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Mitochondrial function requires maintaining metabolite fluxes across the mitochondrial outer
membrane, which is mediated primarily by the voltage dependent anion channel (VDAC). We
applied fluorescence correlation spectroscopy (FCS) to study regulation of the VDAC functional state
by monitoring distribution of fluorescently labeled ATP (BODIPY-FL-ATP) in isolated intact rat liver
and heart mitochondria. Addition of mitochondria to BODIPY-FL-ATP solution resulted in accumu-
lation of the fluorescent probe in these organelles. The addition of hexokinase II (HKII) isolated from
rat heart led to a decrease in the BODIPY-FL-ATP accumulation, while a 15-residue peptide corre-
sponding to the N-terminal domain of hexokinase did not produce this effect. Therefore, the hexo-
kinase-induced inhibition of the ATP flow mediated by VDAC was revealed in isolated mitochondria.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction position (BODIPY-FL-ATP) for evaluating the transport activity of
The common pathway for the translocation of metabolites
through the mitochondrial outer membrane is the voltage depen-
dent anion channel (VDAC) channel [1,2], having b-barrel structure
similarly to bacterial porins [3–5]. VDAC has been shown to medi-
ate the flow of ATP [6,7] when reconstituted into lipid bilayers. By
interacting with VDAC, different mitochondrial and cytosolic pro-
teins modulate its transport activity [8,9]. In particular, the type I
and type II isozymes of hexokinase coexisting in cardiac and skel-
etal muscles [10] have high affinity for VDAC [11–13], which may
regulate the ratio between oxidative phosphorylation and glyco-
lytic pathways in cells [14,15]. A correlation was observed between
association of hexokinase with mitochondria and incidence of
apoptotic cell death – the higher the association, the less the prob-
ability of cell death [16,17]. Although with bilayer-reconstituted
VDAC, hexokinase I was shown to promote the closed state of
the channel [18,19], the effect of hexokinase on the transport activ-
ity of VDAC, in particular, on the ATP flux through this channel in
isolated mitochondria has not been determined so far.

In the present work, we used ATP labeled with the fluorescent
marker BODIPY conjugated to the ribose ring via the 20-(or-30)-
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VDAC in rat liver mitochondria. BODIPY-FL-ATP has previously
been employed for characterization of ATP-binding sites in vacuo-
lar ATPase [20]. The accumulation of BODIPY-FL-ATP in mitochon-
dria was measured by fluorescence correlation spectroscopy (FCS)
which is known to be a powerful and convenient tool for determin-
ing mobility of target molecules both in cells and in a suspension of
subcellular structures [21,22]. FCS enables to detect fluorescence at
a single molecule level from a very small volume (�10�15 l) with
microsecond resolution. Recently, the modified FCS method
(we coined it the peak intensity analysis (PIA)) was applied to mea-
sure tetramethylrhodamine ethyl ether (TMRE) potential-sensitive
accumulation in mitochondria, which allowed to estimate the
number of mitochondrial particles and the magnitude of mito-
chondrial membrane potential with high accuracy [23]. In the
present study we demonstrate that with BODIPY-FL-ATP, PIA en-
ables to evaluate the transport activity of VDAC, in particular, the
ATP flux through this channel. The binding of hexokinase to VDAC,
similarly to that of Koenig’s polyanion, led to inhibition of the flux
of labeled ATP into mitochondria.
2. Materials and methods

2.1. Materials

Most chemicals were from Sigma; succinate and sucrose were
from ICN. Rhodamine 6G was from Fluka. BODIPY-FL-ATP
lsevier B.V. All rights reserved.

https://core.ac.uk/display/82279376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.febslet.2010.04.033
mailto:antonen@genebee.msu.ru
http://www.FEBSLetters.org


2398 I.V. Perevoshchikova et al. / FEBS Letters 584 (2010) 2397–2402
(BODIPY� FL 20-(or-30)-O-(N-(2-aminoethyl) urethane) adenosine
50-triphosphate) and BODIPY-FL-ADP (BODIPY� FL 20-(or-30)-O-
(N-(2-aminoethyl) urethane) adenosine 50-diphosphate) were from
Molecular Probes. The peptide MIASHLLAYFFTELN-amide corre-
sponding to the N-terminus of hexokinase was synthesized by
the solid phase method on 2-chloro-trityl-chloride polystyrene re-
sin using the standard Fmoc chemistry procedure with HOBt/DIC
carboxylic groups activation in a Syro I peptide synthesizer (Muti-
SynTech, Germany) by Nataliya Egorova at Shemyakin-Ovchinni-
kov Institute of Bioorganic Chemistry (Russia). To achieve peptide
cleavage and deprotection, the peptide resins were treated with
trifluoroacetic acid–ethandithiol–triisopropylsilane–water (94:
2.5:1:2.5) for 2.5 h. Peptides were purified by preparative RP-HPLC
on a C16 column (BioChemMack, Russia) with acetonitryl gradient
in 0.1% trifluoroacetic acid in water and characterized by analytical
HPLC and matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass-spectroscopy. Finally the peptide was dissolved
in methanol. Koenig’s polyanion was synthesized by Nikolay Me-
lik-Nubarov at the Moscow State University (Russia).
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Fig. 1. (A) Normalized autocorrelation functions of 25 nM BODIPY-FL-ATP (solid
curve), after the addition of rat liver mitochondria (dashed curve), and subsequent
addition of 1 mM ATP (dotted curve). (B) Autocorrelation functions of 25 nM
BODIPY-FL-ATP (curve 1), after the addition of rat liver mitochondria (curve 2), and
subsequent addition of increasing concentrations of ATP (curve 3–10 lM, curve 4–
100 lM, curve 5–1 mM) measured under stirring conditions. The solution was
0.25 M sucrose, 20 mM MOPS, 1 mM EGTA, pH 7.4. The concentration of mito-
chondrial protein was 0.083 mg/ml.
2.2. FCS experimental setup

The home-made setup was described previously in [23]. Briefly,
fluorescence excitation and detection utilized a Nd:YAG solid state
laser with a 532-nm beam attached to an Olympus IMT-2 epifluo-
rescent inverted microscope equipped with a 40�, NA 1.2 water
immersion objective (Carl Zeiss, Jena, Germany). The fluorescence
light passed through an appropriate dichroic beam splitter and a
long-pass filter and was imaged onto a 50-lm core fiber coupled
to an avalanche photodiode (SPCM-AQR-13-FC, Perkin–Elmer
Optoelectronics, Vaudreuil, Quebec, Canada). The signal from an
output was sent to a personal computer using a fast interface card
(Flex02-01D/C, Correlator.com, Bridgewater, NJ). The data acquisi-
tion time was 30 s. The fluorescence was recorded from the confo-
cal volume located at about 50 lm above the coverslip surface
with 50 ll of the buffer solution added. Most of the data were col-
lected under the conditions of stirring a suspension by a paddle-
shaped 3-mm plastic bar rotated at 600 rpm. To calibrate the setup,
we recorded the autocorrelation function of fluorescence of a solu-
tion of Rhodamine 6G which was characterized by the correlation
time sD estimated from Eq. (1). Assuming the diffusion coefficient
of the dye to be 2.5 � 10�6 cm2/s, the value of the confocal radius
x = 0.42 lm was obtained. The correlated fluorescence emission
signals were fitted to the three-dimensional autocorrelation
function [24].
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with sD being the characteristic correlation time during which a
molecule resides in the observation volume of radius x and
length z0, given by sD = x2/4D, where D is the diffusion coefficient,
N is the mean number of fluorescent particles in the confocal
volume.

2.3. Treatment of the fluorescence signal (PIA procedure)

Fluorescence traces with the sampling time of 25 ls were ana-
lyzed using WinEDR Strathclyde Electrophysiology Software de-
signed by Dempster (University of Strathclyde, UK) or another
program with an algorithm developed by van den Bogaart and col-
leagues [25]. The software, originally designed for the single-chan-
nel analysis of electrophysiological data, enables one to count the
number of peaks (n(F > F0)) of the FCS signal having amplitudes
higher than the defined value (F0).
2.4. Isolation of mitochondria

Rat liver and heart mitochondria were isolated by differential
centrifugation [26] in a medium containing 250 mM sucrose,
20 mM MOPS, 1 mM EGTA, 1.2 mg/ml bovine serum albumin, pH
7.4. The final washing was performed in the same medium. Protein
concentration was determined using bicinchoninic acid as de-
scribed in [27]. Handling of animals and experimental procedures
were conducted in accordance with the international guidelines
for animal care and use and were approved by the Institutional
Ethics Committee of A.N. Belozersky Institute of Physico-Chemical
Biology at the Moscow State University.

2.5. Hexokinase II isolation from rat heart

Hexokinase II (HKII) was isolated according to [28] with modi-
fications of the procedure for isolation from rat heart. Briefly, rat
hearts were homogenized in 6-fold excess of isolation buffer
(10 mM KH2PO4, 0.5 mM dithioetrethol, pH 7.4). After centrifuga-
tion at 15000�g during 15 min a supernatant was supplemented
with DEAE-cellulose prepared with 1 mM KH2PO4, pH 7.0
(100 mg for 1.5 U hexokinase) and incubated during 10 min.
DEAE-cellulose particles were filtered by means of a Buechner fun-
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Fig. 2. (A) Time-resolved count rates of 25 nM BODIPY-FL-ATP in the absence (curve 1) and in the presence (curve 2) of rat liver mitochondria (0.083 mg/ml) in the incubation
buffer, and after the subsequent additions of increasing concentrations (10 lM, 100 lM, 1 mM) of ATP (curves 3–5). The signal was recorded under stirring condition in
solution: 250 mM sucrose, 20 mM MOPS, 1 mM EGTA, pH 7.4. (B) Corresponding dependences of n(F > F0) on F0 (circles) for 25 nM BODIPY-FL-ATP. Insert: the dependence of
the number of peaks with the intensity exceeding 1.6 MHz on ATP concentration. (C) The dependence of n(F > F0) on F0 for 25 nM BODIPY-FL-ADP in the presence of rat liver
mitochondria (circles). Triangles – the same after the addition of 4 mM ADP.
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nel, washed with the isolation buffer to remove unbound proteins,
and then incubated for 10 min in the isolation buffer supple-
mented with 100 mM KCl. Subsequent filtration through a Buech-
ner funnel was followed by the addition of ammonium sulfate (up
to 50%) and stirring during 20 min. After centrifugation (30000�g
during 20 min), the pellet was dissolved in isolation buffer contain-
ing 0.125 M KCl and dialyzed against the same solution during 3 h.
Hexokinase activity was measured spectrophotometrically at room
temperature at 340 nm by coupling NADPH formation to the pro-
duction of glucose-6-phosphate by HKII and its oxidation by glu-
cose-6-phosphate dehydrogenase. The reaction mixture (1 ml)
contained 100 mM Tris, 130 mM NaCl, 3.5 mM MgCl2, 0.15 mM
CaCl2 supplemented with 1 mM NADP, 10 mM glucose, 2 mM
ATP, pH 8.5. A 100-fold excess of glucose-6-phosphate dehydroge-
nase over HKII was employed. Typical activity of HKII samples was
about 1 lmol/min mg protein.

2.6. Optical measurements

Fluorescence from standard 2-ml cuvettes was recorded with a
Panorama Fluorat 02 (Lumex, Russia) fluorescence spectrophotom-
eter with excitation and emission slits adjusted to 5 nm.

3. Results and discussion

To test the ability of BODIPY-FL-ATP to interact with mitochon-
dria, the normalized autocorrelation function of this fluorescent
probe (Fig. 1A) was measured before (curve 1) and after (curve 2)
the addition of mitochondria. A pronounced shift of the autocorre-
lation function toward larger correlation times reflected a dramatic
decrease in the diffusion coefficient (D) of BODIPY-FL-ATP that oc-
curred upon association of the dye with mitochondria. Assuming
D = 250 lm2/s for Rhodamine 6G, one can obtain D = 230 lm2/s
for free BODIPY-FL-ATP and D = 0.8 lm2/s for the dye associated
with mitochondria. Armbruster et al. [20] obtained D = 220 lm2/s
for free BODIPY-FL-ATP. The addition of unlabeled ATP did not
change the normalized autocorrelation function (curve 3) which
might indicate that binding of BODIPY-FL-ATP to mitochondria
was unspecific. However, further experiments showed that this
conclusion was premature. Fig. 1B presents non-normalized auto-
correlation functions G(s) measured under the continuous stirring
conditions used in order to increase statistics of measurements of
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Fig. 3. Dependences of the normalized number of FCS signal peaks of Bodipy-FL-
ATP with the intensity exceeding 2.4 MHz on the concentration of ATP (curve 1),
GTP (curve 2) and tripolyphosphate (curve 3). The signal was recorded under
stirring conditions in solution: 250 mM sucrose, 20 mM MOPS, 1 mM EGTA, pH 7.4,
0.044 mg/ml rat liver mitochondria, 25 nM Bodipy-FL-ATP, 2 lM rotenone.
the parameter N, i.e. the number of particles. G(s) increased upon
the addition of mitochondria and decreased gradually, as the con-
centration of unlabeled ATP increased (Fig. 1B), thereby showing
that ATP could liberate a substantial part of bound BODIPY-FL-
ATP which led to an increase in the parameter N = 1/G(s ? 0). It
is noteworthy that under the stirring conditions sD was deter-
mined mainly by hydrodynamic parameters rather than by diffu-
sion of BODIPY-FL-ATP.

As it has been shown in our previous work, accumulation of a
fluorescent probe in mitochondria can be characterized by special
treatment of the fluorescence signal measured by an FCS setup, i.e.
PIA [23]. Fig. 2A shows recordings of BODIPY-FL-ATP fluorescence
measured in the absence (curve 1) and in the presence (curve 2)
of mitochondria, and after the subsequent additions of increasing
concentrations of ATP (curves 3–5). It is seen that the number of
bursts or peaks of the signal reflecting the appearance of bright
mitochondrial particles in the confocal volume decreased, as the
concentration of ATP increased. Therefore, BODIPY-FL-ATP and
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Fig. 4. (A) The effect of Koenig’s polyanion and atractyloside on the plot of the
number of FCS signal peaks (n(F > F0)) of BODIPY-FL-ATP with amplitudes higher
than the defined value (F0) versus the F0 value measured in mitochondrial
suspension (0.044 mg/ml): (1) rat liver mitochondria supplemented with 2 lM
rotenone, 25 nM BODIPY-FL-ATP; (2) mitochondria supplemented with 2 lM
rotenone, 100 lM atractyloside, 25 nM BODIPY-FL-ATP; (3) mitochondria supple-
mented with 2 lM rotenone, 0.06 mg/ml Koenig’s polyanion, 25 nM BODIPY-FL-
ATP; and (4) mitochondria supplemented with 2 lM rotenone, 25 nM BODIPY-FL-
ATP, 2 mM ATP. (B) The effect of NADH and NAD+ on the plot of the number of FCS
signal peaks (n(F > F0)) of BODIPY-FL-ATP with amplitudes higher than the defined
value (F0) versus F0 measured in mitochondrial suspension (0.037 mg/ml): (1) rat
liver mitochondria supplemented with 2 lM rotenone, 25 nM BODIPY-FL-ATP; (2)
mitochondria supplemented with 2 lM rotenone, 2 mM NAD+, 25 nM BODIPY-FL-
ATP; (3) mitochondria supplemented with 2 lM rotenone, 2 mM NADH, BODIPY-
FL-ATP; and (4) mitochondria supplemented with 2 lM rotenone, 25 nM BODIPY-
FL-ATP, 2 mM ATP.
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Fig. 5. (A) The effect of hexokinase on the plot of the number of FCS signal peaks
(n(F > F0)) of BODIPY-FL-ATP with amplitudes higher than the defined value (F0)
versus F0 measured in mitochondrial suspension (0.04 mg/ml): (1) rat heart
mitochondria supplemented with 2 lM rotenone, 25 nM BODIPY-FL-ATP; (2)
mitochondria supplemented with 2 lM rotenone, 0.27 mg/ml hexokinase, 25 nM
BODIPY-FL-ATP; and (3) mitochondria supplemented with 2 lM rotenone, 0.27 mg/
ml hexokinase, 25 nM BODIPY-FL-ATP, 1 mM glucose 6-phosphate. (B) The effect of
the peptide composed of the first 15 amino acids of hexokinase on the plot of the
number of FCS signal peaks (n(F > F0)) of BODIPY-FL-ATP with amplitudes higher
than the defined value (F0) versus F0 measured in mitochondrial suspension
(0.038 mg/ml): (1) rat heart mitochondria supplemented with 2 lM rotenone,
25 nM BODIPY-FL-ATP and (2) mitochondria supplemented with 2 lM rotenone,
0.07 mg/ml peptide, 25 nM BODIPY-FL-ATP.
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ATP actually compete for binding sites in mitochondria. The
accumulation of BODIPY-FL-ATP in mitochondria was slightly
dependent on the presence of rotenone and on mitochondrial ener-
gization. According to the results of the PIA statistical treatment
displayed in Fig. 2B, the addition of 1 mM ATP brought about a
6-fold decrease in the number of FCS signal peaks with amplitudes
exceeding the value of 1.6 MHz (insert). In contrast to BODIPY-FL-
ATP, the binding of BODIPY-FL-ADP apparently was unspecific, be-
cause the number of peaks obtained with this marker did not de-
pend on the presence of ADP (Fig. 2C). Control experiments
demonstrated that the addition of mitochondria to the solution
of the low-molecular-weight hydrophilic fluorescent dye sulforho-
damine B did not result in the appearance of FCS signal peaks
which suggested the requirement of nucleotide moieties in the
structure of a fluorescent probe for its accumulation in
mitochondria.

Fig. 3 demonstrates the dependence of the FCS-detected BODI-
PY-FL-ATP accumulation in mitochondria on ATP, GTP and tripoly-
phosphate concentrations. Apparently, ATP is able to replace
BODIPY-FL-ATP just at a few micromolar concentration, while with
GTP and tripolyphosphate, one order of magnitude higher concen-
trations are required.

Bearing in mind that the ATP fluxes through mitochondrial out-
er and inner membranes are controlled by VDAC and ATP/ADP
translocator, respectively [29,30], we addressed the effect of Koe-
nig’s polyanion (VDAC inhibitor) [31,32] and atractyloside (ATP/
ADP translocator inhibitor) [33,34] on the accumulation of BODI-
PY-FL-ATP in mitochondria (Fig. 4A). An approximately 2-fold de-
crease in the number of FCS signal peaks with amplitudes
exceeding the value of 1.6 MHz was observed, if mitochondria
added to the BODIPY-FL-ATP solution were preincubated with
0.06 mg/ml Koenig’s polyanion for 5 min. The effect of atractylo-
side was substantially less pronounced suggesting that BODIPY-
FL-ATP is bound predominantly in the mitochondrial intermem-
brane space. It is known that this compartment contains different
ATP-binding proteins such as adenylate kinase, creatine kinase and
others. The nucleotide binding sites of VDAC might also be in-
volved in the BODIPY-FL-ATP binding to mitochondria [35–37].

According to [37,38], NAD+ and NADH can block the transport
activity of VDAC, with the effect of NADH being stronger than that
of NAD+. In line with this, the inhibitory effect of NADH on the
BODIPY-FL-ATP accumulation was substantially stronger com-
pared to NAD+ (Fig. 4B). These data support our conclusion that
the accumulation of BODIPY-FL-ATP in mitochondria is determined
by the activity of VDAC.

As seen from Fig. 5A, the addition of hexokinase II isolated from
rat heart prevented the accumulation of BODIPY-FL-ATP in rat
heart mitochondria. The supplementation of glucose-6-phosphate
led to partial restoration of the FCS signal of BODIPY-FL-ATP
reflecting its accumulation in mitochondria. The effect of HKII
was absent, if the enzyme was inactivated by heating (5 min at
100 �C, not shown). Thus, it can be concluded that HK binding trig-
gers a certain change in VDAC functional state that leads to reduc-
tion of the ATP flux through the porin channel.

It is generally accepted that the N-terminal region of hexoki-
nase is involved in binding to mitochondria [39,40,18]. In our
experiments, the peptide composed of the first 15 amino acid res-
idues of hexokinase, i.e. MIASHLLAYFFTELN-amide, was unable to
inhibit the accumulation of BODIPY-FL-ATP in rat heart mitochon-
dria even at high mole concentrations (Fig. 5B). Based on this re-
sult, we speculate that the VDAC-binding and the VDAC-blocking
domains of hexokinase are not identical. It is relevant to this point
that according to the findings of [17], the interaction of HK with
VDAC1 is mediated by multiple interaction sites.

At first glance, the conclusion about the inhibition of the VDAC-
mediated ATP flux by hexokinase binding compromises the main
mitochondrial function – to generate ATP and to transport it to
cytosol in order to provide non-stop metabolic operation. In fact,
hexokinase II capable to bind to mitochondria is abundantly pres-
ent in the cytosol of a number of tissues (heart, brain) which
potentially must hinder or even block the delivery of ATP to cyto-
solic ATP users. However, one can speculate that such process may
be highly regulated and in reality such an arrest of ATP transport
from mitochondria to cytosol does not take place. Apart from this,
hexokinase bound to VDAC may catch released ATP to phosphory-
late glucose rather than block ATP transport [41]. This process falls
into a category of widely discussed metabolic channeling phenom-
ena [42,43].

It is worth mentioning that under some pathological conditions,
partial or complete arrest of VDAC functioning does occur [44]. For
example, ethanol infusion to rats resulted in progressing the
pathology characterized by VDAC impermeability for cytosolic
low-molecular-weight markers. Under these conditions, the mito-
chondrial membrane potential significantly dropped. Based on this
fact, the conclusion has been put forth that VDAC is converted into
a locked state following the induction of a number of metabolic
regulations [44]. This result provides strong support for a key role
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of VDAC in a number of functionally critical metabolic regulatory
pathways. It may also be helpful in further developing a strategy
to reveal physiological regulation of VDAC conductance by differ-
ent proteins or proteinaceous complexes.
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