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ABSTRACT An approach to bridging the phenomenological field theory description of phase separation in binary mixed lipid
bilayers with coarse-grained (CG) molecular dynamics (MD) simulation is presented. CG MD simulation is carried out for a 1:1
dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylethanolamine lipid mixture at the liquid-gel phase coexistence condition.
The liquid-gel phase separation can be characterized by the bilayer thickness, area per lipid molecule, and orientation
parameter of the lipid tails. After a local order parameter is defined using the lipid tail bond orientation parameter, the CG MD
data are bridged to a mesoscopic model based on the phenomenological Landau-Ginzberg free-energy functional. All
parameters in this mesoscopic model are defined from the information of the phase boundary structure and the distributions of
the order parameter in the liquid and gel phases. It is found that the mesoscopic model reproduces the equilibrium properties of
the system very well, including collective fluctuations in both phases, spatial correlation functions of the order parameter, and
the line tension. The possibility of using a time-dependent Landau-Ginzberg model to mimic the phase-separation dynamics is
also investigated, using the relaxation time constant obtained by fitting the time-dependent correlation functions of the order
parameter.

INTRODUCTION

The lipid bilayer that forms cell membranes is a two-

dimensional liquid, whose structural and dynamic properties

are of particular importance for the functioning of the cell

(1). The traditional view of the lipid bilayer is of a two-

dimensional homogeneous liquid that provides a barrier for

the cell as well as a unique solvent for other functional units

such as proteins. In recent years there is increasing evidence

that cell membranes contain phase-separated domains of dif-

ferent lipid compositions called lipid rafts, which are be-

lieved to play an important role in many cell processes (for

recent reviews, see (2–4)). The nature of the phase separation

in real cell membranes is complicated due to the fact that

many different kinds of proteins and lipid molecules may be

involved. On the other hand, the characterization of phase-

separation behavior in model membranes consisting of

binary or ternary lipid mixtures has been more fruitful. It has

been found experimentally that bilayers consisting of binary

lipid mixtures show a liquid-gel phase separation (5–7),

whereas ternary lipid mixtures consisting of saturated and

unsaturated lipid, as well as cholesterol, exhibit liquid-liquid

immiscibility and segregate into ordered (the liquid-ordered

phase, lo) and disordered (the liquid-disordered phase, ld)
phases under certain conditions (8–10).

Computer simulations play an increasingly important role

in understanding biomembrane structure and dynamics.

Molecular dynamics (MD) simulations using full atomistic

models provide the most detailed information (see, e.g.,

(11–13) for recent reviews). Properties of binary and ternary

mixed lipid bilayers have been studied using full atomistic

simulations (14–18). However, the study of domain

formation and phase separation using fully atomistic models

is limited by the length- and timescales that can be reached

by current computational methods. To make simulations

at larger length- and timescales possible, a variety of coarse-

grained (CG) models, where small groups of atoms are rep-

resented by a single interaction site, have been constructed.

These include lattice models (6,19,20), off-lattice MD models

(21–26), and models based on dissipative particle dynamics

(27–29).

At even larger lengthscales (micrometers), the coarse-

grained models also become computationally prohibitive.

As such, an alternative scheme employs phenomenological

models to describe the system at large lengthscales. A good

example is the Helfrich Hamiltonian (30), which has been used

successfully to predict cell shape and membrane conformation

(31). For phase separation in mixed lipid bilayers, the most

commonly used model is based on the Landau free energy

(32). The Landau free energy model and Helfrich Hamiltonian

have also been coupled together to study the shape defor-

mation of vesicles resulting from intramembrane phase sep-

aration (33–35). In an even more general approach (36,37),

various parameters are assigned from experimental and MD

simulation data, which can be regarded as the first step to sim-

ulating phase separation coupled to membrane undulation dy-

namics in a realistic system.

To improve the predictive capability of computer simu-

lations using the above mentioned hierarchy of theoretical

models of lipid bilayers, an important goal is to build the

multi-scale linkages between the coarse-grained models using

simulation data from the more detailed ones. For example, full

atomistic simulation data have been used to construct the CG

models (23,25,26). Recently, MD and CG MD simulations

have also been used to calculate the bending modulus in the

Helfrich Hamiltonian (38–41). The goal of the present study is
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to demonstrate an accurate yet practical procedure to bridge

a phenomenological field theory model of phase separation

to a CG model of a mixed lipid bilayer, and then to test its

validity. For this purpose, CG MD simulation of a mixed

dipalmitoylphosphatidylcholine/dipalmitoylphosphatidyletha-

nolamine (DPPC/DPPE) bilayer is carried out at the liquid-gel

phase coexistence condition, the parameters in the phenom-

enological field theory model are then bridged, and, finally,

equilibrium and dynamic properties predicted by this model

are validated against the CGMD data. Since the current study

is focused on the methodology to bridging a mesoscopic field

theory model with a CG one, the requirement here of the CG

model is to reproduce the basic physics, rather than to model

the DPPC/DPPE mixed system accurately. The CG model

accuracy is a topic of current research in our group, which

will be addressed by utilizing our multi-scale coarse-graining

method (26). Such an accurate CG model will be the topic of

future publications.

MESOSCOPIC MODEL FOR
PHASE-SEPARATION DYNAMICS

In the mesoscopic model, a local order parameter f(x)
describes the binary mixed bilayer under phase separation.

The phase behavior of the binary mixture is determined by an

effective Hamiltonian, in the form of a Landau free-energy

functional:

F½fðxÞ� ¼
Z
d
dx

c

2
j=fðxÞj2 1 f ðfðxÞÞ � mfðxÞ

h i
: (1)

For a two-phase coexistence system, the free energy density

f(f) is of a double-well form, with the two minima giving sta-

ble phases atf¼ f1 andf¼ f2. The gradient term c|=f(x)|2/2
suppresses short-wave-length fluctuations of f(x), and m is the

chemical potential. For simplicity, f(f) � mf is combined into

one term, f̃ðfÞ; in the following discussions.

Phenomenological dynamics of the order parameter field

f(x) can be defined based on the effective Hamiltonian (Eq.

1). If the order parameter f(x) is not a conserved variable,

the Landau-Ginzberg model (or time-dependent Ginzberg-

Landau equation) is usually used:

@fðxÞ
@t

¼ �G
dF½fðxÞ�
dfðxÞ

� �
1 zglðx; tÞ: (2)

The LG model gives pure dissipative dynamics. As in the

Langevin equation for single particle motion, Gaussian noise

zgl(x, t) is introduced to ensure the correct fluctuation-

dissipation relation. The correlation function of zgl(x, t) is
assumed to be

Æzglðx; tÞzglðx9; t9Þæ ¼ 2GkBTdðx� x9Þdðt � t9Þ: (3)

If f(x) is a locally conserved variable, the Cahn-Hillard

model (42) should be used,

@fðxÞ
@t

¼ l=
2 dF½fðxÞ�

dfðxÞ
� �

1 zchðx; tÞ; (4)

with correlation function for the Gaussian noise zch(x, t),

Æzchðx; tÞzchðx9; t9Þæ ¼ �2lkBT=
2
dðx� x9Þdðt � t9Þ: (5)

COARSE-GRAINED MD SIMULATION OF MIXED
LIPID BILAYER

For simplicity, the coarse-grained lipid model of Marrink

et al. (24) is used in the present CG MD simulation. In this

model, typically 4–6 heavy atoms are grouped into one

interaction site. These interaction sites are further classified

into four main types (polar, nonpolar, apolar, and charged)

and 10 subtypes. Harmonic bond stretching and bending

potentials are included as bonded interactions. All the non-

bonded site potentials are short-ranged: a screened Coulomb

potential with a cutoff is introduced to describe the interac-

tion between the ionic headgroups; five different LJ potentials

are used to describe the interactions between different sub-

types of sites, mimicking interactions from hydrophobic to hy-

drophilic, and in between. The model was parameterized using

structural, dynamic, and elastic properties of a variety of phos-

pholipids, and was found to reproduce these properties semi-

quantitatively. This CG lipid model has also been shown to be

able to capture the phase behavior of lipid bilayer self-assembly

(24,43), and has been used to study the domain formation in

DLPC/DSPC mixtures (44). In the future, our recently devel-

oped multi-scale CG model (26) will be used for this purpose.

The CG MD simulation was carried out for a 1:1 DPPC/

DPPE mixture using the GROMACS package (45,46) with

the CG force field given in Marrink et al. (24) and at http://

md.chem.rug.nl/;marrink/coarsegrain.html. The coarse-

grained DPPC and DPPE molecules both have two sites

for the headgroups, two sites representing the glycerol ester

groups, and eight sites representing the two lipid tails (four

sites each). The system consists of 1024 DPPC molecules

and 1024 DPPE molecules, with each leaflet of the bilayer

containing the same number of DPPC and DPPE molecules.

A total of 30,720 coarse-grained water molecules were used

as solvent. The simulation box was 23 3 23 3 12 nm3 in

size, with the bilayer normal in the z direction. The system

temperature and pressure were controlled using a weak

coupling scheme (47). The semi-isotropic coupling with a

pressure of 1 bar was chosen to mimic the zero surface

tension condition, and the box compressibility was set to 53
10�6 bar�1. The coupling time constant for the pressure

and temperature control was 1 ps�1, while the CG MD

simulation time step was 40 fs.

The simulation was first carried out at different temper-

atures to search for the phase coexistence region. Since this

study is focused on how to map out the parameters of the

mesoscopic model (Eq. 1) from a microscopic one, rather

than the characterization of the phase diagram of the mixed

bilayer system, one long simulation was carried out at 308 K

where phase coexistence is clearly observed. It should be
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noted that 308 K is not in the experimentally observed phase

coexistence temperature range of ;315–333 K (48). This is

due to the inaccuracy of the CG model we have employed

here, which is only able to reproduce the physical property

of real systems semiquantitatively (24). The total simula-

tion time was 480 ns, which corresponds to 1.92-ms effective
time, since the simulation time should be multiplied by a

factor of 4 to account for the accelerated dynamical sampling

in the CGmodel (Marrink et al. (24); note that effective times

will be used throughout the following discussions). The last

1.28 ms of the trajectory was used for further analysis.

SIMULATION RESULTS

A snapshot of the mixed lipid bilayer showing phase se-

paration is given in Fig. 1. To make the phase separation

more visible, only one leaflet of the mixed bilayer is shown

in the top view (Fig. 1 b). The liquid- and solidlike phase

coexistence is seen clearly, with the liquid phase in the

middle having a decreased thickness and the lipid tails more

disordered.

Structures in the two phases can also be further char-

acterized. The bilayer thicknessD is defined as the difference

of z coordinates between the center of mass of the first four

CG sites (two head sites and two glycerol ester sites) of the

lipid molecules in the upper and lower leaflets. Another

important property characterizing the bilayer structure is the

degree of order of the lipid carbon tails. The C-C (C stands

for the CG sites of the lipid tails) bond orientation parameter

Sz used in this study is defined as

Sz ¼ 1

2NCC

+
i

ð3cos2 ui � 1Þ; (6)

where ui is the angle between the i
th C-C bond and the bilayer

normal, and NCC is the total number of C-C bonds in the two

lipid tails. The sum is carried out over all the C-C bonds.

Since two phases are apparent, the mixed lipid bilayer was

divided into liquid, solidlike, and boundary regions. The bi-

layer thickness D, area per lipid A, and orientation parameter

Sz were calculated for the liquid and solidlike regions. They

were found to be D ¼ 3.9 nm, A ¼ 0.58 nm2, and Sz ¼ 0.50

for the liquid phase; D ¼ 4.5 nm, A ¼ 0.47 nm2, and Sz ¼
0.89 for the solidlike phase. To make a better assignment of

the solidlike phase, diffusion constants were calculated in

each phase by averaging the mean-square displacement over

20 CG molecules (Fig. 2). They were found to be Dliq ¼
0.032 nm2/ns for the liquid phase and Dsol ¼ 0.0014 nm2/ns

for the solidlike phase. The diffusion constant in the solidlike

phase is large enough to suggest that it is not a crystal, and

since it is more than an order-of-magnitude smaller than that

in the liquid phase, it is also not the liquid-ordered phase that

is often observed in systems containing cholesterol. The

phase separation observed is thus a liquid-gel phase separation

which should be observed for binary mixed lipid bilayer. This

is also consistent with the findings in the DLPC/DSPC system

using the same CG lipid model (44), where a liquid-gel phase

separation was observed.

An interesting question is whether the liquid-gel phase

separation is also accompanied by a composition separation of

the two kinds of lipids. The x,y plane of the simulation box

was divided into an 113 11 array of cells, and distributions of

the two kinds of lipid molecules in the cells were calculated.

The distributions of number differenceNPC�NPE is plotted in

Fig. 3 for the liquid phase and gel phase. The two different

kinds of lipid molecules were found tomix rather well. Part of

the reason could be that the DPPC and DPPEmolecules in the

CG lipidmodel are quite similar; they are different only in one

head site, with a slightly more attractive interaction between

theDPPE-DPPE head sites than the DPPC-DPPC ones. It was

also found that the liquid phase contains slightly more DPPC

molecules, whereas the gel phase contains slightly more

DPPE molecules—consistent with the fact that the DPPC

FIGURE 1 Snapshot of the mixed lipid bilayer showing phase co-

existence. The headgroups are blue for DPPC, purple for DPPE, yellow for

the PO4 groups, red for the glycerol ester groups, green for the carbon tails,

and cyan for CG water molecules; a is the side view, and b is the top view,

where only one leaflet of the bilayer is shown to give a more clear view of the

phase separation.

FIGURE 2 Mean-square displacements of lipid molecules in the liquid

(solid line) and gel (dashed line, enlarged 10 times) regions calculated by

averaging over 20 CG molecules in each phase.
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bilayer has a lower melting temperature than the DPPE bi-

layer. A small degree of asymmetry in the number difference

distribution was also observed in the gel phase.

MESOSCOPIC MODEL: PARAMETERS

To obtain the parameters in the mesoscopic model (Eq. 1)

from CG MD simulation, an order parameter field f(x) has
to first be defined. Since there are quite obvious differences

in the bilayer thickness D, area per lipid A, and tail C-C bond

orientation parameter Sz between the liquid and gel phases,

any local definition of these properties could be chosen as an

order parameter. In contrast, although the composition dif-

ference is observed in the two phases, the difference is rather

small, making it not as good a candidate for an order parameter.

In the current study, the order parameter f(x) is defined using

Sz. However, other properties such as bilayer thickness D can

be used as well to describe the same underlying physics of the

phase separation, and the following bridging procedure is still

valid. The specific choice of the order parameter for the

mesoscopic field theory representation can also be dictated by

the observable properties one may wish to subsequently

calculate.

An order parameter S9z is first defined based on a simple

transformation of the Sz parameter. The reason for this is that

if Sz has been used to define f(x), the two phases would have
quite different amplitude of fluctuations of the order para-

meter, but the fluctuations are found to have comparable

spatial correlation length. This is not compatible with the

simplest form of the effective Hamiltonian (Eq. 1). To solve

this problem, a new parameter S9z transformed from Sz is used
to define f(x). Details on why and how this transformation is

made are elaborated in the Appendix. The transformation

between S9z and Sz used in this study is S9z ¼ 0.73/(1.23 – Sz).

Since the order parameter S9z is defined for a single

molecule, a coarse-graining of the CG MD data is needed to

calculate the local order parameter f(x). As such, f(x) is
defined as the average of S9z over all the lipid molecules in

a rectangular box with the size L3 L, centered at x in the x,y
plane of the mixed lipid bilayer. It should be noted that the

coarse-graining box length L is an important parameter in the

mesoscopic model, Eq. 1. All the parameters in this equation

depend implicitly on L. The choice of L is based on the

criteria that it should be much smaller than the dimensions of

simulation box and, at the same time, much bigger than the

size of a single lipid molecule. Different choices of L within

these criteria give similar results and do not require changes

in the following fitting procedure. In the current study, L is

set to be 2.08 nm. Fig. 4 shows the order parameter field f(x)
calculated from a snapshot of the CG MD simulation. The

lower f(x) value region (green, more disordered) in the

middle represents the liquid phase.

To get the free energy density f̃ðfÞ; one key piece of infor-
mation obtained from the CG MD simulation is the phase

boundary structure, which describes the order parameter

distribution at the boundary of the two coexisting phases. For

example, when the phase coexistence system is assumed to be

homogeneous in the x direction, the kink structure of the phase
boundary is referred to the solution of f(y) with boundary

conditions f ¼ f1 at y ¼ �N and f ¼ f2 at y ¼ N. In the

mesoscopic model Eq. 1, it can be obtained by minimizing the

total free energy (32), which gives

y� y0 ¼ 6

Z fðyÞ

fðy0Þ

df

ð2 f̃ðfÞ=cÞ1=2: (7)

By taking the derivative of the above equation, the free

energy density f̃ðfÞ divided by the constant c can be

obtained:

FIGURE 3 Distributions of the number difference, NPC � NPE, calculated

on an area size of 2.08 nm3 2.08 nm for the liquid phase (solid line) and gel

phase (dashed line).

FIGURE 4 The order parameter field, f(x), calculated from a snapshot of

the CG MD simulation data.
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f̃ðfÞ=c ¼ 1

2

dfðyÞ
dy

� �2

: (8)

The following procedure is used to calculate the kink

structure: first the boundary line between the liquid and gel

phases is obtained, then, at selected points on this line,

normals to the boundary are calculated. Coarse-grained order

parameters f(y) are calculated on points along the normals,

where the absolute value of y is defined as the distance

between these points and the boundary line, and the sign of y
is defined as negative (�) for the liquid phase and positive

(1) for the gel phase. As an example, f(y) calculated using

this method is shown in Fig. 5 (circles).

In the process to fit f̃ðfÞ=c; it is found that the commonly

used f2 � f4 form of the free energy density, i.e.,

f̃ðfÞ ¼ �r

2
ðf� f0Þ2 1 uðf� f0Þ4; (9)

describes the simulation data rather well. Although this

agreement could be a coincidence, the functional form Eq. 9

is used to fit the simulation data. Solution of the kink struc-

ture with the free energy density Eq. 9 is given by (32)

fðyÞ ¼ f0 6fk tanh½ðy� y0Þ=ð
ffiffiffi
2

p
jÞ�; (10)

where j ¼ (c/r)1/2 is the correlation length, fk ¼ (r/4u)1/2

defines the amplitude of the kink structure, and y0 is the

position where f(y0)¼ f0. The result of fitting the boundary

structure using Eq. 10 is also given in Fig. 5 (solid line),
which is in good agreement with the simulation result. The

parameters obtained are j ¼ 0.98 nm, fk ¼ 0.58, and f0 ¼
1.65. The function f̃ðfÞ=c obtained from Eq. 9 (a constant

shift is added to make f̃ðfÞ ¼ 0 at the two minima) is shown

in Fig. 6 (dashed line), which agrees well with the result

(solid line and circles) calculated using the numerical

derivative of f(y) (Eq. 8).

The above procedure only gives the shape of the free

energy density f̃ðfÞ=c: To get the absolute value of f̃ðfÞ; the
constant c has to be obtained. For this purpose, a 11 3 11

lattice model mimicking the mixed lipid bilayer in the

CG MD simulation is constructed, and the LG dynamics is

used to calculate the equilibrium distribution of f from the

Landau free energy (Eq. 1) around the liquid phase (f1) and

gel phase (f2). (The equilibrium distributions are determined

by the Landau free energy, not the details of the dynamics.)

The distributions calculated from the Landau free energy

model are then compared with the data obtained from CG

MD simulation. The constant c is obtained by matching the

lattice model distributions of f and the same distributions

from CG MD simulation.

It should be noted that Eqs. 7 and 8 are obtained by

neglecting the thermal fluctuations. Since the free energy

density (Eq. 9) is anharmonic, the kink structure calculated

by averaging f(x) along the normals to the phase boundary

line should not be the same as those calculated by mini-

mization of the total free energy. It is believed, however, that

there should not be a qualitative difference. For example, in

the quartic f2 � f4 model, the two most important param-

eters fk and j represent the amplitude of the kink structure

and the correlation length (Eq. 10), and they should not be

very different when calculated with or without thermal

fluctuations. In fact, when the f̃ðfÞ=c fitted using Eq. 10 is

used to calculate the distributions of f(x), the maxima of the

distributions are observed to be shifted by 2–3%, comparing

to the CG MD result. Since the difference is quite small, the

free energy density is simply stretched somewhat to fit the

CG MD distributions. The c constant is found to be c ¼ 8.0

kBT, and the result of matching the mesoscopic model and

CG MD distributions is shown in Fig. 7. It can be seen that

the mesoscopic model reproduces the distributions of order

parameter in both phases rather well.
FIGURE 5 The phase boundary kink structure calculated from CG MD

simulation (circles) and fitted using Eq. 10 (solid line).

FIGURE 6 (a) The function f̃ðfÞ=c calculated by fitting the kink structure
from the f2� f4 model (dashed line) and from numerical derivative of f(y)

using Eq. 8 (solid line and circles). (b) The free energy density by combining

f̃ðfÞ=c and the c constant obtained by matching the f distributions to the

CG MD data.

Multi-Scale Modeling of Lipid Bilayers 2389

Biophysical Journal 89(4) 2385–2394



In the above procedure, all the parameters in the effective

Hamiltonian (Eq. 1) have been obtained from the phase

boundary kink structure and distributions of order parame-

ters in the liquid and gel phases. It is important now to test

whether the Landau free energy model using the above fitted

parameters can reproduce other equilibrium properties of the

mixed bilayer system.

The first property used to test the validity of the

mesoscopic model is the amplitude of collective fluctuations

in the liquid and gel phases. The average of order parameter

over an area A is defined as

�ff ¼ 1

A

Z
dxfðxÞ: (11)

Assuming that the system lies closely to one of the two

minima f1 (liquid phase) or f2 (gel phase), a first approxi-

mation is to expand the free energy density f̃ðfÞ near the

minima to second order f̃ðfÞ � f̃ðfiÞ1 1=2f̃$ðfiÞðf� fiÞ2:
This approximation gives a solvable Gaussian model, which

predicts

Æð�ff� fiÞ2æ ¼
kBT

Af̃$ðfiÞ
: (12)

Using the above equation, we estimated the value f̃$ðfiÞ
from Æð�ff� fiÞ2æ; as calculated for the liquid and gel phases

from CG MD data. They were found to be f̃$ðf1Þ ¼
12:7 kBT=nm

2 for the liquid phase and f̃$ðf2Þ ¼ 8:8 kBT
=nm2 for the gel phase. The value given from the fitted free

energy density is 16.7 kBT/nm
2 for the two phases. The

agreement is fair, and one source of error could be that Eq. 12

is derived for a one-phase system with periodic boundary

conditions, whereas the values calculated using CGMD data

are from a phase-coexistence system.

The spatial correlation functions of the order parameter

f(x) can also be calculated for the liquid and gel phases, and

compared with the result from the lattice model using the

Landau free energy model. This is done by dividing the x,y
plane of the mixed bilayer into a N 3 N grid and calculating

the average G(x � x9) ¼ Æ(f(x) � fi)(f(x9) � fi)æ for the
two phases, where the values fi (i ¼ 1 for the liquid phase,

i¼ 2 for the gel phase) are the two minima of f̃ðfÞ: The value
N ¼ 11 was used in the current study, since if the correlation

functions are calculated on a finer grid, the spacing between

neighboring grid points will be smaller than the coarse-

graining box length L used to calculate the local order

parameter, and thus some artificial correlations will be

introduced. The results from the CG MD simulation and the

Landau free energy model are shown in Fig. 8. It can be seen

there that the prediction of the Landau free energy model

agrees well with the CG MD result.

Another important property of the phase coexistence

system is the line tension s, which can also be estimated

from the simulation data. The distribution P(lb) of the

boundary line length lb is first calculated and the following

equation is used to fit the distribution:

PðlbÞ}P0ðlbÞe�slb=kBT: (13)

In the above equation, s is the line tension and P0(lb) is the
density of states of lb. The form of P0(lb) is assumed to be

P0(lb) } (lb � l0)
n when lb $ l0, and P0(lb) ¼ 0 when lb , l0,

where l0 is the box length along the x direction. The function
P(lb) (circles) and the fitted result using Eq. 13 (solid line)
are shown in Fig. 9. The best fitting is obtained when n ¼ 2,

and the line tension is found to be s ¼ 2.6 kBT/nm. The line

tension can also be calculated for the f2 � f4 model by (32)

s ¼ 2
ffiffiffi
2

p
=3ðjrf2

kÞ; (14)

and is found to be s ¼ 2.8 kBT/nm, which agrees very well

with the fitted result.

After the validity of the mesoscopic model in reproducing

the equilibrium properties is established, another important

FIGURE 7 Distributions of the order parameter f in the liquid (left) and

gel (right) phases. The circles are from CG MD simulation, and the

diamonds are from the fitted Landau free energy model.

FIGURE 8 Spatial correlation function of f calculated for the liquid

(circles) and gel (squares) phases from CG MD data, and from the fitted

Landau free energy model (diamonds).
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question is whether the LG dynamics can capture the phase-

separation dynamics of the CG MD model (since f(x) is not
a conserved variable, the LG dynamics is more appropriate

than the CH dynamics). The time-dependent correlation

functions of the order parameter C(t) ¼ Æ(f(x, t) � fi)(f(x,
0) � fi)æ (where f(x, t) is the coarse-grained local order

parameter at time t, and the fi values are the minima of f̃ðfÞ
for the liquid phase (i ¼ 1) and the gel phase (i ¼ 2)) are

calculated for each of the phases, and are shown in Fig. 10 a.
The same correlation function can be calculated using LG

dynamics, i.e.,

@fðx; tÞ
@t

¼ Gc=
2
fðx; tÞ � Gf̃ 9½fðx; tÞ�1 zglðx; tÞ: (15)

As can be seen in the calculation of the spatial correlation

functions (Fig. 8), because the correlation length is smaller

than the lattice size, the gradient term in the above equation

can thus be neglected as a first approximation. When the

Gaussian approximation is also applied, Eq. 15 can be

simplified to give

@½fðx; tÞ � fi�
@t

� �Gf̃$ðfiÞ½fðx; tÞ � fi�1 zglðx; tÞ: (16)

The LG dynamics then yields an exponential decay of the

correlation function,

CðtÞ=Cð0Þ ¼ exp½�Gf̃$ðfiÞt�: (17)

The numerical result of the LG correlation function is

shown in Fig. 10 b. As can be seen from the plots, a single

exponential fits the correlation function rather well. Using

the approximation from Eq. 17, the second-order derivative

f̃$ðfiÞ is estimated to be 19.3 kBT/nm
2, which is close to the

value f̃$ðfiÞ ¼ 16:7kBT=nm
2 used in the LG simulation.

It is obvious from Fig. 10 a that the CG MD correlation

functions show a multi-timescale behavior, and this is of no

surprise since different kinds of molecular motion are likely

involved, e.g., the fast timescales would come from vib-

rational and rotational motions. Both correlation functions

are fitted using a sum of three exponentials, with the results

of the fitting given in Table 1.

When the LG dynamics are used to mimic the CG MD

phase-separation dynamics, the slowest timescale obtained

from the above three-exponential fitting is used to match the

LG dynamics correlation function, which gives the re-

laxation constant G ¼ 0.28 (nm2/kBT)ns
�1 (the slowest time-

scale for the liquid phase, 5.5 ns�1, is used). The question

then is whether the LG model can represent the phase-

separation dynamics well. To test this, the diffusive motion

of the phase boundary is calculated. In the current simu-

lation, the phase boundary moves randomly in the

y-direction—which, in the long time limit, shows a diffusive

behavior. It should be noted that this diffusive motion of the

phase boundary line is a result of collective motion of the

system and is quite different from the diffusion of individual

lipid molecules. The diffusion constant of such motion is

calculated from the mean-square displacement of the aver-

age value of the y coordinate of the phase boundary line (yc),
which is found to be D9 ¼ 0.01 nm2/ns from CG

MD simulation (Fig. 11). The result from LG dynamics

FIGURE 9 The distribution of the length of phase boundary lines

calculated from CG MD data (circles) and fitted using Eq. 13 (solid line).

FIGURE 10 Time-dependent correlation function C(t) (normalized to

C(0)) of the order parameter f(x). (a) CG MD result for the liquid (circles)

phase and gel (squares) phase, fitted using a sum of three exponentials (solid
lines). (b) LG dynamics result (diamonds) and a one-exponential fit (solid

line).

TABLE 1 Three-exponential fitting of the (normalized)

time-dependent correlation function of the order

parameter: CðtÞ=Cð0Þ5 P3
i51 cie

2gi t

ci gi(ns
�1)

Liquid phase 0.20 630

0.27 47

0.53 5.5

Gel phase 0.58 1000

0.26 110

0.16 16
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simulation is also shown in Fig. 11 (dashed line), using the

relaxation constant G obtained above. The diffusion constant

is found to beD9¼ 0.02 nm2/ns, which is at least of the same

order of magnitude as the result from CG MD simulation.

The LG dynamics can therefore capture some aspects of the

CG MD phase-separation dynamics without further theoret-

ical improvements, which are in progress.

DISCUSSION AND CONCLUSIONS

In this article, a mesoscopic model based on the Landau-

Ginzberg free energy theory was constructed to characterize

the liquid-gel phase separation of binary mixed lipid bi-

layers. The parameters in the mesoscopic model are bridged

in a multi-scale fashion from CG MD simulation data. It is

found that the mesoscopic model reproduces the equilibrium

properties of the liquid-gel phase-separation system quite

well. An implication from this result is that when only equi-

librium properties are considered, or when there is a sep-

aration of timescales where the phase-separation dynamics

reaches equilibrium faster than other dynamical variables,

the mesoscopic model using a Landau-Ginzberg free energy

theory can be very useful. Although the phenomenological

dynamics using the LG dynamics is not quite able to capture

the multi-timescale motion of the order parameter field, it is

able to reproduce some slow motion behavior of the phase-

separation dynamics such as the phase boundary diffusive

motion. This result is also encouraging since the long time-

scale dynamics is usually more important to model large

lengthscale objects such as vesicles. Further work along

these lines, and to improve the accuracy of the mesoscopic

dynamical model, is in progress.

The main goal of this article was to find a practical multi-

scale approach for bridging a mesoscopic model of phase

separation in mixed lipid bilayers with a more detailed

microscopic model. The mapping procedure used in this

study can be extended in several ways. First, it would be

interesting to apply the current approach to ternary mixed

lipid bilayers, where the liquid-liquid immiscibility is more

closely related to the behavior of real biological membranes

and the phenomenological dynamics should be different as

well (e.g., CH dynamics instead of LG dynamics). Second,

in real systems such as giant unilamellar vesicles and bio-

logical membranes, the phase-separation dynamics would

not likely act alone but rather be coupled to other types of

long timescale dynamics. These include the long wavelength

undulation motions of the lipid bilayer and hydrodynamic

motions of both the lipid bilayer and the environment. The

correct representation of these couplings seems critical for

a mesoscopic model to simulate complex processes of real

membranes such as budding. The possibility of multi-scale

bridging to these different kinds of motion from a CG MD

model could also be investigated by extending the approach

used in this study, and such work is presently underway in

our group.

APPENDIX: TRANSFORMATION BETWEEN
S9Z AND SZ

In a Gaussian approximation to the effective Hamiltonian (Eq. 1), the

correlation length and equilibrium fluctuation amplitude are determined by

the two parameters f̃$ðf0Þ (second-order derivative of f̃ðfÞ at the minimum

of the free energy density f0) and c. It is found that if Sz is used to define the

order parameter f(x), there will be similar correlation lengths, but quite

different amplitudes for the fluctuations of f(x) in the liquid and gel phases.
So if the constant c is the same for the two phases, based on their similar

correlation lengths, they should have similar values of f̃$ðf0Þ; however,
based on the amplitudes of the fluctuations, f̃$ðf0Þ should be very different

in the two phases. One solution to this problem is to use a f-dependent c

parameter in Eq. 1, which will make the free energy functional more

complicated; the other is to do a transformation from Sz to a new parameter

S9z, such that when S9z is used to define f(x), the fluctuation amplitudes in the

liquid and gel phases will be roughly the same, and the simple form of Eq. 1

(i.e., keeping c as a constant) can be retained. The latter approach is used in

this study.

There is no unique way to define the nonlinear transform function

between S9z and Sz. By noticing the fact that Sz is bounded, �1/2 , Sz , 1,

the function used in this study is

S9z ¼ A

B� Sz

: (18)

(Note that, in this case, B . 1 is used to enhance the fluctuations in the gel

phase and, at the same time, suppress the fluctuations in the liquid phase.)

Equation 18 is, in fact, one of the simplest functions that can be used to do

the transform, since only one adjustable parameter B is involved (A can be

selected arbitrarily). As stated above, B is chosen such that when S9z is used
to define f(x), the fluctuations in the liquid and gel phases have roughly the
same amplitude. It is found that B¼ 1.23 does the job well; A¼ 0.73 is then

arbitrarily chosen to make the values of f(x) in the liquid phase at ;1.0.
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