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Abstract

This work describes the simulation models calibration method called Model Output Calibration. In order to
verify its effectiveness, presents the application of the MOC in weather forecast correction generated by the
Eta 15Km model at CPTEC/INPE. Eta is a regional model for numerical weather prediction. The results
of the statistical correction of Eta forecast were positive, with satisfactory improvements in the variables
tested (temperature and relative humidity). The use of this approach shows the possibility of gains in the
results of simulation models of crops and diseases that use as predictive variables the variables generated
by weather forecast models.
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1 Introduction

Simulation models are important tools that act as forecast tools, enabling deci-

sions to be made before the events occur. But even with all the developments in

techniques for simulation modeling, the accuracy found in the data, in some cases,

it is not yet satisfactory, and ultimately influences wrongly data verification.

Numerical weather prediction (NWP) models are composed of weather forecast

techniques performed through computational modeling, allowing to analyze and

decide on various situations related to weather and climate. These models are

divided into global and regional models (limited area). Furthermore, numerical
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weather prediction models divide their modeling space in boxes, which are defined

by horizontal grids boxes with vertical levels. Thus, assume that the atmosphere is

homogeneous in each of these boxes, it is necessary to know only the data of one

point per box.

For purposes of this research, the numerical weather prediction model used in our

work was the regional model Eta [6], used by the Center for Weather Forecasting and

Climate Research (CPTEC 4 ) of the National Institute for Space Research (INPE)

in Brazil.

The forecast of this regional model extends up to 264 hours (11 days) are supplied

twice a day (at 00:00 and 12:00, UTC time). Eta has grids with 40 km, 15 km, 5 km

and 1 km. This model was developed by Mesinger et al. [15] and made operational

at the National Centers for Environmental Prediction (NCEP 5 ) [1]. It is a model

based on the use of vertical coordinates, which remains approximately horizontal in

mountainous areas, making it suitable for studies of steep topography regions, for

example, the Andes Mountains [5].

The Eta model is used operationally at CPTEC/INPE since 1997 for weather

forecasts [2] and, since 2002, to seasonal climate forecasts [3] in high resolution over

South America for horizons of a few days, months or decades, for climate change

studies.

The main sources of observed data of Eta model are: meteorological stations,

surface stations, airports, ships, aircraft, satellites and radars. These sources are

part of the Global Observing System (GOS) [11], as shown in Figure 1. When the

observed data are received, some situations may occur, for example, some of the

locations may not have measurement data observed at certain hours: caused by

a lack of measurement of typing or even failure at the station; another situation

is the analysis of unrealistic measurements: sometimes occurs the erroneous data

entry in any station. To correct these errors is necessary the treatment of data by,

for example, numerical interpolation of missing or unrealistic data available in the

databases.

The prognostic variables Eta model are: air temperature, zonal and meridional

wind components, specific humidity, surface pressure and turbulent kinetic energy.

Thus, the model is proposed to predict atmospheric phenomena in more detail,

when associated with these variables, such as storms or fog. As these variables

do not have linearity and can vary more frequently in large spaces of time due to

climate changes involved, such a prediction is best defined when it occurs in a short

time.

This paper describes and analyzes the application of statistical calibration

method for simulation models called Model Output Calibration (MOC) with the

aim to verify if there is a significant improvement in correcting the result of the

forecast the weather forecast model Eta 15km at CPTEC/INPE.

Section 2 will describe some methods for simulation models correction, present-

ing its main features. Section 3 will address the Model Output Correction, high-

4 http://www.cptec.inpe.br/
5 http://www.ncep.noaa.gov/
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Fig. 1. An illustration of the instruments that comprise the Global Observing System (GOS) [11]

lighting its features and operation. In Section 4, use of the MOC in the correction

of forecast generate by Eta model is described and the results obtained with this

correction are presented and discussed. Finally, in section 5, the conclusions of this

research are presented and aspects of future works to be developed from the results

already obtained are discussed.

2 Correction methods of simulation models

Although forecast methods are becoming more sophisticated, with very accurate

results, many of the variables provided by the models depend on variables that are

susceptible to changes, such as those generated by actions of nature. According to

Mao et al. [14], the temperature forecast models are known to have errors due to

its coarse representation of the topographic model and a deficient physical model.

These differences are due to the fact that grid point model consider a single

point by grid. Therefore, the model assumes that the climatic variables behave

homogeneously within each grid. Although the simulation models will be improved,

the weather models are far from perfect. However, in order to reduce these errors,

besides the use of grid point mesoscale models in certain regions, some statistical

methods have been developed for correcting (calibration) these errors.

The calibration data is the process of identifying possible problems in the forecast

model and make adjustments in the calculations (codes). The process of calibration

and validation are differentiated by the choice of parameters. Thus, the selection

criteria used for data calibration may not be relevant to validate the model. There-

fore, the selection of the parameters used for data calibration is a technical issue,

where each statistical method is a own way. Among the major correction methods
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of simulation models we can cite:

• Perfect Prognosis Method (PPM), also known as Perfect Prog: is a method devel-

oped by Klein et al. [10] in 1959 and it is the first statistical method for correction

of simulated data, which takes into consideration the numerical weather predic-

tion by applying multiple linear regression. An aplication of PPM is describe

in [17];

• Model Output Statistics (MOS): is a method developed by Glahn and Lowry [8].

The MOS consists of determining a statistical relationship between the observed

data as predictand and the variables of the numerical model in some time pre-

dictions. However, studies have shown that it takes two years of archived data

for implementing this model in order to obtain an efficient MOS equation [9].

This fact leads to a deficiency in the model, because the MOS does not offer

the possibility of developing a large database, because the numerical models are

continuously modified, and for the implementation of MOS, it is necessary that

during the filing period for data, the model configuration keep frozen. Compar-

isons between MOL and PPM are presented in [12,13];

• Calibration Model Output (MOC): was developed by Mao et al. [14] in 1998. It

is a method that performs the statistical correction based on multivariate linear

regression, as well as MOS and PPM. The main difference in relation to the MOC

and the MOS and PPM is their short training period (2-4 weeks) of forecast and

observations necessary for performing the correction of the statistical model.

3 Model Output Calibration

The MOC has as its principle the existence of error in the forecast, which may

have been influenced by other output variables of the simulation model. The cor-

rection model MOC propose in finding the error of forecast through the application

of multivariate linear regression for correction of the simulation model, requiring a

training period of 2-4 weeks. Thus, the algorithm is used to estimate the necessary

adjustments for the model used, predicting errors and making the refinement of the

predicates. Therefore, it is obtained as a result of the correction applied by the

MOC error of forecast in relation to a given variable, according to the equation (1):

ΔT(ij)(k) = T(ij)(k)− T ∗
(ij)(k) (1)

where T(ij)(k) is a series of forecasts; (k) represents a number of variable values in

different periods (k = 1, 2, 3, ..., N); (i, j) refers to the grid point where the values

are verified i.e., the location; and T ∗
(ij)(k) refers to the series of observed data. Soon,

with the requirement within a certain period to a certain place, subtracted from

the observed value in the same period and place, are obtained then the error of

the forecast. Thus, it is assumed that ΔT(ij)(k) (forecast error) are intrinsically

associated with various parameters and model output variables. The forecast error

can be a function Xij,l(k), where this is the l − th amount of variables obtained or

C.A. Hölbig et al. / Electronic Notes in Theoretical Computer Science 324 (2016) 79–9082



derived from a recent model output at the same point grid (i, j), where the predicted

error is correlated with the amount of L model outputs.

As an example, Chou et al. [4] show that the statistical correction of the tem-

perature forecast there are several associated variables such as soil humidity and

surface temperature. Based on these data it is possible to build a multivariate linear

regression model, with which it is possible to obtain the error of forecast of model,

according to equation (2):

ΔT(ij)(k) = Λo +
L∑
l=1

ΛlXij,l(k) (2)

where k = 1, 2, ..., N and l = 1, 2, ..., L. The Λo and Λl coefficients can be defined by

the analysis of multivariate linear regression. The ΔT(ij)(k) is predictand equations,

that are the dependent variable, and Xij,l(k) are the variables of the model output

representing the predictors. According to Mao et al. [14] the selection predictors of

MOC occurs with each new forecast cycle, based on a set of candidate variables, ie,

with each new round of correction the predictors are selected (equation (2)), unlike

other models of statistical correction where predictors are defined a priori.

Therefore, the number of selected predictors (Lc), direct or derivatives, should

be less than the number of candidate variables (L). The calibration is applied

after correction N + 1 where N is the size of the series to calculate the regression

coefficients, obtaining thus refined forecast Tmoc(k) as the equation (3):

Tmoc(k) = T(ij)(k)−ΔT(ij)(k) (3)

where T(ij)(k), is the prediction of the current model and ΔT(ij)(k) is the error in

the same point in the grid. Because the MOC require a short period of data to

perform the correction adjustment, you can make adjustments in the models even

if environmental changes occurred during the forecast period, making it a excellent

tool to regional models.

Mao et al. [14] also showed other advantages of using the MOC: is a simple, flex-

ible and efficient method; it is based on the latest weather conditions; the selection

of predictors occurs objective and in a ideal way, because after predictors and can-

didate variables are chosen, the rest of the process occurs objective and iteratively;

the algorithm used for statistical correction of the forecasting model is flexible and

easy to implement for any model, because the equation is updated in each forecast

cycle and is less sensitive to changes or reconfigurations of the model; information

from the predictors selection results can be used in diagnostics and tuning of the

physical model, because through this selection you can verify the variables that are

influencing the forecast error.

Also according to Mao et al. [14], to evaluate if the calibrations forecasts have

a satisfactory result, obtaining a significant gain in the relationship between the

predicted and observed value are used three basic statistical measures of error: the

mean error (BIAS) - (equation (4)), mean absolute error (MAE) - (equation (5)),
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and the mean square error of the square root (RMSE) - (equation (6)). Through

these measures it is possible to determine the quality of forecasting and calibration,

as well as possible to determine strengths and weaknesses of the system.

BIAS =
1

Mtotal

Mtotal∑
i=1

(Ti − T ∗
i ) (4)

MAE =
1

Mtotal

Mtotal∑
i=1

|Ti − T ∗
i | (5)

RMSE =

√√√√ 1

Mtotal

Mtotal∑
i=1

(Ti − T ∗
i )

2 (6)

In equations (4), (5) and (6), Mtotal is the total amount of adjusted forecasts,

Ti is the i − th value adjusted by MOC and T ∗
i is the i − th observed value. Ti

indicates the uncorrected value, thus being equal to that obtained by the forecast

model. To analyze the results obtained from BIAS and MAE, as close to zero is the

result, the better it is. The result of the RMSE is a non-negative value, however,

is more sensitive to large errors because by raising the difference squared, makes

negative and positive results will be treated equally [7].

These basic statistical measures of error, presented above, obtain your result in

the same unit of the data used in the tests. However, it is often necessary to know

the gain obtained with the calibration performed in percentage. For this there is the

calculation of Skill Score (SS), according to equation (7), which precisely reflects

the improvement percentage of the calibrated result of the forecast model on the

outcome of forecast without statistical correction.

SS = (
Eforecast − EMOC

Eforecast
)× 100% (7)

where Eforecast and EMOC refer to the error obtained by the model forecast and

the error of the calibrated model with the MOC, respectively. Both errors refer

to the error obtained by using one of three error statistical measures: BIAS, MAE

and RMSE, ie this index (SS) can be calculated for each of the errors measures

mentioned above.

4 Use of MOC in the correction of Eta model forecasts

This section analyzes the results obtained by applying the MOC in the cor-

rection of temperature and relative humidity generated by the regional model Eta

15km from December 2015. The locations covered in the analysis are part of a

set of 36 Brazilian locations, members of a project between the PPGCA/UPF and

CPTEC/INPE allocated to the Brazilian Electric System National Operator (ONS).

This project aims to improve the quality of energy load forecasting process in Brazil

through these corrections.
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METAR Obs. Eta MOC Eta MOC

Station BIAS MAE RMSE BIAS MAE RMSE

SBBE 27.24 26.68 27.24 -0.56 1.23 1.68 0.00 0.93 1.35

SBBH 24.55 22.15 24.66 -2.40 2.68 3.11 0.11 1.56 2.07

SBBR 23.22 21.90 23.47 -1.32 2.16 2.73 0.24 1.71 2.30

SBCG 25.21 27.47 25.04 2.26 2.67 3.52 -0.17 2.17 2.76

SBCH 23.17 21.51 22.65 -1.66 2.74 3.43 -0.52 2.30 2.88

SBCY 28.58 29.83 28.50 1.25 2.31 2.97 -0.08 1.87 2.47

SBCT 21.05 21.05 20.30 0.00 1.54 1.94 -0.75 1.73 2.24

SBFL 23.93 23.92 23.49 -0.00 1.56 2.02 -0.44 1.45 1.86

SBFZ 28.04 26.47 27.98 -1.57 1.72 1.91 -0.05 0.67 0.97

SBFI 24.69 26.71 24.07 2.01 2.53 3.21 -0.62 2.12 2.62

SBGO 25.37 24.45 25.55 -0.93 1.99 2.49 0.17 1.76 2.36

SBJP 26.66 26.08 26.77 -0.58 1.38 1.74 0.10 1.00 1.67

SBLO 24.55 23.87 24.04 -0.68 1.99 2.52 -0.51 1.87 2.38

SBMO 26.25 24.87 26.27 -1.38 1.68 2.00 0.02 0.92 1.60

SBMN 28.66 27.18 28.83 -1.48 2.06 2.51 0.17 1.41 1.84

SBMG 24.33 25.31 23.78 0.99 2.01 2.55 -0.54 2.07 2.59

SBNT 27.01 26.42 27.01 -0.59 1.15 1.42 -0.00 0.80 1.12

SBPJ 27.68 27.78 27.64 0.10 1.78 2.27 -0.04 1.73 2.23

SBPA 23.97 23.69 23.24 -0.29 1.84 2.30 -0.73 1.94 2.45

SBPV 26.55 26.74 27.18 0.19 1.82 2.35 0.62 1.39 1.97

SBDN 25.65 25.15 25.31 -0.50 2.23 2.83 -0.34 2.26 2.88

SBRF 27.50 26.76 27.62 -0.74 1.56 1.94 0.12 0.89 1.35

SBRP 25.41 24.25 25.32 -1.16 2.18 2.77 -0.09 1.85 2.51

SBRB 26.12 25.39 26.71 -0.73 1.64 2.08 0.60 1.51 2.08

SBAF 27.34 26.76 27.01 -0.59 1.68 2.17 -0.33 1.93 2.42

SBRJ 27.54 26.76 26.77 -0.78 1.68 2.09 -0.77 1.88 2.40

SBGL 27.57 26.76 26.95 -0.82 1.69 2.05 -0.62 1.99 2.44

SBJR 27.66 26.76 26.88 -0.90 1.67 2.10 -0.78 1.68 2.16

SBSV 27.73 26.21 27.65 -1.52 1.74 1.95 -0.08 0.76 1.02

SBSL 29.05 26.92 28.88 -2.13 2.14 2.32 -0.17 0.56 0.75

SBSP 23.26 23.15 22.92 -0.10 1.43 1.81 -0.33 1.72 2.25

SBGR 23.11 23.15 22.94 0.03 1.57 2.01 -0.18 1.60 2.15

SBMT 23.66 23.15 23.43 -0.51 1.56 1.96 -0.23 1.65 2.17

SBTE 31.79 29.46 31.62 -2.33 2.91 3.47 -0.17 1.28 1.92

SBUG 24.51 24.75 24.06 0.23 2.28 3.00 -0.46 2.32 2.96

SBVT 27.78 25.94 27.55 -1.84 2.26 2.57 -0.23 1.18 1.59

Table 1
Daily average surface air temperature (oC) at 2m observed, predicted by the Eta model, adjusted by the
MOC and their corresponding error basic statistical measures (BIAS, MAE and RMSE) for the month of

December 2015 to METAR stations located in Brazil

The locations covered in the project include meteorological stations located air-

ports from capitals and in some cities in the interior of Sao Paulo State and in the

South region from Brazil, regions where the demand for energy because of agricul-

ture and irrigation process is more significant. The current computer system was

developed for the Linux operating system, using Linux shell scripts and Fortran

language. For the statistical analysis is used statistical language R [16].

During the data analysis period it was possible to identify possible problems

in the forecast generated by Eta model, where the forecast results, in some cases,

proved to be far from the observed data, as can be observed in respect of air tem-
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METAR Obs. Eta MOC Eta MOC

Station BIAS MAE RMSE BIAS MAE RMSE

SBBE 78.84 85.04 78.79 6.21 11.18 13.74 -0.04 6.07 8.96

SBBH 66.77 77.52 66.92 10.75 14.68 17.58 0.15 7.90 10.03

SBBR 71.49 73.84 71.93 2.35 11.05 14.75 0.43 9.77 13.11

SBCG 74.65 74.89 74.40 0.25 12.66 15.41 -0.24 9.04 11.22

SBCH 76.78 76.48 76.53 -0.30 16.75 20.50 -0.25 10.47 13.19

SBCY 68.27 65.53 70.60 -2.74 12.59 15.57 2.33 8.37 10.53

SBCT 82.43 78.16 84.08 -4.27 13.67 17.39 1.65 7.73 11.00

SBFL 83.05 79.40 81.97 -3.65 13.64 16.88 -1.08 6.76 8.70

SBFZ 71.82 83.45 71.52 11.63 14.41 16.45 -0.29 4.35 6.24

SBFI 83.59 77.46 83.95 -6.14 11.01 14.34 0.35 7.26 9.22

SBGO 64.78 74.23 65.64 9.45 14.49 17.62 0.85 8.98 11.78

SBJP 73.98 83.99 72.40 10.01 12.01 14.13 -1.58 5.34 7.70

SBLO 83.06 77.11 83.09 -5.95 13.22 18.23 0.03 6.45 8.56

SBMO 81.20 83.54 79.73 2.34 7.74 9.70 -1.47 5.45 7.96

SBMN 71.78 75.92 71.56 4.15 11.80 14.73 -0.21 8.08 10.09

SBMG 83.51 77.99 83.39 -5.52 11.95 15.57 -0.117 7.53 9.35

SBNT 73.71 78.00 72.48 4.29 11.91 13.98 -1.24 5.03 6.95

SBPJ 75.23 74.68 76.96 -0.55 11.19 13.60 1.74 7.51 9.87

SBPA 78.02 77.09 76.65 -0.93 12.35 15.45 -1.37 7.92 10.56

SBPV 80.26 81.09 78.83 0.83 12.13 14.54 -1.44 5.76 7.98

SBDN 73.75 76.36 74.94 2.61 13.71 17.05 1.18 10.16 12.93

SBRF 73.64 71.76 72.09 -1.88 23.42 25.79 -1.55 5.26 7.70

SBRP 76.04 80.59 76.45 4.55 10.51 13.63 0.41 9.31 12.38

SBRB 83.70 82.63 80.86 -1.07 9.66 12.45 -2.84 6.50 8.78

SBAF 72.19 75.40 73.00 3.21 11.43 13.54 0.80 8.12 10.38

SBRJ 77.79 75.40 81.05 -2.39 10.03 12.52 3.26 8.05 10.40

SBGL 71.40 75.40 73.20 4.00 11.04 13.17 1.80 7.88 10.13

SBJR 75.78 75.40 79.52 -0.38 9.63 12.23 3.74 8.81 11.32

SBSV 71.48 80.30 72.74 8.82 16.17 18.71 1.26 5.41 7.03

SBSL 63.62 81.64 64.26 18.02 18.94 21.91 0.63 3.85 5.59

SBSP 73.71 75.14 74.88 1.43 12.57 15.40 1.17 7.32 9.61

SBGR 84.73 75.14 84.95 -9.59 12.56 17.46 0.22 7.41 9.50

SBMT 72.82 75.14 73.76 2.32 12.87 15.39 0.93 6.76 8.90

SBTE 50.37 53.72 51.23 3.35 19.52 22.27 0.86 6.91 9.93

SBUG 76.48 75.15 72.71 -1.33 13.91 17.51 -3.77 12.08 15.56

SBVT 75.28 79.38 77.26 4.11 12.57 14.98 1.98 7.42 9.49

Table 2
Daily average relative humidity (%) observed, predicted by the Eta model, adjusted by the MOC and

their corresponding error basic statistical measures (BIAS, MAE and RMSE) for the month of December
2015 to METAR stations located in Brazil

perature in some METAR stations, such as SBBH, SBCG, SBFI, SBMN, SBSL

and SBTE. Complete data for all stations are shown in Table 1. This table shows

the observed data, provided by the Eta model and corrected by MOC method. In

Table 2 presents the complete data for relative humidity and, even in this case,

the same potential problems reappear, as shown for example in METAR stations

SBBH, SBFZ, SBJP, SBSV, SBSL and SBGR.

Refinement obtained by MOC suggests an improvement in the data, as can be

verified, for example, in the stations in Belo Horizonte (SBBH), São Lúıs (SBSL)

and Fortaleza (SBFZ) cities (Figures 2, 3 and 4, respectively). These blue curves in
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METAR SS MOC temperature SS MOC relative humidity

Station Bias (%) Mae (%) Rmse (%) Bias (%) Mae (%) Rmse (%)

SBBE 100.46 24.39 19.64 100.76 45.71 34.79

SBBH 104.58 41.79 33.44 98.56 46.19 42.95

SBBR 118.18 20.83 15.75 81.49 11.58 11.12

SBCG 107.52 18.73 21.59 196.80 28.59 27.19

SBCH 68.67 16.06 16.03 16.33 37.49 35.66

SBCY 106.56 19.05 16.84 185.04 33.52 32.37

SBCT 13031.03 -12.34 -15.46 138.64 43.45 36.75

SBFL -11182.05 7.051 7.921 70.41 50.44 48.46

SBFZ 96.31 61.05 49.21 102.56 69.81 62.07

SBFI 130.85 16.21 18.38 105.81 34.06 35.70

SBGO 118.28 11.56 5.221 90.93 38.03 33.14

SBJP 117.24 27.54 4.023 115.78 55.54 45.51

SBLO 25.00 6.03 5.556 100.54 51.21 53.04

SBMO 101.45 45.24 20.00 162.82 29.59 17.94

SBMN 111.49 31.55 26.69 105.28 31.53 31.50

SBMG 154.55 -2.985 -1.569 97.88 36.99 39.95

SBNT 99.78 30.43 21.13 128.90 57.77 50.29

SBPJ 140.00 2.809 1.762 416.36 32.89 27.43

SBPA -151.72 -5.435 -6.522 -47.31 35.87 31.65

SBPV -226.32 23.63 16.17 273.49 52.51 45.12

SBDN 32.00 -1.345 -1.767 54.79 25.89 24.16

SBRF 116.22 42.95 30.41 17.55 77.54 70.14

SBRP 92.16 15.14 9.386 90.97 11.42 9.17

SBRB 182.19 7.927 0.00 -165.42 32.71 29.48

SBAF 44.07 -14.88 -11.52 74.83 28.96 23.34

SBRJ 1.282 -11.90 -14.83 236.40 19.74 16.93

SBGL 24.39 -17.75 -19.02 55.00 28.62 23.08

SBJR 13.33 -0.5988 -2.857 1084.21 8.515 7.44

SBSV 94.41 56.32 47.69 85.71 66.54 62.43

SBSL 92.02 73.83 67.67 96.45 79.67 74.49

SBSP -230.00 -20.28 -24.31 18.18 41.77 37.60

SBGR 586.49 -1.911 -6.965 102.38 41.00 45.59

SBMT 54.90 -5.769 -10.71 59.74 47.47 42.17

SBTE 92.70 56.01 44.67 74.27 64.60 55.41

SBUG 300.00 -1.754 1.333 -183.46 13.16 11.14

SBVT 87.50 47.79 38.13 51.82 40.97 36.65

Table 3
Skill score of measures BIAS, MAE and RMSE related to daily average air temperature and relative

humidity for the month of December 2015 to METAR stations located in Brazil

the figures refer to the data observed in the meteorological station, the red curves

refer to the measures provided by the Eta model and the green curves refer to

corrected data by MOC.

The average daily cycle of air temperature and relative humidity may indicate

periods of the day that errors often occur in the forecast at model Eta where it was

observed that, in general, the temperature forecast correctly follows the amplitude

variation, but however, the most of the time, underestimated the measures. In the

relative humidity forecast, the largest errors occur between 00:00 and 9:00 am, when

the measures forecast by Eta have been overestimated.

Table 3 shows the values of the Skill Score for the corrections performed. In
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Fig. 2. Average daily cycle of the air temperature at 2m (oC) and relative humidity (%) from December
2015 in METAR station SBBH located in the city of Belo Horizonte

Fig. 3. Average daily cycle of the air temperature at 2m (oC) and relative humidity (%) from December
2015 in METAR station SBFZ located in the city of Fortaleza

this table can be noted the gain obtained with the application of the MOC in

most locations analyzed, which demonstrates the good potential for use of MOC in

correction of weather forecast generated by Eta model.

5 Conclusions and future works

This paper presents the use of the method Model Output Calibration for statis-

tical refinement in a numerical weather prediction model, verifying its effectiveness

in the use over the Eta model. The application of refinement showed a positive

improvement over the forecast uncorrected from Eta model, enabling an improve-

ment in the quality of the result of the forecast. The short training period required

for carrying out the calibration and therefore its easy adaptation to changes in the

model to be corrected is one of its advantages over other calibration methods.
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Fig. 4. Average daily cycle of the air temperature at 2m (oC) and relative humidity (%) from December
2015 in METAR station SBSL located in the city of São Lúıs

On average, the errors of the forecast temperature of Eta model did not ex-

ceed the magnitude of 2oC, but generally underestimated the observations, mainly

during the morning. On the other hand, the relative humidity was generally overes-

timated during the night period and underestimated during the day. The tendency

to produce more saturated air during the night can be a result of underestimation of

temperature forecasts at some stations. While the tendency to produce excessively

dry air during the day seems to be derived from error in the estimate of specific

humidity (amount of steam per total air volume) by the model. In stations in which

prediction errors were considered relatively small, generally the correction scheme

eventually produced an error.

The largest temperature errors occurred in stations where the model grid box

used for comparison was far from the point of observation. Numerical forecasts

of dynamic models always contain errors. The extracted information model grid

represents the average inside that grid, and the average value of the time step of the

integration model. The comparison of average information to the specific measure

provided by observation is already an inconsistency and an error factor.

As future works, this research enables you to check the validity of using the Eta

model forecast data corrected by MOC and the gains that can be achieved if when

they are used in simulation models of crops and diseases that are used in research

developed at PPGCA/UPF in partnership with Embrapa Trigo, the University of

Florida and the CPTEC/INPE.
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