP” )” generate a subalgebra of Ann P* 

which we denote by Y(n) or simply .Y The generators of .Y, denoted As E ,Y$_r, are in 

one-to-one correspondence with pairs consisting of integers t and subsets S c { 1,. . , n}. 

We shall describe a homomorphism fl on P/((Z.d)P) having the property that (Im (I)* 2 

,40 This separates out the relatively easy to compute part of P/((ld)P), Im fl, from the 

unknown and possibly unknowable portion, ker(I, much as the J-homomorphism sepa- 

rates the homotopy groups of spheres into the known and the unknown. The subalgebra 

.Y of Ann P* has some nice properties which we shall describe. Although in this paper 

we compute it completely only “stably”, its computation seems to be quite tractable. 

In contrast, ker0 seems to be very unwieldy in general. 

Examining the known cases, the dimensions of (P(n)/((l.d)P(~)))~ form a fairly 

easy-to-understand pattern for n = 1 and II =2, while for n = 3 the pattern seems to 

be disrupted by an irregularity in dimensions 8,19,41,. . ,2’+’ + 3(2’-’ ~ 1 ), . . . This 

reflects the fact that kerR=O when M < 3 and that when n=3, ker 0 has dimension 1 

in the degrees listed above and is 0 in other degrees. It appears to us however that 

the number of such irregularities (i.e., the dimensions of ker 0) increases dramatically 

with n. 

The homomorphism (I will actually be defined on P and shown to have the property 

that O((Zd)P)=O, thus inducing the homomorphism referred to above as 0. Therefore, 

for x E P, N(x)= 0 forms a necessary (but not sufficient) condition for x to be a “hit” 

element of P; that is, one in the image of positive degree Steenrod operations. 

For kE N, define a(k) and /l(k) as follows. Let x(k)=number of l’s in the dyadic 

expansion of k=least r such that k can be written as a sum of r numbers of the form 

2’. Let p(k)=least r such that k can be written as a sum of r numbers of the form 

2’ - 1. Clearly P(k+m) < jl(k)+~(m). Also from the definitions one gets a(n+ k) 5 n 

if and only if p(k) < n (see Lemma 1.1). 

Peterson’s conjecture, proved by Wood [5], states that in degree k 

(P(n)/((lcd)P(n)))k =0 if a(n + k) > n 

or equivalently, 

(P(n)/((Id)P(n)))k =0 if P(k) > n. 
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The algebra Y satisfies the stronger statement that it is nilpotent of order n + 1 (see 

Theorem 2.3). Since all of its generators are in degrees of the form 2’ - 1, it is clear 

that this implies that Y satisfies the Peterson conjecture. We propose the following 

strengthening of the Peterson conjecture for P(n)/((I&)P(n)). 

Conjecture 0.1. Ann (P(n))* is weighted nilpotent of’ order n + 1 where ulgebra gen- 

erators in degree k are assigned weight P(k). 

By weighted nilpotent oj’order n+l we mean that if x can be written as x=x1x2 .x, 

where xi E Ann(P(n))* for all i and wt(xl) + wt(xz) + + wt(x,.) 2 n + 1 then 

x= 0. Thus, for example, when n = 3 the generator in degree 8 counts 2 against the 

nilpotency limit of 3 and so according to the conjecture not only is any 4-fold product 

in Ann P(3)* equal to 0, but so is any 3-fold product containing the exceptional 

generator in degree 8. It is clear from the definitions that a positive solution to this 

conjecture implies Wood’s theorem (the Peterson conjecture). The known calculations 

(cf. [3, 11) show that the conjecture holds for n 5 3. 

Letting Sa T denote the symmetric difference of the sets S and T we will show 

that the generators of 9 satisfy 

‘/ls:/ir = /I? A 7;ir 
I k I k (1) 

when j 5 k, and that generically this is the only relation in .Y (see Theorem 3.2 and 

Corollary 3.11). Kameko has conjectured 

Conjecture 0.2 (Kameko [3]). For all k and n, 

Dim(P(n)/((Z.rr”)P(n)))k < 1.3.7...(2”-’ - 1).(2” ~ 1). 

Carlisle and Wood [2] have shown that for each n there exists a uniform bound 6(n) 

for Dim(P(n)/((Z,m’)P(n)))k. It is a consequence of (1) that 9 satisfies Kameko’s 

conjecture. In fact, it is easy to see that the number of elements {AS1 As2 . . . Asn / S, c 

{ 1,. . , n}} one can obtain as products of n symbols satisfying relation ( 1) is precisely 

1.3’7. . (2”-’ - 1). (2” - 1). Recalling that Y(n) is nilpotent of order n + 1 shows that 

this is an upper bound on Dim Y(n)k for all k. It also follows from the discussion above 

that 1 ‘3 ‘7. . (2’-’ - 1) . (2” - 1) is the best possible uniform bound for Dim cy(n)k 

and thus best possible for Dim(P(n)/((I,d)P(n)))” (see Corollary 3.12). 

The outline for this paper is as follows. Section 1 contains some elementary number- 

theoretic facts. The definitions of f) and Y appear in Section 2. Section 3 is devoted 

to a description of 9? The paper concludes with a few examples in Section 4. 

1. Preliminaries 

We begin with some preliminaries on mod2 binomial coefficients and properties of 

the functions a and /YJ. 
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Lemma 1.1. For II, k~ N, r(n + k) < n ij’cmd only iJ’p(k) < n. 

Proof. Suppose ~(n + k)=r where r < n. Then the binary expansion of n + k is 

n + k =2” + 12’~ + + 2’r where tl < t2 < < t,. Since n + k > n one can keep 

subdividing the powers of 2 appearing in this expression until one obtains an expression 

n + k=2’: + 2’: + . . + 2’: containing n terms (with possible repetition). But then 

k=2’: - 1 +2’; - 1+...+2’: - I and so b(k) 5 n. Conversely, if fi(k)=r where r 5 II 

thenwecanwritek=2’~~1+2’~-1+~~~+2”--l+2’~~~-1+2~~-~-1+...+2r~~~l 

wheret,=Ofori>r.Thenn+k=2”+2”+...+2~landsoa(n+k)in. 

Lemma 1.2. (a) rf’(2”-1)+(2’~-1)+~~~+(2”-~1)=(2’~-1)+(2’~-1)+~~~+(2’~-1) 

with 0 < tl < t2 < . < t, and 0 < t{ < ti 5 . . . 5 t:, , then t; = t! ,jbr all i = 1, , r. 

(b) IJ’(2” - 1)+(2” - 1)+...+(2’,- 1)=(24 - 1)+(24 - 1)+...+(2’; - 1) 

with 0 -c tl < t2 c . < tr and 0 -c ti -c ti -c c t,L, then Y = r’. 

Proof. (a) Let x=(2” - 1) + (2” - 1) + ... +(2” - 1) and let m=2” +2” +...+ 

2’? =x + r=2’; + 2’: + . . + 2’:. Since the ti’s are distinct, 2’1 + 2” + + 2” is the 

binary expansion of m and so is the only way of writing m as a sum of powers of 2 

using only r terms. Therefore, t, = t: for all i = 1,. . , r. 

(b) Suppose t, > t:,. Then we get the contradiction (2” - 1) + (2” - 1) + + 

(2’r - 1) > 2’) - 1 > 2h - 1 - tr= 1 + 3 + 7 + ” + (2”+’ - 1) 2 (2’1 ~ 1) + (24 - 

1)+... +(2’:< - 1). Similarly, t,!, > t,. yields a contradiction and therefore tr = t,!,. After 

cancelling the 2’r - 1 term, proceeding by induction gives r=r’. 0 

The following lemma is easily verified. 

Lemma 1.3. If’ 0 < q < 2’ ~ 1, then 

r: -“) ~0 (mod2). 

From this it follows that a basis for AnnP(l)* is {y2~-1(~)},~0. 

Lemma 1.4. Ifa+b+c=2j- 1 +2k - 1 f OY some j and k with j 5 k and a, b, c > 0, 

then 

(,i-i; -u) s (,i-; -u) (mod2). 

Proof. Let b’ and c’ be the reductions of b and c modulo 2J. Then 

and 

(2jC;-u) E (2i-y -,> (mod2). 
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We may assume a + b’ + c’ 2 2’ - 1 since otherwise 6’ and c’ are less than 2J - 

1 - a so that both sides are zero. Therefore, 2J - 2 < u + b’ + C’ < 3(2i - 1). Since 

a + 6’ + c’ E - 2 (mod 2i), this implies a + b’ + c’ =2j+’ ~ 2. In other words, without 

loss of generality, we may assume j=k. We proceed by induction on 6. We begin 

the induction with h=O in which case the relation u + c =2Jf’ - 2 together with the 

inequalities a 5 2’ - 1, c < 2’ - 1 forces a = 2 i - I, c=2’ - 1 and so both sides are 

1. Set d =2i - 1 - 1~. If d =O, then both sides are 1 so assume d > 0. Assuming now 

that when h is replaced by b - 1 the formula is known for all d we have 

~0 (mod2) 

since the first and third terms are congruent and the second and fourth terms are 

congruent by the induction hypothesis. !I 

Lemma 1.5. IJ’a+b+c=2j-1+2j+‘-1 undu,b,c>O, thrn 

Proof. Applying Lemma 1.4 and using b - (2’ - 1 - a) = a + b - (2’ - I ) = 2j-+ ’ - I - c 

gives that the following expressions are equal modulo 2: 

Similarly, there are equivalent expressions for each of the other two terms. Since 

a + b + c > 2jf’ + 2j - 3 it is not possible to have all of a < 2j, b < 2j, and c < 2’. 

So assume that at least one of a, b, c is greater than or equal to 2j; say a > 2j. If 

a > 2,ji ’ , then 

since a + c 5 a + b + L’ = 2 i+‘+2-‘-2<2j+‘+2’-l ands02~-l-c>~-2i+‘, 

Similarly, 

(2j’I _b) = (2,-i; _b) =’ (mod2) 
so again all three terms are congruent to 0. Therefore. suppose 2’ < u < 2-i+‘. Then 

=o 
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and 

(2,_aL_i-)~(2~+t~l_r:)~(2j_i;h)~(2i:h) (mod2)7 

using that 

(;) = (?;c2,) (mod21 

whenO<y<2J<x<2j+t. q 

2. The homomorphism 8 and its dual 

Let B be the free Boolean ring on {x1,x2.. . ,x,}. That is B = P/J where J is 

the ideal generated by {X - x2}XEp where the grading on P is ignored. Let II : P----t B 

be the canonical projection. For a monomial a E P, we can regard n(a) as a subset of 

{l,...,n} in th e o VIOUS way. We remark in passing that n(Sq’(x)) = (~)Tc(x) if x E Pk. b . 

Consider a partition {kl, k2,. . . , k,} of a positive integer k into positive integers of 

the form 2’ - 1; in degree k define e(k,,kz,.... k, ) : P” --f B8” to be the composite 

We use the maps !6#k,.kz _.,., k, ) to define a map 

Ok: P” + @ Bx’ 

k,.k? . . k, 
k, =2’s - I 

t, so 

where the sum is indexed over all arbitrary length partitions of k into strictly positive 

integers of the form 2’ - 1. Define Ok to be the map whose projection to the factor 

indexed by {kl, k2,. . . , k,} is t)(k,,kr . . . . . k, ). Extend t+k,,k> ,,.., k, 1 and ok to all of P by 

defining them to be 0 outside of gradation k. Define H to be the map which in gradation 

k is ok. 

Theorem 2.1. fl(k,. k *,..., k,.)(@(X)) = 0 for k,, k2, . . , k, of the J%YI~ 2’ - 1, @ E I.&, and 

x E P. 

Remark. The theorem has content only when k = 1 @(x)1. 

Corollary 2.2. 8( (IA )P) = 0. 

Proof of Theorem 2.1. Assume k = I@(x)l. It suffices to consider the case when 

@ = Sqq and x is a monomial. The projection of t/~‘-‘(Sq~x) onto Pkl @Pk2 @. @Z Pks 
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is a sum of terms each of which lies in Sqq’Pkl-‘fl @ Sqq2Pk2--YZ @ . . @ SqqrPkr-q’ 

for some qlrq2,...,qY with q1 +q2+...+qr=q and qi 2 0 for all i. It suffices to 

show that the sum of the terms from each such partition contributes 0, so fix a par- 

tition ql,q2,..., qr. Let Sqy’yl @ Sqqzy2 @ . . . @ Sqqryr, where y, E Pk~-q~, be a term 

in $‘-‘(Sqqx) coming from the partition 41, q2,. . . , q,.. Since rt keeps track only of 

which variables appear and Sqm does not change this, the contribution from this parti- 

tion is elrc(yi)@e2rc(y2) @ .. @e,rr(y,), where ei is the number of terms in Sqq’(y,). 

Therefore, 

where k, = 2” - 1. Therefore, by Lemma 1.3, ei = 0 unless qi = 0. However, the qi’s 

cannot all be 0 since they add to q. Thus, e; equals 0 for at least one i and therefore 

e17C(YI)~e2n(y2)~...~ee,n(y,)=0. 0 

For each nonempty subset S of { 1,. . . , n} we have an inclusion is : (RP”)l’l - 

(RP”)“. Thus, each such subset gives rise to a “diagonal map” rjs defined as the 

composite IRP ccc ([wpcu)~s~ A (RP” )“. We extend the notation by setting $ a 

to be the zero map. For each subset S and for each integer t define an element 

JIM E (P*)~IL~ by nf = I~~(~~I_I(x)). Explicitly, & = C yi, (xi )ri,(x2). . yir(xy) where 

the sum runs over all sequences il, i2,. . . , i, of positive integers such that Ckz 1 i, = 2’- 

1 and i, = 0 for m $! S. Since y2’_i (x) belongs to Ann P( 1 )* it follows that nf lies in 

Ann P*. Let 9 be the subalgebra of Ann P* generated by the elements {,lf 1 t > 0, S c 

{L...,n}>. 

Theorem 2.3. ,Y is nilpotent of’ order n + 1. 

Proof. All of the generators of Y have odd degree and the product in P* of any n + 1 

elements of odd degree is 0. 0 

Corollary 2.4. 9$, = 0 whenever P(m) > n. 

This is immediate from Theorem 2.3 and the fact that the generators of .Y are in 

degrees of the form 2’ - 1. 

Lemma 2.5. For a monomial Y E P,, having degree 2’ - 1, (As, Y) = 1 if and onlJj !f’ 

n(Y)cS. 

Proof. (As, Y) = (1j$(y21_1(x)), Y) = (1/2t_1(x), $‘* Y). Since $‘* sends variables in S 

to x and those outside of S to 0, the lemma follows. cl 
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Corollary 2.6. For a monomial Y E P,:, (AJ”Aflz . A:, Y) = number of terms y, U, 
4’2 8% . . .@y, in $‘-‘Y such that IyiI=2’-1 and~(yi)CRijoralli=l,...r. 

Fix a positive integer Y and positive integers ,jl, j2, , j,; given x E P and a collection 

6 = {St,&, ,S,} of non-empty subsets of { 1, 2,. . . , n}, let ce., be the coefficient of 

SI 8% S2 @ CG S, in 8,,, _1.2,2-1. .,2,,--1(x). 

Lemma 2.7. IJ’ A = /‘;:A;: A: E ,!< then (A, x) = C c~J,~ trhere the sum runs over 

all 5’ = {Si, s;, . . ) s;> such that S: c S, ,for all i = i, . . , r. 

Proof. By Corollary 2.6, in computing (A, x) there is a contribution of 1 for each 

term in $‘-‘x of the form al B a2 8 .. 3 a,. where Ia,1 =2ii - 1 and n(a,) CS,. 

Such a term also contributes 1 to the sum on the right-hand side through cZ~,_~ for 

Z’= {7t(al),x(a2) ,..., x(a,.)}. C onversely, by the definition of 0, every contribution to 

the sum on the right comes from such a term in $‘-‘x. 0 

Theorem 2.8. (.Y, x) = 0 ij’ and only if x E ker 0. 

Proof. If x E ker 0, then ~3,~~ = 0 for all 8s and so it follows from Lemma 2.7 that 

(9, x) = 0. Conversely, suppose that (.Y, x) = 0. Then for every product of generators 

A=A;;A;;...A+.z 0=(/1,x)= ~cE~.,~ h w ere the sum is as in Lemma 2.7. We 

wish to show that 0(x) = 0 or equivalently that c~.,~ = 0 for all 5. It suffices to consider 

the case where x is a monomial. For G={St,&,...,&}, let N(G)= CFX, ISi/. To 

show that c~..~ = 0 for all 6 containing r sets we proceed by induction on N(S). We 

begin the induction with N(S) = r. In this case, each set S, is a singleton and so has 

no proper subsets. Thus, c~.,~ is the unique term on the right-hand side of the sum 

in Lemma 2.7 and so cg,, = 0. Now suppose by induction that c~f,__ = 0 holds for all 

‘G’ such that N(6’) < N(6). Then c~f,.~ =0 for all G’ such that G’= {A’{, Sl,. .., SL} 

where Si is a proper subset of Sj for some i = 1,. . . , r-. Therefore Lemma 2.7 yields 

0 = cs., + 0 and so c~,,~ = 0 to complete the induction. 0 

Corollary 2.9. .Y ” (Im O)* 

3. Relations in Y 

Theorem 3.1. Let S and T be subsets of {1,2 ,..., n} such that SuT={1,2 ,..., n}, 

and let m be a monomial in P2’-‘+2”-‘. W t rue m = rnlrn2rn3 where ml is the product 

of the factors of m which contain variables jrom S - T, m2 contains those from S n T, 

and m3 contains those from T ~ S. Then 
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Proof. 

Since i,: projects onto the factors corresponding to the subset A, terms with rni # I or 

my # 1 give 0. Therefore, 

Since Irni 1 + Irniy / + Irnyq 1 + Irn31 = 2’ - 1 + 2k - 1 for each q, lrnll + irni<, I = 2’ - I if 

and only if Irnyq I + Irn3 / = 2” - 1. Therefore, 

for each q. Thus, 

since C, ii!!:_,,,, counts the number of terms of the form u 8% b with Ial = 2’ - 1 - lm, I 

in the coproduct of nz2. 0 

Let S A T denote the symmetric difference of sets S and T. 

Theorem 3.2. 

(1) 
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Proof. Let m be a monomial in F’2’p’f2”-‘. W ‘t rt e m=m1m2mjm4 where ml is the 

product of the factors of m which contain variables from S - T, m2 contains those from 

S n T, m3 contains those from T - S, and m4 contains those from { 1,. . . , rz} - (S u T). 

The Kronecker product is given by 

If m4 # 1 then this is 0 as is the corresponding expression with S n T replacing S. 

Assume now that m4 = 1. Then applying Theorem 3.1 gives 

Replacing S by S/I T interchanges the roles of m2 and m3. However, 

by Lemma 1.4 because lml=)m,) + )m2) + Jm3)=2j - 1 + 2” - 1. Therefore, AsnL 

and As n ‘51; have the same Kronecker product with every monomial and so /lfng = 

n;?l;. 0 

Theorem 3.3. 

Proof. Let m = rnlrn2rn3rn4 be a monomial in P2’p’+2’-‘--] where ml, m2, m3, and m4 

are as in the previous proof. As before, if m4 # 1 then all the terms are 0 so assume 

that m4 = 1. Applying Theorem 3.1 shows that we are required to prove that 

which follows from Lemmas 1.4 and 1.5. 0 

We will show that generically relation (1) is the only relation in 9 More pre- 

cisely, we will show that if ,l;;ilTl Ai; = As/A;: AZ and there is sufficient sep- 

aration j, %j,_ r $ . %>j2 %jt $jo = 0 between the degrees of the monomials, then 

,4T;A;l AJ”: is obtained from Ay,;Afj AZ by repeated application of (1). We do 

not determine the minimum separation needed precisely, although it will become clear 

from the proof that ji+r - ji > n is sufficient. As illustrated by Theorem 3.3, there are 

more relations when the separation is small. 

Let 9 be the free commutative algebra on symbols /‘s and let F be .F modulo 

relation (1). There is a canonical surjective quotient map Quot : F 4 9. Define a partial 

order on the monomials of .9- by n < /1’ if n = A’ or if there exist representatives 
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in 9 such that (Sr,&, ,S,.) I (S;‘,Si,. . . ,Si) in the right lexicographical ordering by 

containment; that is, if there exists io such that Si = 5’; for i > io and S,, S S:, 

Suppose j,. +j,_t 9 . $j2 $jt $js = 0. Because the jj’s are strictly increasing, 

Lemma 1.2 implies that IZ = (2ji - 1) + (2j2 - 1) + + (2J - 1) is the unique ex- 

pression of n as a sum of Y numbers of the form 2’ - 1. Given A = As,‘/‘:: . . A,; E cz 

using the separation we will describe a monomial X(A) E P, having the properties that 

(Quot(A),x(A))=l andthat (Quot(A~‘A~...A~),x(A))=l implies A+A(l’A,;... 

/I.;. This will show that if Quot(A) = Quot(A;lAz A: ) in Y then A = “;‘A,: 

A: (see Corollary 3.11) which is what we meant when we said that generically relation 

(1) is the only relation in 9 

Let e = { 1,2,4,. , 2.il-‘}. Using the separation hypothesis we may assume j, > ISI I: 

choose a surjection 4 : Q + SI. For xESt U&U ... US,. define 

1 ifXESi, 
d;(x) = 

i 0 ifX$Si. 

For a monomial 

choose a representative r(A) = /‘;‘A: . . . A;: ~9 for A, elementsz;(A)EI?-lJlciR,, 

and a monomial X(A) E P, as follows. Let /i = As:/‘;: . . At and assume that r(A), 

{z;(A)):=,, and X(/i) have already been chosen, with z,(A) ER; - Uji, Rj. Write 

r(A) = /$ZAi”: . f . A;:. By appropriate application of relation (1) we can find RI such 

that 

and z;(/l^)@Rl, for i=2 , . . . ,r. Set z(A) = /‘;‘A: A;, zi(A) =z;(/l^), for i > 2, and 

choose zl(A) to be any element of RI. (The set RI is actually determined by the 

previous choices of zi(/i).) For any sets ~71, S2,. . . , S, we can make these choices inde- 

pendently of jt,j,, ,j, (subject to 0 =jo <jt 4 j2 4 @jr). That is, we may assume 

that if 0 =jo <j, @ j2 @ . . . <j, and O=jo4j, <j2< ... <j,. and 

then 

s, S? s, RI R> R, T( A,j, A.j, . Aj~ ) = Aj, Ajz A,~~ 

and 

z;(A~~A~~ . AZ ) =zj(A~~A~~ . A?) 
.I, 

for i = 1,. . , r. 

Set 

X(A) =X(/i)2” n (Mq(A))q 

YEQ 



with M,(A) = @(q)z2(A)zs(A). . ‘z,.(A) for q E Q, where in this expression we have 

identified each variable in the polynomial algebra P(n) with its index. For we write ,I’ 

for X(A), 2 for X(A), Zi for Zi(/l), MC, for M,(A), and A4 for &,,JM,)Y. 

Proof. A term (i 1 )2” m 1 E (_?I )“I ml 88 . ‘3 (_tr)2”fnr in ~“~‘(X)=(I~/‘-‘~)?“I~/‘-‘(M) 

contributes 1 to (A,“l’AEz . A;, A’) whenever 2jl I,?, I+ Im; 1 = 2/l- 1 and n((ii)2” tn, ) c R, 

for all i = 1,. . , r. The first condition is equivalent to requiring both I.?, I = 2/JP” - 1 

and lrnil= 2’1 - 1 (because e contains no powers of 2 as large as 2” ) and the second 

is equivalent to requiring both rc(,?;) c R; and rt(mi) c Rf. Noting that Iit 1 = 0 so the 

requirement rr(.?r ) c RI is superfluous, we see that these are precisely the same condi- 

tions under which the pair Xt cx -i-I 86: . R .t,., m 1 ~c% ~12 ‘~1 ~8 m,. contributes I to the 

right-hand side. 0 

Essentially the same proof yields 

Lemma 3.6. The numbtm cy tw yiwn bq 

cq = (Aplnp: /If’, MC,) 

Proof. This is immediate from the definitions. 7 

AS before, consider a monomial A = Af:ALyf . A.2 E 9 with 0 =j, @j, < j2 

< . 4,jr. By replacing our representative Af:Af;i A; by s(A), we may assume that 

A~~A~~ .. .A; = T(A). Suppose A’= A~‘A~~~ .. n; is a monomial in .Y such 

that (Quot(A’), X) = 1, where again by replacing AilA: A: by t(A’), we may 

assume that AEIAtl . . . n: = T(n’). Then (Quot (A:_,,A:_,, . A:_.,, ),k) = 1 and 

(Quot (A;] A;? /If ), M) = 1. W e wish to show that A + A’. By induction 

(Quot(A;‘_i,A;;_,, ATpi, ). X) = 1 

implies that 

As, A” A!, 
12-11 11-11 ,,p,, * &AR’ lip,, 

.‘.A;_,, in .K 

If 

A~~P,,A’~~Pj, A;_i, # A~2_j,Af~_,, A:-,, in .< 

this implies that A + A’ so assume that 

A;;__,,A;;_il A;;L,, =A~+A~_j, ...AF_i, in 3. 
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Therefore, 

Since 

(Quot(4,qY~ . .A;), M) = (Quot(A;‘Aj”l’ A;), M) = 1, 

applying Lemmas 3.5 and 3.6 gives that c,(Ri ) = 1 for all q = 1,. . , Y, where 

C4(R)-lI(~ECrI~(q)EA,(l) and z~EA,(~) for i > l}i (mod2), 

with Ai = R and Ai =S, for i > 1. Given R, let W(R) = (0 EC, 1 zi EA,(~) for i > l}, 

where the Ai’s are as above. Since z; #Sj for j < i, any cr E W(R) satisfies either a(i) > 

i or cr(i) = 1 for all i > 1. We will write the identity of C, as the cycle (1). Then if 

CJ E W(R), CT is a single cycle (possibly the identity) beginning with 1 and having 

monotonically increasing entries. In particular, the only element of W(R) satisfying 

a(l)= 1 is (1). For qEQ, let Wq(R)={aE W(R)1 4(q)EA,(1)}. Let e(R)= W(R)- 

{(l)} and let F@(R) = Wq(R) n p(R). Then eq(R) = (0 E p(R) 1 d,(l)(&q)) = l}. 

For x E Si, let 

xX(R) = 
1 if xER, 

0 if x@R. 

The identity is in WY(R) if and only if 4(q) E R. Therefore, from the definitions and 

Lemma 3.6 we get 

Lemma 3.7. For x ~Sl,c,(R)z IWq(R)I =xX(R) + Itiq(R>I (mod2) for any q such 

that 4(q) =x. 

For i= l,..., r set e(R) = {CT E W(R) I B( 1) = i}. Define #i(R), W:(R), and @F(R) 

to be the intersection of the corresponding unsubscripted set with K(R). Note that 

‘q(R) = &,> I ld,(&q))=l} Ei(R) and observe that for i > 1, @i(R) = K(R). 

Lemma 3.8. (a) For m > 1, W,(R)A W,(RAS,) = ((1 m)}. 

(b) For m > i > 1, Wm(R)=Wm(RASi). 

Proof. (a) Let r~ belong to W,(R). For j > 1, except for j = a-‘(l), zj E So(j) while 

z,-I(~)ER. Since a~ W,(R), o-‘(l) 2 m. Unless a=(1 m), crp’(l)>m and so 

z,-,(~)$?!& and thus z~~I(~) ER - S, cRAS,,,, so that a~ W,(RAS,). However, 

if g = (1 m) is in W,(R) then z, E R n S, and so zocm) #R AS, and therefore (1 m) $ 

W,(R AS,,,). Conversely, if 0 = (1 m) @ W,(R) then z, E S,,, -R CR AS and so (1 m) is 

in W,(R A S,,,). By symmetry, the same considerations apply to o ERAS,,,. Therefore 

W,(R)n K(RnS,)={(l m)). 
(b) Since m > i and D in W,(R) or W,(RAS;) satisfies o-‘(l) > i, the argument 

is the same as in part (a) without its exceptional case of the transposition. 0 
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Theorem 3.9. Given Ay,A;i . . At, there exists R’ such that 

A~A~~...A~=A,“l’A~~...A~ in y 

and 1 W,(R’)I z O(2) for all m > 1. 

Proof. Assume by induction that R: has been chosen such that 

A!$+ . ij+ = A! A” 
JI J2 Jr /I 12 

. ..A. in9 

and 1 W,(R:)I E O(2) for all m > i. 

Set 

R;_, = 

i 

R; if I&(R~)~ E O(2), 

Ri Ll S; if / @(RI)/ E l(2). 

By Lemma 3.8, replacing RI by RI_, does not affect W,( ) for m > i but changes 

the parity of I @( )I appropriately. Therefore, R’ = R’, satisfies the conditions of the 

theorem. 0 

Theorem 3.10. Suppose j, ~j,-, $ . . % j2 B jl $ jo = 0 and let A = As: A,;; . . As;. 

Then 

(Quot(A>, WA>) = 1, 

and, conversely, 

if (Quot(Ai’A2 A;), X(A)) = 1 then A + A;‘Az A;:. 

Proof. It follows from the earlier lemmas that (Quot (A), X(A)) = 1. Suppose now that 

(Quot (A;‘Az . . . At), X(A)) = 1. As above we may assume that 

/I!2/I!3 . . /if, = Asz/1’] . . A? 
Jz Ix Jr 12 13 Jt 

in J? 

Then cq(RI) = 1 for all q and so by Lemma 3.7 we get that for x E S1, f(R,) E 1 + 

Itiq(R1)l (mod2) f or any q such that 4(q) =x. By Theorem 3.9 we can find R’ such 
that Ad/l’? . . A’? = A!lA? 

/I JZ Jr /I 12 
. . . A;; in 5 and W,(R’) z O(2) for all nz > 1. Given x E Si 

choose q f e such that x = (p(q). Then 

f(R’) E 1 + 1 eq(R’)I = 1 + c 16’m(R’)Iz 1 + c Or 1 (mod2). 
m> I; m>l; 

M&q))=l M4Cq))=r 

Therefore x belongs to R’ and so Si is contained in R’. Since 

A;‘A’?; ,lT; = /lilATi . . At = /“I’/‘: . . . /1; in CT, 

this says that A 4 “,“I’ AJ”22 . . A;:. 0 
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Corollary 3.11. Suppose Quot(/ljs: /‘s: . . . /ij”:) = QUot(n,“llA; . . A!J, where j, + 

jr-i~~~~~j2~ji~j0=0. Then A~~A~~...A~=A~lA,R2....A~ in 5 

Proof. Let ja, ji, . . . , j, be as stated. Let V be the subspace of Y spanned by the set 

of all monomials Ay,‘AJ” . . AT;. Theorem 3.10 shows that the image under Quot of a 

basis for V is linearly independent in 9 0 

Corollary 3.12. Let 6(n) be the least integer such that Dim(P(n)/((/&)P(n)))k < 

6(n)for all k. Tlzen 6(n) > 1 .3.7...(2”-’ - 1).(2” - 1). 

Note. As mentioned in the introduction, Carlisle and Wood [2] have shown that 

such a 6(n) exists for each n. 

Proof. The equivalence classes of monomials in {AT; A; . . AZ 1 Si C{ 1,. , n}} 

are linearly independent in Y and it is easy to see that modulo relation (1) there 

are 1 . 3 . 7. . (2n-1 - 1) . (2” - 1) such monomials. By Corollary 3.11, these are 

linearly independent in Y whenever j,$j>ir-l$. $j+ji$jo = 0 and so 1 . 3 . 7. 

(2’-’ - 1). (2” - 1) is a lower bound for 6(n). 0 

4. Examples 

In this section we give a couple of examples of elements in ker 8. 

In 3 variables the least degree element in ker 8 lies in degree 8. Let K =x3y3z2 + 

x3y2z3 + x’y323 : 

0,,.,,(K) = TC(X> @ 7c(x2y3z2) + n(y) @G n(x3y2z2) + x(x) cz x(x2y2z3) 

+n(z) @ 7r(x3y2z2) + 71(y) @ n(x2y2z3) + n(z) @ n(x2y3z2) 

Similarly, %,1,3,3)(x), &I, I. I, I, I,&), and 0 (I,I,I,I,I.I,I,I)(~) are zero. To show that 
K # 0 in P/((Z&)P) we exhibit an element of A E Ann P* such that (A, K) = 1. 

Let [i, j, k] denote the element yl(x)yi(y)yk(z) E P*. Let A = [6, 1, l] + [5, 2, l] + 

[3, 4, l] + [3, 3, 21. Then (A, K) = ([3, 3, 21, x3y3z2) = 1 and it is easily verified that 

A E Ann P*. Notice that the superficially similar-looking element x7y7z6 +x7y6z7 +x6y7z7 

is 0 in P/((Zd)P). In fact, since p(20) =4 > ~,(P(~)/((IJ$)P(~)))~’ has no nonzero 

elements. 

For a second example, consider K = w4x4y3z3 + w3x3y4z4 E (P(~)/((ZS~)P(~)))‘~. Us- 

ing analogous notation, let A = [l, 1,6,6]+[1,2,6,5]+[1,3,5,5]+[1,4,6,3]+[1,5,3,5]+ 

[I,69 I,61 + [1,6,2,51 + C1,6,4,31 + [2,1,5,61 + [2,2,5,51 + [2,3,6,31 + [2,4,5,3] + 
[2,5,1,61 + P, 5,2,51 + [2,5,4,31 + P, 6,3,31 + [3,1,4,61 + [3,2,4,51 + [3,3,2,61 + 
[3,4,4,31 + [3,5, I,51 + [4,1,3,61 + [4,2,3,51 + [4,3, I,61 + [4,3,2,51 + [4,3,4,3] + 
[4,4,3,31 + [5,1,2,61 + [5,2,2,51 + [5,3,3,31 + [5,4,2,31 + [5,5,1,31 + L&1,1,6] + 
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[6,2,1,5] + [6,3,2,3] + [6,4,1,3]. Clearly (A,K) = 1. A short calculation similar to that 

above shows that 6)(K) = 0. What our computer regards as a short computation shows 

that A E Ann P* . 

The relatively pleasant-looking form of K in these examples suggests that while Im 0 

is best studied by dualizing and looking at 9, ker 19 might be more tractable than its 

dual. 
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