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Abstract

Let (Mn,g), n � 3, be a smooth closed Riemannian manifold with positive scalar curvature Rg . There
exists a positive constant C = C(M,g) defined by mean curvature of Euclidean isometric immersions,
which is a geometric invariant, such that Rg � n(n − 1)C. In this paper we prove that Rg = n(n − 1)C if
and only if (Mn,g) is isometric to the Euclidean sphere S

n(C) with constant sectional curvature C. Also,
there exists a Riemannian metric g on Mn such that the scalar curvature satisfies the pinched condition

n2(n − 2)

n − 1
C < Rg � n(n − 1)C

if and only if Mn is diffeomorphic to the standard sphere S
n.

© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Soit (Mn,g), n � 3, une variété riemannienne compacte C∞ avec courbure scalaire Rg positive. Il existe
une constante positive C = C(M,g) définie par la courbure moyenne de immersions isométriques eucli-
diennes, qui est un invariant géométrique, telle que Rg � n(n − 1)C. Dans cet article, on démontre que
Rg = n(n − 1)C si et seulement si (Mn,g) est isométrique à la sphère euclidienne S

n(C) à courbure sec-
tionnelle C constante. De plus, il existe une metrique riemannienne g sur Mn telle que l’inégalité suivante
soit vérifiée

n2(n − 2)

n − 1
C < Rg � n(n − 1)C

si et seulement si Mn est difféomorphe à la sphère S
n.
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1. Introduction

In 1951, H.E. Rauch [14] began the study on the relationship between geometrical and topo-
logical properties of a manifold considering pinched conditions on its metric. The basic question
is the following: is a compact, simply connected manifold Mn, whose sectional curvatures belong
to the interval (1,4], necessarily homeomorphic to the sphere S

n? This question was answered
positively by M. Berger [1] and W. Klingenberg [10] in the early seventies. These results are
known as Sphere theorems. A more general result, known as Differentiable Sphere theorem,
where a diffeomorphism is obtained instead of a homeomorphism, was obtained recently by
Brendle and Schoen [2]. They proved the following:

Theorem 1.1. Let (Mn,g) be a compact Riemannian manifold with 1/4-pinched curvature (that
is (Mn,g) has positive sectional curvature and the ratio of the minimum and the maximum of
the sectional curvatures is always strictly bigger than a quarter). Then Mn admits a Riemannian
metric of constant positive sectional curvature, therefore is diffeomorphic to a spherical space
form.

On the other hand, pinched conditions on the curvature operators as the Ricci tensor Ricg ,
Riemann tensor Rmg and the Weyl tensor Wg have used in order to find Sphere like theorems. In
1986, C. Margerin [12] proved the following Sphere like theorem in the case of 4-dimensional
manifolds.

Theorem 1.2. Let (M4, g) be a closed 4-dimensional Riemannian manifold with positive scalar
curvature. If the pinching condition

WPg <
1

6

is satisfied, then M4 is diffeomorphic to a spherical space form, i.e. M4 admits a metric with
constant positive sectional curvature. Moreover, M4 is diffeomorphic to S

4 or RP 4, where

WPg = |Wg |2g+2|Eg |2g
R2

g
, Eg is the trace-free Ricci tensor and | · |g is the usual norm of a tensor

with respect to the metric g.

Recently, G. Catino and Z. Djadli [3] proved an integral pinching theorem in 3 dimensions.
More precisely they showed the following result.

Theorem 1.3. Let (M3, g) be a closed 3-dimensional Riemannian manifold with positive scalar
curvature. If∫

M3

|Ricg|2g dvg � 3

8

∫
M3

R2
g dvg,

then M3 is diffeomorphic to a spherical space form.
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Now, let us define σk(g
−1At

g) the k-th elementary function of the eigenvalues of g−1At
g ,

where

At
g = 1

n − 2

(
Ricg − t

2(n − 1)
Rgg

)
.

Namely, if we denote by λ1, . . . , λn the eigenvalues of g−1At
g ,

σk

(
g−1At

g

) =
∑

1�λi1 <···<λik
�n

λi1 · · ·λik .

We denote At
g ∈ Γ +

k , if

σj

(
g−1At

g

)
> 0

for all j ∈ {1, . . . , k}. The next result was obtained recently by G. Catino, Z. Djadli and C.B. Ndi-
aye [4].

Theorem 1.4. Let (Mn,g) be a closed, locally conformally flat, n-dimensional Riemannian man-
ifold, n � 8 even, with positive scalar curvature and with positive Euler–Poincaré characteristic.
There exists a constant

t0 = t0
(
n,diam

(
Mn,g

)
,
∣∣∇2Rmg

∣∣
g

)
< 1

such that if

At
g ∈ Γ +

n
2

,

for some t ∈ [t0,1], then Mn is diffeomorphic to either S
n or RP n.

It is natural to look for pinched conditions involving only the positive scalar curvature Rg

to obtain new Sphere theorems. Conditions such as 1/4-pinched on the scalar curvature is not
sufficient because, as we know the Yamabe problem, we can find a conformal deformation of
the metric such that 1/4-pinched condition on the scalar curvature is satisfied. So, our hopes of
finding pinched conditions involving only the scalar curvature should be based on conditions that
involve some kind of geometric invariant. The results cited above involving the scalar curvature
and also other measures are in that direction. In this paper we show a geometric invariant and a
pinched condition on the scalar curvature that is sufficient to obtain a Sphere like theorem.

2. Preliminaries and notations

In order to state our result, we need to recall some notions. We start by recalling the mean
curvature of the manifold (Mn,g). We will consider only closed connected manifolds with pos-
itive scalar curvature. Since Mn is a compact Riemannian manifold, from Nash’s immersion
theorem, we have that Mn can be isometrically immersed into a Euclidean space R

n+p , where
p = (n+2)(n+3)−2n

2 . That is, there exists an isometric immersion Θ :Mn → R
n+p . Thus, Mn can

be seen as a compact submanifold isometrically immersed into R
n+p . We choose a local field

of orthonormal frames {e1, . . . , en+p} adapted to the Riemannian metric of R
n+p and the dual

coframes {ω1, . . . ,ωn+p} in such a way that, restricted to the submanifold Mn, {e1, . . . , en} are
tangent to Mn. We have that {e1, . . . , en} is a local field of orthonormal frames adapted to the
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induced Riemannian metric on Mn and {ω1, . . . ,ωn} is a local field of its dual coframes on Mn.
From Cartan’s lemma,

ωαi =
n∑
j

hα
ijωj and hα

ij = hα
ji .

The second fundamental form σΘ and the mean curvature vector hΘ of the immersion Θ are
defined by

σΘ =
n+p∑

α=n+1

n∑
i,j=1

hα
ijωiωj eα

and

hΘ = 1

n

n+p∑
α=n+1

(
n∑

i=1

hα
ii

)
eα.

We will denote h instead hΘ . The mean curvature HΘ and the squared norm of the second
fundamental form SΘ of the immersion Θ are defined by

HΘ = 1

n

√√√√√ n+p∑
α=n+1

(
n∑

i=1

hα
ii

)2

and

SΘ =
n+p∑

α=n+1

n∑
i,j=1

(
hα

ij

)2
.

The connection form of Θ is characterized by the structure equations

dωi = −
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0,

dωij = −
n∑

k=1

ωik ∧ ωkj + 1

2

n∑
k,l=1

Rijklωk ∧ ωl

and

Rijkl =
n+p∑

α=n+1

(
hα

ikh
α
jl − hα

ilh
α
jk

)
,

where Rijkl are the components of the curvature tensor of Mn. Denote by Rij and Rg the com-
ponents of the Ricci curvature and the scalar curvature of Mn, respectively. So, we have, from
the last identity,

Rjk =
n+p∑

α=n+1

(
n∑

i=1

hα
iih

α
jk −

n∑
i=1

hα
ikh

α
ji

)

and
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Rg = n2H 2
Θ − SΘ. (1)

A simple computation shows that

SΘ � nH 2
Θ. (2)

Hence, from (1) and (2),

Rg � n(n − 1)H 2
Θ. (3)

Since the scalar curvature Rg is invariant of isometries, we have that the inequality (3) holds for
any isometric immersion from Mn into a Euclidean space R

n+p . We define

Γ = {
Θ; Θ is an isometric immersion from Mn into a Euclidean space R

n+p
}
.

Thus, the positive constant

C(M,g) = inf
Θ∈Γ

max
Mn

H 2
Θ (4)

is a geometric invariant and, from the inequality (3),

Rg � n(n − 1)C(M,g). (5)

We call C(M,g) the mean curvature of the Riemannian manifold (M,g). Note that, for all n � 2,

n2(n − 2)

n − 1
C(M,g) < n(n − 1)C(M,g).

If S
n(C) is a Euclidean sphere with constant sectional curvature C, then C(Sn(C), δ) = C

and Rδ = n(n − 1)C, where δ is the Euclidean metric on S
n(C). A question that arise here

is the following: are Euclidean spheres the only Riemannian manifolds that satisfies Rg =
n(n − 1)C(M,g)?

Now we are ready to state our result on classification of pinched positive scalar curvature
manifolds.

Theorem 2.1. Let (Mn,g), n � 3, be a smooth closed Riemannian manifold with positive scalar
curvature Rg and mean curvature C = C(M,g). Then, Rg = n(n− 1)C if and only if (Mn,g) is
isometric to the Euclidean sphere S

n(C) with constant sectional curvature C. Also, there exists
a Riemannian metric g on Mn such that the scalar curvature satisfies the pinched condition

n2(n − 2)

n − 1
C < Rg � n(n − 1)C

if and only if Mn is diffeomorphic to the standard sphere S
n.

As a direct consequence of Theorem 2.1 we have the following corollary.

Corollary 2.1. Let (Mn,g), n � 3, be a smooth closed Riemannian manifold with positive scalar
curvature Rg . There exists a positive constant

C = C(M,g)

such that if

Tg(X,X) >
n2(5n − 9)

C(M,g),

4(n − 1)
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for all unit vectors X, then Mn is diffeomorphic to the standard sphere S
n, where

Tg = Ricg + Rgg.

The proof of the above results is based on techniques of isometric immersions. First we find an
isometric immersion of codimension p of the manifold Mn in a Euclidean space. So, the pinched
conditions allow us to make a reduction of codimension and also to get the sectional curvature
is nonnegative. Then, using a classification result obtained by Cheng and Yau in [7] and the
mean curvature flow theory, we classify the manifold. I want to clarify here that all the ideas of
reduction of codimension is inspired by the work of Q.M. Cheng, especially the work [6].

3. Proof of Theorem 2.1

Assuming that

n2(n − 2)

n − 1
C(M,g) < Rg � n(n − 1)C(M,g),

we find an isometric immersion Θ :Mn → R
n+p , such that

n2(n − 2)

n − 1
H 2

Θ < Rg � n(n − 1)C(M,g). (6)

In the sequel, we will use the notations H and S instead HΘ and SΘ , respectively. Independently,
we have

dωαβ = −
n+p∑
γ=1

ωαγ ∧ ωγβ + 1

2

n∑
i,j=1

Rαβijωi ∧ ωj

and

Rαβij =
n∑

l=1

(
hα

ilh
β
lj − hα

jlh
β
li

)
.

Using the exterior differentiation and defining hα
ijk by

n∑
k=1

hα
ijkωk = dhα

ij −
n∑

k=1

hα
ikωkj −

n∑
k=1

hα
jkωki −

n+p∑
β=n+1

h
β
ijωβα,

we obtain the Codazzi’s equation,

hα
ijk = hα

ikj = hα
jik.

Again using the exterior differentiation and defining hα
ijkl by

n∑
l=1

hα
ijklωl = dhα

ijk −
n∑

l=1

hα
ljkωli −

n∑
l=1

hα
ilkωlj −

n∑
l=1

hα
ijlωlk −

n+p∑
β=n+1

h
β
ijkωβα,

we obtain Ricci’s formula for the second fundamental form σΘ ,

hα
ijkl − hα

ijlk =
n∑

hα
mjRmikl +

n∑
hα

imRmjkl +
n+p∑

h
β
ijRβαkl .
m=1 m=1 β=n+1
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The Laplacian �hα
ij of hα

ij is defined by

�hα
ij =

n∑
k=1

hα
ijkk.

From the Codazzi’s equation and the Ricci’s formula, we obtain, for any α, n + 1 � α � n + p,

�hα
ij =

n∑
k=1

hα
kijk

=
n∑

k=1

hα
kikj +

n∑
k,m=1

hα
kmRmijk +

n∑
k,m=1

hα
miRmkjk +

n∑
k=1

n+p∑
β=n+1

h
β
kiRβαjk

=
n∑

k=1

hα
kkij +

n∑
k,m=1

hα
kmRmijk +

n∑
k,m=1

hα
miRmkjk +

n∑
k=1

n+p∑
β=n+1

h
β
kiRβαjk.

Since Rg > 0, we have from (5) that the mean curvature vector h �= 0 on Mn. Hence, we have
that en+1 = H−1h is a normal vector field defined globally on Mn. We define ϕ and ψ by

ϕ =
n∑

i,j=1

(
hn+1

ij − Hδij

)2

and

ψ =
n+p∑

α=n+2

n∑
i,j=1

(
hα

ij

)2
,

respectively. Then ϕ and ψ are functions defined on Mn globally, which do not depend on the
choice of the orthonormal frame {e1, . . . , en}. From the definition of the mean curvature vector
h, we obtain that nH = ∑n

i=1 hn+1
ii and

∑n
i=1 hα

ii = 0 for n + 2 � α � n + p on Mn. Setting
Hα = (hα

ij ) and defining N(A) = tr(tAA) for n × n-matrix A, where tr(B) denotes the trace of
the matrix B , by making use of a direct computation we have

n+p∑
α=n+2

n∑
l,i,j,k=1

hα
ijh

α
klRlijk =

n+p∑
α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

(
tr(Hn+1Hα)

)2

+
n+p∑

α,β=n+2

tr(HαHβ)2 −
n+p∑

α,β=n+2

(
tr(HαHβ)

)2
,

n+p∑
α=n+2

n∑
i,j,k,l=1

hα
ijh

α
klRlkjk = nH

n+p∑
α=n+2

tr
(
Hn+1H

2
α

) −
n+p∑

α=n+2

tr
(
H 2

n+1H
2
α

)

−
n+p∑

α,β=n+2

tr(HαHβHβHα)

and
n+p∑ n∑

hα
ijh

β
kiRβαjk =

n+p∑
tr(HαHβ)2 −

n+p∑
tr(HαHβHβHα).
α,β=n+1 i,j,k=1 α,β=n+1 α,β=n+1
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Hence,

1

2
�ψ =

n+p∑
α=n+2

n∑
i,j,k=1

(
hα

ijk

)2 +
n+p∑

α=n+2

n∑
i,j=1

hα
ij�hα

ij

=
n+p∑

α=n+2

n∑
i,j,k=1

(
hα

ijk

)2 + nH

n+p∑
α=n+2

tr
(
Hn+1H

2
α

) −
n+p∑

α=n+2

(
tr(Hn+1Hα)

)2

−
n+p∑

α,β=n+2

N(HαHβ − HβHα) −
n+p∑

α,β=n+2

(
tr(HαHβ)

)2

+
n+p∑

α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

tr
(
H 2

n+1H
2
α

)
. (7)

According to Lemma A.1 (see Appendix A), and the definition of ψ , we obtain

−
n+p∑

α,β=n+2

N(HαHβ − HβHα) −
n+p∑

α,β=n+2

(
tr(HαHβ)

)2 � −3

2
ψ2. (8)

Since en+1 = h
H

we have tr(Hα) = 0 for α = n + 2, . . . , n + p and tr(Hn+1) = nH . Note that

−
n+p∑

α=n+2

(
tr(Hn+1Hα)

)2 +
n+p∑

α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

tr
(
H 2

n+1H
2
α

)

=
n+p∑

α=n+2

{−(
tr(Hn+1Hα)

)2 + tr(Hn+1Hα)2 − tr
(
H 2

n+1H
2
α

)}

=
n+p∑

α=n+2

{−(
tr

(
(Hn+1 − HI)Hα

))2 + tr
(
(Hn+1 − HI)Hα

)2 − tr
(
(Hn+1 − HI)2H 2

α

)}
,

where I denotes the unit matrix. For a fixed α, n + 2 � α � n + p, we can take a local orthonor-
mal frame field {e1, . . . , en} such that hα

ji = λα
i δij . Thus, we have

n∑
i=1

λα
i = 0

and

tr
(
H 2

α

) =
n∑

i=1

(
λα

i

)2
.

Let B = Hn+1 − HI = (bij ). We have bij = bji for all i, j = 1, . . . , n,
n∑

i=1

bii = 0

and
n∑

b2
ij = ϕ.
i,j=1
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Hence, we find

−(
tr

(
(Hn+1 − HI)Hα

))2 + tr
(
(Hn+1 − HI)Hα

)2 − tr
(
(Hn+1 − HI)2H 2

α

)
= −(

tr(BHα)
)2 + tr(BHα)2 − tr

(
B2H 2

α

)
= −

(
n∑

i=1

biiλ
α
i

)2

+
n∑

i=1

b2
ij λ

α
i λα

j −
n∑

i=1

b2
ij

(
λα

i

)2
.

Since λα
i and bij for i, j = 1, . . . , n satisfy the conditions in Lemma A.2 (see Appendix A), we

obtain

−(
tr

(
(Hn+1 − HI)Hα

))2 + tr
(
(Hn+1 − HI)Hα

)2 − tr
(
(Hn+1 − HI)2H 2

α

)
� −ϕ tr

(
H 2

α

)
.

Therefore, we have

n+p∑
α=n+2

{−(
tr

(
(Hn+1 − HI)Hα

))2 + tr
(
(Hn+1 − HI)Hα

)2 − tr
(
(Hn+1 − HI)2H 2

α

)}

� −ϕ

n+p∑
α=n+2

tr
(
H 2

α

) = −ϕψ. (9)

Also,

nH

n+p∑
α=n+2

tr
(
Hn+1H

2
α

) = nH

n+p∑
α=n+2

tr
(
(Hn+1 − HI)H 2

α

) + nH 2
n+p∑

α=n+2

tr
(
H 2

α

)

= nH

n+p∑
α=n+2

tr
(
(Hn+1 − HI)H 2

α

) + nH 2ψ. (10)

Using the same assertion as above, we have, for fixed α, n + 2 � α � n + p,

tr
(
(Hn+1 − HI)H 2

α

) =
n∑

i=1

bii

(
λα

i

)2
.

From Lemmas A.3 and A.4 (see Appendix A), we obtain

tr
(
(Hn+1 − HI)H 2

α

)
� − n − 2√

n(n − 1)

√
ϕ tr

(
H 2

α

)
.

Thus, from (10), we conclude

nH

n+p∑
α=n+2

tr
(
Hn+1H

2
α

)
� nH 2ψ −

√
n

n − 1
(n − 2)H

√
ϕ ψ. (11)

From (7), (8), (9) and (11), we find the following inequality:

1

2
�ψ �

n+p∑ n∑ (
hα

ijk

)2 +
(

nH 2 −
√

n

n − 1
(n − 2)H

√
ϕ − ϕ − 3

2
ψ

)
ψ. (12)
α=n+2 i,j=1



686 E.R. Barbosa / Bull. Sci. math. 134 (2010) 677–692
Since (√
n(n − 2)

n − 1
H − √

(n − 2)ϕ

)2

� 0,

we obtain

−
√

n

n − 1
(n − 2)H

√
ϕ � −n

2

(
n − 2

n − 1

)
H 2 − (n − 2)

2
ϕ. (13)

Therefore, from (12) and (13), we have the inequality

1

2
�ψ �

n+p∑
α=n+2

n∑
i,j=1

(
hα

ijk

)2 +
(

nH 2 − n

2

(
n − 2

n − 1

)
H 2 − (n − 2)

2
ϕ − ϕ − 3

2
ψ

)
ψ. (14)

Observe that

− (n − 2)

2
ϕ − ϕ = n2

2
H 2 − n

2
S + n

2
ψ. (15)

Hence,

1

2
�ψ �

n+p∑
α=n+2

n∑
i,j=1

(
hα

ijk

)2 +
(

n

2

(
n2H 2

n − 1
− S

)
+

(
n − 3

2

)
ψ

)
ψ

�
n+p∑

α=n+2

n∑
i,j=1

(
hα

ijk

)2 +
(

n − 3

2

)
ψ2,

since (14) and (15) hold and

n

2

(
n2H 2

n − 1
− S

)
� 0.

This last inequality is true because from (6) we have

n2(n − 2)

n − 1
H 2 < Rg = n2H 2 − S

and consequently

n2H 2

n − 1
� S.

Again from (6) we obtain that

Rg � (n − 2)S.

So, it follows from this last inequality and Theorem 4.1 in [5] that the sectional curvature of Mn

is nonnegative. Consequently, the Ricci curvature of Mn has a lower bound. By applying the
generalized maximum principle due to Omori [13] and Yau [15] to the function ψ , we have that
there exists a sequence (pk) in Mn such that

lim
k→∞ψ(pk) = sup

M

ψ and lim sup
k→∞

�ψ(pk) � 0.

Since (6) holds and H is bounded, we have that (hα
ij (pk)), for any i, j = 1,2, . . . , n and any

α = n + 1, . . . , n + p, is a bounded sequence. Hence we can assume that limk→∞ hα (pk) = hα ,
ij ij
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if necessary, we can take a subsequence. So, we have that ψ = 0 for n � 4. Now suppose that
n = 3. So, if supψ �= 0, we find

lim
k→+∞

(
S − n2H 2

n − 1

)
(pk) = 0 and lim

k→+∞

√
n

n − 1
H(pk) = √

ϕ.

Let

lim
k→+∞H(pk) = H, lim

k→+∞S(pk) = S and lim
k→+∞ϕ(pk) = ϕ.

We have

S = nH 2

n − 1
, ϕ = nH 2

n − 1
and S = supψ + ϕ + nH 2 = n2H 2

n − 1
+ supψ.

Hence, supψ = 0. This is impossible. Then, we obtain

ψ = 0 and
n+p∑

α=n+2

n∑
i,j=1

(
hα

ijk

)2 = 0.

We conclude from Erbacher’s theorem [8] (or Theorem 1 in [16]) that Mn lies in a totally
geodesic submanifold R

n+1 of the Euclidean space R
n+p .

If Rg = n(n − 1)C, it follows from the classification result obtained by Cheng and Yau [7]
that (Mn,g) is isometric to the Euclidean sphere S

n(C) with constant sectional curvature C,
since in this case Rg is constant and the sectional curvature is nonnegative. In the general case, it
follows from the theory of mean curvature flow (see [9], for example) that Mn is diffeomorphic
to the standard sphere S

n, since Mn is a closed hypersurface immersed in R
n+1 and the sectional

curvature is nonnegative.
Finally, if f :Mn → S

n is a diffeomorphism, then the metric g = f ∗δ, where δ is the standard
metric on S

n, is a metric on Mn such that

n2(n − 2)

n − 1
C(M,g) < Rg � n(n − 1)C(M,g).

4. Proof of Corollary 2.1

Consider an isometric immersion Θ :Mn → R
n+p . Choose a local field of orthonormal

frames {e1, . . . , en+p} adapted to the Riemannian metric of R
n+p in such a way that, restricted

to the submanifold Mn, {e1, . . . , en} are tangent to Mn. We have that {e1, . . . , en} is a local field
of orthonormal frames adapted to the induced Riemannian metric on Mn. We have that

Rg = n2H 2 − S.

Hence,

n2H 2 = Rg +
n+p∑

α=n+1

((
hα

11

)2 + (
hα

22 + · · · + hα
nn

)2 + 2
∑
i<j

(
hα

ij

)2
)

− 2
n+p∑ ∑

hα
iih

α
jj
α=n+1 2�i<j�n
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= Rg + 1

2

n+p∑
α=n+1

((
hα

11 + hα
22 + · · · + hα

nn

)2 + (
hα

11 − hα
22 − · · · − hα

nn

)2)

+ 2
n+p∑

α=n+1

(∑
i<j

(
hα

ij

)2
)

− 2
n+p∑

α=n+1

∑
2�i<j�n

hα
iih

α
jj

= Rg + n2H 2

2
− 2

∑
2�i<j�n

Kij + 2
n+p∑

α=n+1

(∑
j=2

(
hα

1j

)2
)

.

Thus,

n2

4
H 2 � Ricg(e1, e1).

Since e1 is an arbitrary unit vector, we find

n2

4
H 2 � Ricg(X,X),

for all unit vectors X. Consequently,

n2

4
C(M,g) � Ricg(X,X), (16)

for all unit vectors X. Now, if

Tg(X,X) >
n2(5n − 9)

4(n − 1)
C(M,g),

for all unit vectors X, where

Tg = Ricg + Rgg,

we have from (16) that

n2(n − 2)

n − 1
C(M,g) < Rg � n(n − 1)C(M,g).

Then, from Theorem 2.1, Mn is diffeomorphic to the standard sphere S
n.
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Appendix A

For the convenience of the reader, we include here the lemmas used in the proof of Theo-
rem 2.1. Lemma A.1 can be found in [11] while the other lemmas can be found in [6]. With the
exception of Lemma A.1, we rewrite the proof of them here.
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Lemma A.1. For symmetric matrices H1, . . . ,Hp , p � 2, put Sαβ = tr(HαHβ), S = ∑p

α=1 Sαα

and N(Hα) = tr(tHαHα). Then,

p∑
α,β=1

N(HαHβ − HβHα) +
p∑

α,β=1

S2
αβ � 3

2
S2,

and equality holds if and only if one of the following conditions hold:

(1) H1 = H2 = · · · = Hp = 0.
(2) Only two of the matrices H1,H2, . . . ,Hp are different from zero. Moreover, assuming H1 �=

0, H2 = 0 and H3 = H4 = · · · = Hp = 0 then S11 = S22 and there exists an orthogonal
matrix T such that

t T H1T =
√

S11

2

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 −1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

and

t T H2T =
√

S22

2

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ .

Lemma A.2. Let a1, . . . , an and bij for i, j = 1, . . . , n be real numbers satisfying
∑n

i=1 ai = 0,∑n
i=1 bii = 0,

∑n
i,j=1 b2

ij = b and bij = bji for i, j = i, . . . , n. Then

−
(

n∑
i=1

biiai

)2

+
n∑

i,j=1

b2
ij aiaj −

n∑
i,j=1

b2
ij a

2
i � −

n∑
i=1

a2
i b.

Proof. We consider the function

f (xij ) = −
(

n∑
i=1

xiiai

)2

− 1

2

n∑
i,j=1

x2
ij (ai − aj )

2

subjecting to the constraint conditions

n∑
i=1

xii = 0 and
n∑

i,j=1

x2
ij = b.

By making use of the method of Lagrange multiplier, we shall calculate the minimum of the
function f (xij ) with these constraint conditions. Let

g = f (xij ) + λ

n∑
xii + μ

(
n∑

x2
ij − b

)
,

i=1 i,j=1
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where λ and μ are the Lagrange multipliers. We have

g = −
(

n∑
i=1

xiiai

)2

− 1

2

n∑
i,j=1

x2
ij (ai − aj )

2 + λ

n∑
i=1

xii + μ

(
n∑

i,j=1

x2
ij − b

)
.

If f attains its minimum f0 at some point (xij ), we have

−2
n∑

i=1

aixiiaj + λ + 2μxjj = 0 for j = 1, . . . , n (17)

and

−xij (aj − ai)
2 + 2μxij = 0 for i �= j. (18)

Thus, we have

−
(

n∑
i=1

xiiai

)2

+ μ

n∑
j=1

x2
jj = 0

and

−1

2

n∑
i,j=1

x2
ij (ai − aj )

2 + μ

n∑
i,j=1, i �=j

x2
ij = 0.

From (17) and
∑n

i=1 ai = 0, we have λ = 0 and(
μ −

n∑
j=1

a2
j

)
n∑

i=1

xiiai = 0,

μ

n∑
j=1

x2
jj −

(
n∑

i=1

xiiai

)
= 0.

If
∑n

i=1 xiiai �= 0, we have μ = ∑n
j=1 a2

j . Hence,

f0 = −μb = −
n∑

j=1

a2
j b.

If
∑n

i=1 xiiai = 0, we have μ
∑n

j=1 x2
jj = 0. Note that μ = 0 yields f0 = 0. If μ �= 0, we have∑n

j=1 x2
jj = 0. Hence, b = 0 or there exists i �= j such that xij �= 0. From (18), we obtain

2μ = (ai − aj )
2 � 2

n∑
j=1

a2
j .

Therefore,

f0 � −2
n∑

j=1

a2
j b.

Since
∑n

ai = 0,
∑n

bii = 0,
∑n

b2 = b and bij = bji for i, j = i, . . . , n hold, we find
i=1 i=1 i,j=1 ij
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−
(

n∑
i=1

biiai

)2

+
n∑

i,j=1

b2
ij aiaj −

n∑
i,j=1

b2
ij a

2
i

= −
(

n∑
i=1

biiai

)2

− 1

2

n∑
i,j=1

b2
ij (ai − aj )

2 � −2
n∑

j=1

a2
j b.

Thus, we complete the proof of the lemma. �
Lemma A.3. Let bi, i = 1, . . . , n, be real numbers such that

∑n
i=1 bi = 0 and

∑n
i=1 b2

i = B ,
where B = const. � 0. Then

n∑
i=1

b4
i − B2

n
� (n − 2)2

n(n − 1)
B2.

Proof. We consider the function

f (y) =
n∑

i=1

y4
i − B2

n

with constraint conditions
∑n

i=1 yi = 0 and
∑n

i=1 y2
i = B . Thus, at least one y2

i � B
n

for some i.
Assume that y2

n � B
n

. From
∑n

i=1 yi = 0, we have

y2
n =

(
n−1∑
i=1

yi

)2

� (n − 1)

n−1∑
i=1

y2
i = (n − 1)

(
B − y2

n

)
,

y2
n − B

2
=

∑
1�i<j�n−1

yiyj

and

y2
n � (n − 1)B

n
.

Hence,

f (y) =
n−1∑
i=1

y4
i + y4

n − B2

n

(
n−1∑
i=1

y2
i

)2

− 2
∑

1�i<j�n−1

y2
i y2

j + y4
n − B2

n

�
(
B − y2

n

)2 − 4

(n − 1)(n − 2)

( ∑
1�i<j�n−1

yiyj

)2

+ y4
n − B2

n

= 2n(n − 3)

(n − 1)(n − 2)

(
y4
n − By2

n

) +
(

n − 1

n
− 1

(n − 1)(n − 2)

)
B2.

Since the maximum of the function t2 − Bt in the interval [ 1
n
B, n−1

n
B] is −n−1

n2 B2, we obtain

f (y) � (n − 2)2

n(n − 1)
B2.

Thus, we complete the proof of the lemma. �
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Lemma A.4. Let ai and bi for i = 1, . . . , n be real numbers such that
∑n

i=1 ai = 0 and∑n
i=1 a2

i = a, where a = const. � 0. Then

n∑
i=1

aib
2
i �

√√√√ n∑
i=1

b4
i − (

∑n
i=1 b2

i )
2

n

√
a.

Proof. By making use of the method of Lagrange multiplier, we calculate the minimum of the
function g(x) = ∑n

i=1 xib
2
i with constraint conditions

∑n
i=1 xi = 0 and

∑n
i=1 x2

i = a. If the
function g attains its minimum g0 in some point x, then we have, at point x,

b2
i + λ + 2μxi = 0 for i = 1, . . . , n,

where λ and μ are the Lagrange multipliers. Hence, we have

g0 = −2μa, λ = −
∑n

i=1 b2
i

n
,

n∑
i=1

b4
i − (

∑n
i=1 b2

i )
2

n
+ 2μg0 = 0.

Thus, we complete the proof of the lemma. �
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