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Abstract

The Wronskian associates to d linearly independent polynomials of degree at most n, a non-zero polyno-
mial of degree at most d(n−d). This can be viewed as giving a flat, finite morphism from the Grassmannian
Gr(d,n) to projective space of the same dimension. In this paper, we study the monodromy groupoid of this
map. When the roots of the Wronskian are real, we show that the monodromy is combinatorially encoded
by Schützenberger’s jeu de taquin; hence we obtain new geometric interpretations and proofs of a number
of results from jeu de taquin theory, including the Littlewood–Richardson rule.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The Wronski map

For any non-negative integer m, let Fm[z] denote the (m + 1)-dimensional vector space of
polynomials of degree at most m over a field F:

Fm[z] := {
f (z) ∈ F[z] ∣∣ degf (z) � m

}
.
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Throughout, we fix integers 0 < d < n. Let X := Grd(Cn−1[z]) be the Grassmannian whose
points represent d-dimensional linear subspaces of Cn−1[z]. Let N := d(n − d) = dimX be its
dimension.

Given polynomials f1(z), . . . , fd(z) ∈ Cn−1[z], the Wronskian

Wrf1,...,fd
(z) :=

∣∣∣∣∣∣∣∣
f1(z) · · · fd(z)

f ′
1(z) · · · f ′

d(z)

...
...

...

f
(d−1)
1 (z) · · · f

(d−1)
d (z)

∣∣∣∣∣∣∣∣
is a polynomial of degree at most N . If f1, . . . , fd are linearly dependent, the Wronskian
is zero; otherwise up to a constant multiple, Wrf1,...,fd

(z) depends only on the linear span
〈f1(z), . . . , fd(z)〉 ⊂ Cn−1[z]. Thus the Wronskian gives a well defined morphism of schemes
Wr :X → P(CN [z]), called the Wronski map. For x ∈ X we write Wr(x; z) for any representa-
tive of Wr(x) in CN [z].

This morphism turns out to be extremely well behaved. It appears in algebraic geometry in a
number of different guises. In the context of enumerating rational curves with prescribed ramifi-
cations, Eisenbud and Harris proved the following theorem [5]:

Theorem 1.1. Wr :X → P(CN [z]) is a flat, finite morphism of schemes.

A point x ∈ X is real if the subspace of Cn−1[z] represented by x has a basis f1(z), . . . ,

fd(z) ∈ Rn−1[z]. In 1995, B. Shapiro and M. Shapiro made a remarkable conjecture concerning
the reality of the fibres of Wr(x; z), which has been a source of inspiration for much of the work
relating to the Wronski map. The conjecture (as refined by Sottile [18]) has two parts, the first of
which is given below and was proved in two papers by Mukhin, Tarasov and Varchenko [13,14]
(see also [8]).

Theorem 1.2. Let g(z) ∈ RN [z] be a polynomial with N distinct real roots. Then the fibre
Wr−1(g(z)) is reduced and every point in the fibre is real.

Although the reality of the fibres is prominent in their proof, the more pertinent fact for us is
that these fibres are reduced; the reality statement is a relatively simple consequence of this [17].
The second part of the Shapiro–Shapiro conjecture concerns the multiplicities of the fibre when
the roots of g(z) are real but not distinct (see Remark 2.7).

In this paper, we study the monodromy groupoid of the Wronski map over the base of points
where the fibre is reduced. Specifically we will be looking at a subgroupoid, which describes
the lifting of certain interesting paths and loops. Our main goal is to show that these liftings
are fundamentally related to Schützenberger’s jeu de taquin [16]. Through this relationship, we
will see that much of the combinatorial structure in jeu de taquin theory can be attributed to the
geometric structure of the Wronski map.

1.2. Outline of paper

It is a classical result, originating with work of Castelnuovo [2], that the fibres of the Wronski
map can be interpreted as intersections of Schubert varieties. We review this and other relevant
background material in Section 2. From this interpretation, one can see that the degree of the
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map Wr is given by counting standard Young tableaux whose shape is a d × (n − d) rectan-
gle, a calculation which dates back to Schubert [15]. We denote the set of all such tableaux by
SYT(��).

Eremenko and Gabrielov [6] showed that for suitable base points in P(CN [z]), there is in fact
a natural way to index the points in the fibre of Wr by SYT(��). Using Theorem 1.2, the notion
of a suitable base point can be extended to any polynomial with N distinct real roots. We will
give a generalised and more explicit reformulation of this correspondence, which will allow us
to describe the monodromy for certain loops and paths in P(CN [z]) in terms of tableaux. To
facilitate such a description, it will be helpful to modify our notion of standard Young tableau
slightly, to allow entries in a field F with a norm. As explained in Section 3, these enhancements
allow us to speak of paths of tableaux, which, when F = R, can be viewed as a mild extension of
jeu de taquin.

In Section 4, we state and establish our formulation of the correspondence. Briefly, this works
as follows: the Plücker coordinates of a point x ∈ X are described in terms a tableau whose
entries are the roots of Wr(x;−z). If we work over the field of Puiseux series C{{u}}, the tableau
tells us the leading terms of the Plücker coordinates; over the complex numbers, this becomes an
approximation. Our approach is related to the types of arguments found in [6,17], in that it can
be interpreted as an asymptotic analysis over the real or complex numbers.

Using this correspondence, we can identify certain paths of tableaux with paths in X. The
most important example of this directly relates the monodromy problem to jeu de taquin theory.
We will show that for paths in P(CN [z]) of polynomials whose roots are all real, the monodromy
of Wr is described (in the sense outlined in Section 3) by a sequence of Schützenberger slides.
This result is formulated in Section 3.2, and proved in Section 5.

A secondary example, also discussed in Section 5, is the following. For any positive integers
k,L such that 1 � k < N , and L � 2, we can define a permutation sk,L : SYT(��) → SYT(��),
as follows. For T ∈ SYT(��), sk,L(T) is the tableau obtained by swapping entries k and k + 1
in T, if the total of the horizontal and vertical distance between k and k + 1 equals L; otherwise
sk,L(T) = T. We will show that there exist loops in P(CN [z]), such that the monodromy of Wr is
given by sk,L.

These two results allow us, in Section 6, to give geometric interpretations and proofs of a
number of combinatorial theorems involving jeu de taquin. Among these is the Littlewood–
Richardson rule. Our geometric interpretation of the Littlewood–Richardson rule is notably
different from those of Vakil [20] and Coskun [3]: whereas their approaches involve degener-
ations of an intersection of two Schubert varieties, we begin by considering a general fibre of
the Wronski map, which can be regarded as an intersection of N Schubert varieties, and degen-
erating to a special fibre, supported on a union of intersections of Schubert varieties (cf. (2.4)).
We deduce the Littlewood–Richardson rule by showing that the combinatorics keeps track of
multiplicities in each individual intersection of Schubert varieties comprising this union.

2. Background on the Wronski map

2.1. Roots of the Wronskian and SL2(C)-action

If a is a multiset and S is a set, we say a is a multisubset of S and write a � S if every element
of a is an element of S. We write a ⊂ S if every element of a has multiplicity 1, i.e. a is a set.

As is suggested by Theorem 1.2, it will be convenient to regard Wr(x; z) in terms of the
multiset of its roots. If the degree of Wr(x; z) is strictly less than N , we will think of Wr(x; z) as
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having N −deg Wr(x; z) roots at infinity. If Wr(x; z) = ∏k
i=1(z+ai), let π(x) := {a1, . . . , aN } �

CP1, viewed as a multiset, where ak+1 = · · · = aN = ∞ if k < N . Thus π(x) is the multiset of
roots of Wr(x;−z).

The group SL2(C) acts on everything. If φ = ( φ11 φ12
φ21 φ22

) ∈ SL2(C), we have the usual action

on CP1,

φ(w) := φ11w + φ12

φ21w + φ22

for w ∈ CP1, and hence an action on multisubsets of CP1. On Cm[z], we define the action as
follows:

φf (z) := (φ21z + φ11)
mf

(
φ22z + φ12

φ21z + φ11

)
for f (z) ∈ Cm[z]. The action on Cn−1[z] induces an action on X. With these definitions, the
following proposition is straightforward to check.

Proposition 2.1. For φ ∈ SL2(C) and x ∈ X we have, φ(π(x)) = π(φ(x)).

We will use the following notation to describe the fibres of the Wronski map. For a multiset
a = {a1, . . . , aN } � CP1, let X(a) := π−1(a) = {x ∈ X | π(x) = a}. Thus X(a) is the fibre of
the map Wr at the point

∏
ai 	=∞(z + ai). If at , t ∈ [0,1], is a path in the space of N -element

multisubsets of CP1 such that the fibre X(at ) is reduced for all t ∈ [0,1], we write xt ∈ X(at )

to describe a lifting of this path to X. If x0 is specified, this lifting is unique. In particular, we
associate to each x0 ∈ X(a0) a point x1 ∈ X(a1). The monodromy of the path at is the bijection
X(a0) → X(a1) defined by this process.

When the roots of the Wronskian are real, we will generally restrict the action of SL2(C) to
the subgroup SL2(R), as exemplified in the following important corollary of Theorem 1.2.

Corollary 2.2. Let at , t ∈ [0,1] be a loop in the space of N -element subsets of RP1. Suppose
there exists some w ∈ RP1 such that w /∈ at for all t ∈ [0,1]. Then the monodromy of at is trivial,
i.e. the identity map.

Proof. First suppose w = ∞. Let Z ⊂ P(CN [z]) be the topological subspace of polynomials
with exactly N distinct real roots. Then at encodes a path in Z, which is a simply connected
space. Since the fibres of the map Wr : Wr−1(Z) → Z are reduced by Theorem 1.2, the mon-
odromy is necessarily trivial.

For other w, there exists φ ∈ SL2(R) such that φ(w) = ∞. From the first case, we know that
the monodromy of the loop φ(at ) is trivial, and the result follows from Proposition 2.1. �
2.2. Partitions and Plücker coordinates on X

Let Λ denote the set of all partitions whose diagrams fit inside a d × (n − d) rectangle.
Formally, these are decreasing sequences of integers λ = (λ1 � · · · � λd), where n − d � λ1 and
λd � 0. We will draw the diagram of λ ∈ Λ in the English convention, with λ1 boxes left justified
in the top row of a d × (n− d) rectangle, λ2 in the next row, etc. For λ ∈ Λ, the number of boxes



K. Purbhoo / Advances in Mathematics 224 (2010) 827–862 831
in the diagram of λ is denoted |λ| := λ1 + · · · + λd . If |λ| = k, we say λ is a partition of k, and
write λ 
 k. The set Λ is partially ordered by inclusion of diagrams: we write λ � μ iff λi � μi

for all i, and λ � μ iff λ > μ and |λ| = |μ| + 1.
The empty partition 0 � · · · � 0 is denoted ∅. We denote the unique partition of 1 by �,

since its diagram consists of a single box. The largest partition in Λ, n − d � · · · � n − d , is
denoted ��.

Partitions whose diagrams fit inside �� are in bijection with d-element subsets of {1, . . . , n}:
for λ ∈ Λ, set

J (λ) := {j + λd+1−j | 1 � j � d}.

The Plücker coordinates of a point x ∈ X are the homogeneous coordinates [pλ(x)]λ∈Λ,
defined as follows. Suppose the subspace of Cn−1[z] represented by x is the linear span of poly-
nomials f1(z), . . . , fd(z). Consider the d × n matrix Aij := [zj−1]fi(z), whose entries are the
coefficients of the polynomials fi(z). Then pλ(x) := AJ(λ) is the maximal minor of A with
column set J (λ).

For all λ ∈ Λ, define qλ to be the Vandermonde determinant

qλ :=

∣∣∣∣∣∣∣∣
1 · · · 1
k1 · · · kd
...

...
...

kd−1
1 · · · kd−1

d

∣∣∣∣∣∣∣∣ =
∏

1�i<j�d

(kj − ki), (2.1)

where kj = j + λd+1−j . In particular, note that qλ > 0.

Proposition 2.3. The Wronskian Wr(x; z) is (up to a scalar multiple) given explicitly in terms of
the Plücker coordinates of x by

Wr(x; z) =
∑
λ∈Λ

qλpλ(x)z|λ|. (2.2)

Proof. Consider the d × n matrix Bij = ( d
dz

)i−1zj−1. We have (BAt )ij = f
(i−1)
j (z). Moreover,

it is not hard to calculate that the maximal minor of B with column set J (λ) is qλz
|λ|. Thus, using

the Cauchy–Binet determinant formula,

Wr(x; z) = det
(
BAt

) =
∑
λ∈Λ

AJ(λ)BJ(λ) =
∑
λ∈Λ

pλ(x)qλz
|λ|. �

2.3. Schubert varieties

For a ∈ CP1, we define full flags

F•(a) = {0} ⊂ F1(a) ⊂ · · · ⊂ Fn−1(a) ⊂ Cn−1[z]

in Cn−1[z]. If a ∈ C,

Fi(a) := (z + a)n−iC[z] ∩ Cn−1[z]
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is the set of polynomials in Cn−1[z] divisible by (z + a)n−i . For a = ∞, we set

Fi(∞) := Ci−1[z].

It is straightforward to verify that F•(∞) = lima→∞ F•(a).
For every λ ∈ Λ, we have a Schubert cell relative to the flag F•(a):

X◦
λ(a) := {

x ∈ X
∣∣ dimx ∩ Fi(a) = ∣∣J (λ) ∩ {n − i + 1, . . . , n}∣∣}.

Its closure, Xλ(a) := X◦
λ(a) is the Schubert variety. The codimension of Xλ(a) in X is |λ|. When

the codimension is 1, i.e. λ = �, we call X�(a) a Schubert divisor.
The Schubert varieties Xλ(0) and Schubert cells X◦

λ(0) can be characterised in terms of the
Plücker coordinates on X.

Lemma 2.4. Let x ∈ X be a closed point. Then

(i) x ∈ Xλ(0) if and only if pμ(x) = 0 for all μ � λ;
(ii) x ∈ X◦

λ(0) if and only if pλ(x) 	= 0, and pμ(x) = 0 for all μ � λ.

The proof is straightforward, using the fact that x ∈ X◦
λ(0) iff the pivots of the matrix A are

in columns J (λ). In fact it is true that the conditions of Lemma 2.4(i) define Xλ(0) scheme-
theoretically (see [11]), but we will not need this.

Theorem 2.5. Let x ∈ X be a closed point, a ∈ CP1, and k � 0 an integer. Then a ∈ π(x) with
multiplicity at least k if and only if x ∈ Xλ(a) for some λ 
 k.

Proof. By the SL2(C)-equivariance of the Wronski map (Proposition 2.1), it is enough to prove
this for a = 0. If x ∈ Xλ(0), then by Lemma 2.4(i), all Plücker coordinates pλ(x) for |λ| < k are
zero, and hence by (2.2), zk divides Wr(x; z).

To prove the converse, we proceed by induction. The result is trivially true for k = 0; assume
0 ∈ π(x) has multiplicity k > 0, and the result is true for k − 1. Then x ∈ Xλ(0) for some
λ 
 k − 1; hence by Lemma 2.4(i), pμ(x) = 0 for all μ � λ, in particular for all |μ| � k − 1 apart
from λ = μ. But then by (2.2),

Wr(x; z) = q��p��(x)zN + · · · + qλpλ(x)zk−1.

Since Wr(x; z) is divisible by zk , we see that pλ(x) = 0. Thus by Lemma 2.4(ii), x /∈ X◦
λ(0).

Hence x ∈ Xλ(0) \ X◦
λ(0), i.e. x ∈ Xλ′ for some λ′ > λ. �

In particular if a = {a1, . . . , aN } has N distinct elements, then

X(a) =
N⋂

X�(ai).
i=1
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By Theorem 1.1, this intersection is proper, and hence the number of intersection points counted
with multiplicities is given by the Schubert intersection number∫

X

[X�]N,

where [X�] ∈ H 2(X) denotes the cohomology class of a Schubert divisor X�(a) (which is in-
dependent of a ∈ CP1). It is a basic result in Schubert calculus that this intersection number is
the number of standard Young tableaux of shape �� (see e.g. [7]).

More generally if a is a multiset, then set-theoretically we have

X(a) =
⋂
a∈a

⋃
λ
m(a)

Xλ(a), (2.3)

where m(a) denotes the multiplicity of a ∈ a. However, by considering the total multiplicity of
both sides, it is easy to see that in general this is not true scheme-theoretically. For example, if
a = {a, a, . . . , a}, then the right hand side consists of the single reduced point X��(a), whereas
on the left hand side this point has multiplicity deg Wr = |SYT(��)|. In fact we can say more
about the multiplicities in general. Scheme theoretically, X(a) is defined by

(z + a)m(a)
∣∣Wr(x; z), (2.4)

for a ∈ a, which is a system of linear equations in the Plücker variables. In general, each equa-
tion (2.4) defines a non-reduced scheme supported on a union of Schubert varieties.

Corollary 2.6. Let a ∈ CP1, and let k be a positive integer. Consider the subscheme X(a(k)) of
X defined by the equations asserting that (z + a)k divides Wr(x; z). Then the cycle defined by
X(a(k)) is ∑

λ
k

∣∣SYT(λ)
∣∣ · Xλ(a),

where SYT(λ) is the number of standard Young tableaux of shape λ.

Proof. The cycles [Xλ] form a basis for the Chow group of X. By Theorem 2.5, X(a(k)) has
support

⋃
λ
k Xλ(a). Thus it is enough to show that the multiplicity of [Xλ(a)] in [X(a(k))]

is |SYT(λ)|. Since Wr is flat, X(a(k)) is rationally equivalent to
⋂k

i=1 X�(ai) for any distinct
{a1, . . . , ak} ⊂ CP1. Thus [X(a(k))] = [X�]k = ∑

λ
k |SYT(λ)| · [Xλ(a)], as required. �
Remark 2.7. Mukhin, Tarasov and Varchenko have recently shown [14] that the intersection on
the right hand side of (2.3) is always reduced if the elements of a are real. It follows from Corol-
lary 2.6 that for a � RP1, the multiplicity of a point x ∈ X(a) is exactly

∏
a∈a |SYT(λ(x, a))|,

where λ(x, a) 
 m(a) denotes the partition for which x ∈ Xλ(x,a)(a). This reducedness theo-
rem is the second part of the Shapiro–Shapiro conjecture; however, we will not need it in this
paper.
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We conclude this expository section with a quick proof of Theorem 1.1, using Theorem 2.5.

Proof of Theorem 1.1. Every positive dimensional subvariety Y of X satisfies [Y ] · [X�] 	= 0
in H ∗(X), since [Y ] is a positive linear combination of Schubert classes. Thus if dimY > 0,
Y ∩ X�(a) 	= ∅ for all a ∈ CP1.

Consider a fibre X(a). If a0 ∈ C \ a, then z + a0 does not divide Wr(x; z) for all x ∈ X(a).
By Theorem 2.5, this means X(a) ∩ X�(a0) = ∅. Thus X(a) is 0-dimensional. Since Wr is
projective, this implies that it is a finite morphism. Flatness now follows from the fact that Wr is
a finite, projective morphism of non-singular varieties [10, Chapter III, Exercise 9.3(a)]. �
3. Jeu de taquin theory revisited

3.1. Standard Young tableaux with values in F

A skew partition diagram λ/μ is a difference of partition diagrams λ and μ, where λ � μ.
Let λ/μ be a skew partition diagram which fits inside a d × (n − d) rectangle, i.e. for which
λ,μ ∈ Λ. We write μc for the skew partition ��/μ, and μ∨ := (n− d −μd � · · · � n− d −μ1)

for the partition diagram obtained by rotating μc by 180◦. As with partitions, |λ/μ| := |λ| − |μ|
is the number of boxes in λ/μ.

By an ordinary standard Young tableau of shape λ/μ, we will mean the usual notion: a filling
of the boxes of λ/μ with entries 1, . . . , |λ/μ|, each used once, where the entries increase along
rows and down columns. The set of all such tableaux is denoted SYT(λ/μ). We assume some
basic familiarity with the combinatorics of tableaux, and refer the reader to [7].

For our purposes, it will be convenient to have a slightly enhanced notion of a standard
Young tableau on λ/μ. Let F be a field, with a norm ‖ · ‖ : F → R�0 ∪ {+∞} that is multi-
plicative and satisfies the triangle inequality. We extend ‖ · ‖ to FP1 by setting ‖∞‖ = +∞.
Let a = {a1, . . . , a|λ/μ|} ⊂ FP1 be a subset of cardinality |λ/μ|. We think of a as a multiset,
whose elements happen to be distinct. We impose the following restrictions, which will appear
throughout this section and Section 4:

(I) For all pairs of elements {ai, aj } with i 	= j , we have ‖ai‖ 	= ‖aj‖.
(II) If μ 	= ∅, then 0 /∈ a.

(III) If λ 	= ��, then ∞ /∈ a.

For many of our purposes λ/μ will be the entire rectangle ��, in which case restrictions (II)
and (III) are irrelevant.

Definition 3.1. A standard Young tableau with values in a and shape λ/μ is a filling of the
boxes of λ/μ with the elements of a, where each element is used once and the norm of the
entries is increasing along rows and down columns. The set of all standard Young tableaux with
values in a and shape λ/μ is denoted SYT(λ/μ;a).

Let T ∈ SYT(λ/μ;a). By replacing the smallest entry (in norm) of T by 1, the second small-
est by 2, and so forth, we obtain an ordinary standard Young tableau. We denote this tableau by
ord(T ) ∈ SYT(λ/μ).
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3.2. Sliding

We now introduce an operation on our enhanced standard Young tableaux, called sliding. To
define sliding, we must assume F = R, with norm ‖ · ‖ = | · |.

Let T0 ∈ SYT(λ/μ;a0). We can imagine a0 varying continuously along a path at , t ∈
[0,1] in the space of |λ/μ|-element multisubsets of RP1. If we insist that at satisfy re-
strictions (I)–(III) above for all t , then at is in fact always a set, and there is a canoni-
cal way to define a tableau Tt ∈ SYT(λ/μ;at ) over the point at , namely so that the en-
tries of the family Tt vary continuously, or equivalently so that ord(Tt ) is independent
of t .

We wish to extend this definition of Tt for paths at that include multisets and violations of
restriction (I). (It is tempting to relax restrictions (II) and (III) also; unfortunately, this does not
lead to well-behaved combinatorial structures.) The tableau Tt will not be defined at these points
of violation, but it will be defined at all other points.

First suppose at , t ∈ [0,1] is a generic smooth path in the space of |λ/μ|-element multisubsets
of RP1. A generic path may be assumed to have the following form. For every t ∈ [0,1], at is a
set, and at finitely many points t1, . . . , tl ∈ (0,1) there will be a violation of restriction (I) of the
mildest possible sort: namely, ati = {a1, . . . , a|λ/μ|} with a1 = −a2 /∈ {0,∞}, and restriction (I)
holds for all other pairs of elements {ai, aj } 	= {a1, a2}. Other sorts of violations of restriction (I),
such as multisets, do not arise generically, as they can be avoided by perturbing the path (see Ex-
ample 3.4).

In this case we define Tt for t near ti as follows. If a1 and a2 are not in the same row or
column define Tt by changing the entries continuously. If a1 and a2 are in the same row or
column define Tt so that ord(Tt ) is independent of t in a neighbourhood of ti . (Note that in
the former case, ord(Tt ) will normally change at t = ti ; in the latter case, the entries of Tt will
normally be discontinuous at t = ti .) Another way to think of this is that a1 and a2 swap places
if and only if they are forced to swap in order to maintain row and column strictness in the
tableau.

Definition 3.2. Let a,a′ ⊂ RP1 be |λ/μ|-element subsets satisfying restrictions (I)–(III) above,
which can be joined by a path satisfying restrictions (II) and (III). Define slidea′ : SYT(λ/μ;a) →
SYT(λ/μ;a′) as follows. If T0 ∈ SYT(λ/μ;a), slidea′(T0) is the tableau T1 obtained by follow-
ing T0 over any generic smooth path at interpolating a0 = a and a1 = a′.

Theorem 3.3. The tableau slidea′(T ) depends only on the homotopy class of the path at in
Definition 3.2.

Proof. This will be an immediate consequence of Theorem 3.5 (below) and Corollary 2.2. �
For the main applications we consider in this paper, there will be additional constraints on our

paths, which ensure that the homotopy class of at in Definition 3.2 is unique. For this reason, we
have chosen to suppress the dependence on this homotopy class from our notation. In general,
changing the homotopy class of at does have a non-trivial effect (see Remark 3.7).

In light of Theorem 3.3, the path at does not need to be generic in order to define Tt . We
simply put Tt := slideat (T0).
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Fig. 1. The path at in Example 3.4 (left), and a slight perturbation (right).

Example 3.4. Let at = {1 + 2t,2} for t ∈ [0,1], and let

The path at is not generic, since at is a multiset when t = 1
2 ; however by perturbing the path

slightly to avoid this behaviour (see Fig. 1), we see that

Note that ord(Tt ) is independent of t ; this will always be the case when the entries all have the
same sign. For an illustration of the case with mixed signs, see Example 3.6.

We can now state one of our main theorems, which relates the operation of sliding to the
Wronski map.

Theorem 3.5. For a ⊂ R satisfying restriction (I), there is a correspondence x ↔ Tx between
points x ∈ X(a) and tableaux Tx ∈ SYT(λ/μ;a). Under this correspondence, if at � RP1, t ∈
[0,1] is a generic real path satisfying restrictions (II) and (III), and xt ∈ X(at ) is any lifting of
at to X, then Tx1 = slidea1(Tx0).

A precise statement of the correspondence is given in Section 4, and the proof is given in
Section 5.

3.3. Subtableaux and jeu de taquin

We now explain the connection between the sliding operation of Definition 3.2 and the usual
notion of a slide in jeu de taquin theory.
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Let λ/μ be a skew partition, and let a = {a1, . . . , a|λ/μ|} ⊂ RP1, with |a1| < · · · < |a|λ/μ||.
Let b ⊂ a. If T ∈ SYT(λ/μ;a), we denote the set of boxes of T whose entries are in b by T |b.
If b = {ai, ai+1, . . . , aj } for some i < j , then T |b is a standard Young tableau with values in
b of some shape λ′/μ′. In this case we say T |b is a subtableau of T , and we also denote this
subtableau by T |λ′/μ′ .

Let b = {a1, . . . , aj }, and c = {aj+1, . . . , a|λ/μ|}. Suppose that all elements of b are posi-
tive and that all elements in c are negative. Let a′

1, . . . , a
′
j be positive real numbers such that

a′
1 > · · · > a′

j > −a|λ/μ|, and set b′ = {a′
1, . . . , a

′
j } and a′ = b′ ∪ c. Note that the elements of

b are smaller in absolute value than the elements of c, which are in turn smaller than those
of b′.

In a mild abuse of notation, define

slideT |b(T |c) := slidea′(T )|c.

By switching signs everywhere, we can also perform this construction if the elements of b are
negative and the elements of c are positive. Similarly, we define slideT |c(T |b) by reversing the
roles of b and c (and reversing the inequalities) in this construction.

Suppose T ∈ SYT(λ/μ;+) := ⋃
a⊂R+ SYT(λ/μ;a) is a standard Young tableau with all pos-

itive real entries (or T ∈ SYT(λ/μ;−) := ⋃
a⊂R− SYT(λ/μ;a)). We can think of slideT as an

operation on tableaux which takes as input any skew tableau U with all negative (resp. positive)
entries that can be placed adjacent to T to form a larger tableau, and returns a tableau with the
same entries but different shape.

If the shape of T consists of a single box, it is not hard to see that slideT (U) per-
forms a Schützenberger slide or a reverse slide through U using the box of T (see Exam-
ple 3.6). More generally, slideT is the operation of performing a sequence of slides in the
order dictated by the entries of T . If T ′ = slideU(T ), and U ′ = slideT (U) then the pair
(ord(T ′),ord(U ′)) is the result of applying tableau switching to the pair (ord(T ),ord(U)),
(see [1] and the references therein). Arguments that show that tableau switching is well defined
and independent of a number of choices can be used to give a combinatorial proof of Theo-
rem 3.3.

Example 3.6. Let b = {1,2,5}, c = {−7,−10,−13,−16,−19,−22}. Let T be the standard
Young tableau with values in a = b ∪ c shown below.

We compute slideT |b(T |c), by increasing the entries of b one at a time until we reach b′ =
{23,24,25}. The order in which we do this does not affect the answer. We choose to begin by
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increasing the entry 1, shown highlighted below. As its value climbs past the other positive entries
in the tableau it swaps places with them, hence ord(T ) does not change (see Example 3.4).

As the highlighted entry continues to increase, it switches places with the next smallest neg-
ative entry if only if the two entries are adjacent, thereby performing a Schützenberger slide
through T |c.

Next we increase the entry 5 until it is larger than 22.

Finally we increase the entry 2.
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Thus we find,

Moreover, the relative order of the positive entries in this final tableau tells us,

Remark 3.7. A special case of sliding is when at = {(a1)t , . . . , (aN)t } is a loop that cyclically
rotates the elements of a0. Suppose each (ai)t is a cyclically decreasing path in RP1, and

0 < (a1)0 = (a2)1 < (a2)0 = (a3)1 < · · · < (aN)0 = (a1)1.

Let T ∈ SYT(��;a0). By sliding T using the path at , we perform one step of Schützenberger’s
evacuation on T : the smallest entry performs a slide through the tableau, becoming the largest en-
try. This procedure defines a Z-action on standard Young tableaux. Since every loop is homotopic
to some power of this basic loop, the evacuation action completely describes the monodromy of
the sliding operation on real valued standard Young tableaux of shape ��. By Theorem 3.5, this
is also the monodromy of the Wronski map for real polynomials with N or N − 1 distinct real
roots.

3.4. Equivalence relations on tableaux

We will need to adopt some additional notions from ordinary jeu de taquin theory.

Definition 3.8. If T ∈ SYT(λ/μ;±), then the rectification of T is defined to be rect(T ) :=
slideU(T ), where U ∈ SYT(μ;∓) can be placed adjacent to T to form a larger standard Young
tableau. The rectification shape of T is the shape of rect(T ).

Definition 3.9. If T ∈ SYT(λ/μ;±) and T ′ ∈ SYT(λ′/μ′;±), we say that T and T ′ are equiva-
lent, and write T ∼ T ′, if rect(T ) = rect(T ′).

Definition 3.10. We say that T ,T ′ ∈ SYT(λ/μ;±) are dual equivalent, and write T ∼∗ T ′, if
slideT and slideT ′ are identical as operations on tableaux.

If we replace T ,T ′ by ord(T ),ord(T ′), these definitions become the usual notions of rec-
tification, equivalence [16], and dual equivalence [9] on standard Young tableaux. A classical
theorem of Schützenberger states that rect(T ) does not depend on the choice of the tableau
U ∈ SYT(μ;∓) [16].
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It is not hard to see that if either T ∼ T ′ or T ∼∗ T ′, then T and T ′ have the same rectification
shape. Thus it makes sense to speak of the rectification shape of an equivalence class or a dual
equivalence class. The interaction between the equivalence and dual equivalence relations is
governed by the following fact: there is a unique tableau in the intersection of any equivalence
class of tableaux with a dual equivalence class of the same rectification shape.

The Littlewood–Richardson rule can be formulated in a variety of different ways. For us, the
formulation below in terms of dual equivalence classes is the most convenient.

Theorem 3.11 (Littlewood–Richardson rule). The Littlewood–Richardson number

cλ
μν :=

∫
X

[Xλ∨][Xμ][Xν]

is the number of dual equivalence classes in SYT(λ/μ) with rectification shape ν.

Alternatively, cλ
μν is the number of tableaux in SYT(λ/μ) in any single equivalence class with

rectification shape ν. That this statement and Theorem 3.11 are interchangeable follows from the
relationship between equivalence and dual equivalence classes of tableaux.

In Section 6, we will see that rectification shape, equivalence, dual equivalence and many
combinatorial facts pertaining to them have natural interpretations in terms of the Wronski map.
Based on these, in Section 6.3 we give a new proof of the Littlewood–Richardson rule.

4. Labelling points in a Grassmannian by tableaux

4.1. Fibres of the Wronski map over a non-archimedian field

Let K := C{{u}} = ⋃
n�1 C((u

1
n )) be the field of Puiseux series over C. In this section, we for-

mulate a correspondence between tableaux and points in the fibre of the Wronski map, working
over K. In Section 4.5, we will show how this can be used to obtain a correspondence over C
when the roots of the Wronskian are real.

Let X := Gr(d, Kn−1[z]), be the Grassmannian defined over K. As over C, we denote the
Wronski map by Wr : X → P(KN [z]), and its fibre at

∏
ai 	=∞(z + ai) by X (a), where a =

{a1, . . . , aN }. The Schubert varieties Xλ(a), for a ∈ P1(K), are also defined analogously.
If g(u) = c�u

� + ∑
r>� cru

r ∈ K×, the valuation of g(u) is defined to be

val
(
g(u)

) := �.

The leading term LT(g(u)) and leading coefficient LC(g(u)) are

LT
(
g(u)

) := c�u
�, LC

(
g(u)

) := [
u�

]
g(u) = c�.

Additionally, we set val(0) := +∞, val(∞) := −∞ and LT(0) := 0. Let K+ = {g(u) ∈ K |
val(g(u)) � 0}.

For any 0 < ε < 1, we can define a norm on K, by∥∥g(u)
∥∥ := εval(τ ).
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It therefore makes sense to consider standard Young tableaux with values in a ⊂ P1(K). Clearly
this notion does not depend on the choice of ε. Note that in such a tableau, the valuation of the
entries decreases along rows and down columns.

Since our analysis will need to deal with cases where a is a multiset, we introduce some mild
generalisations of standard Young tableaux, called weakly increasing and diagonally increasing
tableaux. Let λ/μ be a skew partition fitting inside ��, and let a = {a1, . . . , a|λ/μ|} � P1(K) be
a |λ/μ|-element multisubset satisfying restrictions (II) and (III), but not necessarily (I).

Definition 4.1. A weakly increasing tableau with shape λ/μ and values in a is a filling of the
boxes of λ/μ with the elements of a (each used as many times as its multiplicity) such that
entries weakly increase in norm along rows and down columns. A weakly increasing tableau
is diagonally increasing if the entries are also strictly increasing in norm diagonally right and
downward. The set of all diagonally increasing tableaux with shape λ/μ and values in a is de-
noted DIT(λ/μ;a). (Note that both definitions coincide with Definition 3.1, if (I) holds.)

Before we can formulate the correspondence between points in X and tableaux (Theorem 4.2),
we must introduce some notation.

For T ∈ DIT(λ/μ;a), write val(T ) := val(a1) + · · · + val(a|λ/μ|) for the sum of the valuation
of the entries. In degenerate cases where T has an empty shape, val(T ) := 0. The reader will note
that this definition is problematic if 0 and ∞ are both entries of T . As we explain in Section 4.2,
the trouble this causes is always resolvable by an appropriate renormalisation. For now, we will
state our results under the assumption that ∞ /∈ a.

Put

a+ := a ∪ {0, . . . ,0︸ ︷︷ ︸
|μ|

,

N−|λ|︷ ︸︸ ︷∞, . . . ,∞},

so that |a+| = N . The reader should imagine that the extra zeros and infinities are there to fill the
boxes of μ and λc inside ��, which do not already have entries from T (see Theorem 4.5). Let

Ei(a) :=
∑

k1<···<k|λ/μ|−i

ak1 · · ·ak|λ/μ|−i

be the (|λ/μ| − i)th elementary symmetric function, and put

ei(a) := [
u�i

]
Ei(a),

where �i = min val(ak1 · · ·ak|λ/μ|−i
) is the minimum of the valuations of the terms in the sum.

Thus ei(a) equals either the leading coefficient of Ei(a) or 0.
For 0 � i � |λ/μ|, define sets of partitions

Mi(T ) :=
{
ν ∈ Λ

∣∣∣ μ � ν � λ, ν 
 |μ| + i, and
val(T |λ/ν) � val(T |λ/ν′) for all ν′ 
 |μ| + i

}
.

Let ω1, . . . ,ω|λ/μ| be complex variables. Fill a skew diagram of shape λ/μ with entries
ω1, . . . ,ω|λ/μ|, in such a way that the position of ωi matches the position of ai . Let Ων de-
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note the product of all the variables ωi which are outside of ν in this filling, if μ � ν � λ. Put
Ων := 0 for all other ν.

Finally, recall the definition of qν from (2.1).

Theorem 4.2. Let T ∈ DIT(λ/μ;a). Assume that ω1, . . . ,ω|λ/μ| are such that the Jacobian con-
dition below holds:

detJ 	= 0, where Jij = ∂

∂ωj

∑
ν∈Mi−1(T )

qνΩν, i, j = 1, . . . , |λ/μ|. (4.1)

There is a point x ∈ X (a+) with Plücker coordinates [pν(x)]ν∈Λ satisfying

LT
(
pν(x)

) = Ωνu
val(T |λ/ν ) for all ν ∈ Λ, (4.2)

if and only if ω1, . . . ,ω|λ/μ| satisfy∑
ν∈Mi(T )

qνΩν = qλei(a) for 0 � i < |λ/μ|. (4.3)

In other words, to find points in X (a+) corresponding to T ∈ SYT(λ/μ;a), we solve the
system of Eqs. (4.3) for ω1, . . . ,ω|λ/μ|, and check that the solution satisfies (4.1). The following
example illustrates the details of this process.

Example 4.3. With n = 4, d = 2, λ = (2 � 2), μ = (1 � 0), and a = {4u + 2u2,1,1}, let T ∈
DIT(λ/μ;a) be the tableau

We will apply Theorem 4.2 to the tableau T .
First, we determine ei(a) and Mi(T ) for i = 0,1,2. We have,

E0(a) = 4u + 2u2,

E1(a) = (
4u + 2u2) + (

4u + 2u2) + 1,

E2(a) = (
4u + 2u2) + 1 + 1,

whence e0(a) = 4, e1(a) = 1, e2(a) = 2. Each Mi(T ) is a singleton: Mi(T ) = {αi}, where

α0 = (1 � 0), α1 = (2 � 0), α2 = (2 � 1).

Next, we assign variables ω1,ω2,ω3 to the boxes of λ/μ as shown here
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and write down the conditions (4.1) and (4.3). We have

qα0Ωα0 = 2ω1ω2ω3, qα1Ωα1 = 3ω2ω3, qα2Ωα2 = 2ω3.

Thus the Jacobian matrix from (4.1) is

J =
(2ω2ω3 2ω1ω3 2ω1ω2

0 3ω3 3ω2
0 0 2

)
,

and the system of Eqs. (4.3) is simply

2ω1ω2ω3 = 4,

3ω2ω3 = 1,

2ω3 = 2.

The solution, ω1 = 6, ω2 = 1
3 , ω3 = 1, is a point for which J is non-singular. Therefore, Theo-

rem 4.2 asserts that there exists a point x ∈ X (a+) whose Plücker coordinates satisfy (4.2):

LT
(
p0�0(x)

) = 0, LT
(
p2�0(x)

) = ω2ω3 = 1

3
,

LT
(
p1�0(x)

) = ω1ω2ω3u = 2u, LT
(
p2�1(x)

) = ω3 = 1,

LT
(
p1�1(x)

) = ω1ω3u = 6u, LT
(
p2�2(x)

) = 1. (4.4)

A straightforward calculation shows that the two points in X (a+) are 〈f1(z), f2(z)〉 and
〈g1(z), g2(z)〉, where

f1(z) = z3 + z2, g1(z) = (1 + u)2z3 + (
6u + 3u2)z2,

f2(z) = z2 + (1 + u)2z + 2u + u2, g2(z) = z2 + (1 + u)2z + 1

3
(1 + u)2.

The reader can easily check that x = 〈g1(z), g2(z)〉 does indeed satisfy (4.4). It is a useful exer-
cise to verify that the point 〈f1(z), f2(z)〉 corresponds to the other tableau in DIT(λ/μ;a).

We will prove Theorem 4.2 in Section 4.4. The most fundamental case is when λ/μ = �� and
restriction (I) holds. In this case we obtain a bijection x ↔ Tx between X (a) and SYT(��;a).

Corollary 4.4. Let a = {a1, . . . , aN } ⊂ K satisfying restriction (I). For every T ∈ SYT(��;a),
there is a unique point xT ∈ X (a) whose Plücker coordinates [pν(xT )]ν∈Λ satisfy

val
(
pν(xT )

) = val(T |νc ) for all ν ∈ Λ. (4.5)

Moreover, for every point x ∈ X (a) there is a unique tableau Tx ∈ SYT(��;a) such that x = xTx .
In particular, the fibre X (a) is reduced.
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Proof. Assume ‖a1‖ < · · · < ‖aN‖, and let ci := LC(ai) be the leading coefficient of ai . Then
ei(a) = ci+1 · · · cN .

Let αi be the shape of T |{a1,...,ai }. Then αi is the unique element in Mi(T ), and Ωαi
=

ωi+1 · · ·ωN . Eqs. (4.3) are qαi
ωi+1 · · ·ωN = q��ci+1 · · · cN , which has the unique solution

ωi = qαi
ci

qαi−1

. (4.6)

At this solution, the Jacobian matrix J is upper triangular, with non-zero entries on the diagonal;
thus (4.1) is satisfied. Therefore, by Theorem 4.2, the solution (4.6) gives rise to a point xT

satisfying (4.5).
It is easy to see that if T 	= T ′ ∈ SYT(��;a) then val(T |νc ) 	= val(T ′|νc ) for some ν; thus

we have found |SYT(��)| distinct points in the fibre, which is all of them, and the uniqueness
follows. �
4.2. Tableau entries of 0 and ∞

If 0 is an entry of a tableau T , satisfying restriction (II), then T must have a straight shape λ,
and 0 must be in the upper left corner. By deleting the 0, one obtains a skew tableau T̃ of shape
λ/�. This new tableau T̃ produces the same Eqs. (4.2) and (4.3) to be solved in Theorem 4.2;
hence T and T̃ are equivalent for practical purposes in that they correspond to the same point(s)
in X .

If ∞ is an entry of T , the situation is similar, however we must renormalised our equations in
order to make sense of Theorem 4.2 and Corollary 4.4. For example, consider Eq. (4.5). If ∞ is
an entry of T , there is a summand of −∞ in each expression val(T |νc ), except for the degenerate
case ν = ��. Since the Plücker coordinates are only well defined up to a multiplicative constant,
Eq. (4.5) should be regarded up to an additive constant. If we treat −∞ as a formal symbol, and
subtract it from the valuation of each Plücker coordinate, we arrive at the correct replacement for
(4.5) when ∞ is an entry:

val
(
pν(xT )

) =
{

val(T |νc\∞) if ν 	= ��,

+∞ if ν = ��,

where T |νc\∞ means T |νc with the box containing ∞ deleted. Other cases where ∞ is an entry
of T can be analysed similarly, and always one finds that the point(s) corresponding to T are
exactly the same as the point(s) corresponding to T \ ∞.

The next theorem further illustrates why if λ/μ 	= ��, the boxes of μ and λc should be thought
of as containing entries of 0 and ∞ respectively, for purposes of Theorem 4.2.

Theorem 4.5. Let T ∈ DIT(��;a), where a = {a1, . . . , aN } � P1(K) and

‖a1‖ � · · · � ‖ai−1‖ < ‖ai‖ � · · · � ‖aj‖ < ‖aj+1‖ � · · · � ‖aN‖.

Let λ be the shape of T |{a1,...,aj }, and let μ be the shape of T |{a1,...,ai−1}. For all t ∈ K× with
‖t‖ � 1, define a tableau Tt of shape �� obtained from T as follows: Tt |λ/μ = T |λ/μ for all t;
the entries a1, . . . , ai−1 ∈ T are replaced by ta1, . . . , tai−1 in Tt ; the entries aj+1, . . . , aN ∈ T

are replaced by t−1aj+1, . . . , t
−1aN in Tt .



K. Purbhoo / Advances in Mathematics 224 (2010) 827–862 845
Let xTt ∈ X be the point corresponding to Tt (as in Theorem 4.2). Let x′ = limt→0 xTt ∈ X ,
a′ = {ai, . . . , aj }, and T ′ = T |λ/μ. Then the following are true:

(i) x′ ∈ Xμ(0) ∩ Xλ∨(∞);
(ii) x′ corresponds to T ′;

(iii) if a′ satisfies restriction (I), then x′ is the unique point corresponding to T ′.

Proof. After normalising the Plücker coordinates so that limt→0 pν(xTt ) is defined for all ν ∈ Λ,
we find that

LT
(
pν(x

′)
) = lim

t→0
LT

(
pν(xTt )

) =
{

LT(pν(x)) if μ � ν � λ,

0 otherwise.
(4.7)

Thus the fact that x′ ∈ Xμ(0) follows from Lemma 2.4, and the fact that x′ ∈ Xλ∨(∞) can be
shown analogously, proving (i).

For (ii), we must consider (4.2) and (4.3) as they pertain to the pair (T , x) and to the pair
(T ′, x′). To quell the notational conflicts that this naturally presents, we will use unprimed vari-
able names and equation numbers (ω1, . . . ,ωN , (4.2), etc.), when referring to the context of
(T , x), and primed variable names and equation numbers (ω′

i , . . . ,ω
′
j , (4.2)′, etc.) in the context

of (T ′, x′).
We know that (4.2) holds for (T , x), where ω1, . . . ,ωN are a solution to (4.3). Eq. (4.7) gives

the lead terms of the Plücker coordinates of x′: after normalising, these are

LT
(
pν(x

′)
) =

{
Ων

Ωλ
uval(T |λ/ν) if μ � ν � λ,

0 otherwise.
(4.8)

Set ω′
k = ωk for k = i, . . . , j , where ω′

k is the variable corresponding to the box of T ′ contain-
ing ak . Then Ω ′

ν = Ων/Ωλ, and so from (4.8) we see that (4.2)′ holds for (T ′, x′). Furthermore,
the equations in the system (4.3) include

∑
ν∈Mi+k(T )

qνΩν = q��ei+k(a) for 0 � k < |λ/μ| (4.9)

and

qλΩλ = q��ej (a). (4.10)

We deduce that (4.3)′ also holds for (T ′, x′) by dividing (4.9) by (4.10), and noting that
ei+k(a)/ej (a) = ek(a′), Mk+i (T ) = Mk(T

′), and Ων/Ωλ = Ω ′
ν . Since (4.2)′ and (4.3)′ hold

simultaneously, T ′ corresponds to x′.
Finally, for (iii), we argue as in the proof of Corollary 4.4. We have just shown that ev-

ery tableau T ∈ SYT(λ/μ;a′) corresponds to at least one point in the intersection X ((a′)+) ∩
Xμ(0) ∩ Xλ∨(∞). But from Schubert calculus, we know the number of distinct points in this
intersection is at most |SYT(λ/μ)|, so the correspondence is bijective. �
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4.3. The Plücker ideal and its initial ideal

We recall some standard facts about the equations defining X and initial ideals, for which [12]
may serve as a general reference.

Viewing [pλ]λ∈Λ as the coordinates on CP(n
d)−1, the Plücker coordinates define a projective

embedding of X; hence,

X = Proj C[p]/I,

where C[p] = C[pλ]λ∈Λ has grading given by degpλ = 1 for all λ ∈ Λ, and where I is the
Plücker ideal, consisting of all polynomial relations among the Plücker coordinates. To state the
generators of this ideal, let

pi1,...,id :=
{

sgn(σi1,...,id )pλ if J (λ) = {i1, . . . , id} for some λ ∈ Λ,

0 otherwise,

where σi1,...,id denotes the permutation that puts the list i1, . . . , id in increasing order. The ideal
I is generated by all quadratics of the form

d+1∑
m=1

(−1)mpi1,...,id−1,jmpj1,...,ĵm,...,jd+1
,

for i1, . . . , id−1, j1, . . . , jd+1 ∈ {1, . . . , n}.
Let w = (wλ)λ∈Λ ∈ QΛ be a vector of rational numbers. The weight of a monomial m(p) =

c
∏

λ∈Λ p
kλ

λ with respect to w is

wtw(m) :=
∑
λ∈Λ

wλkλ.

Define a homomorphism uw : C[p] → K[p] by

uwm(p) := uwtw(m)m(p)

for monomials and extending linearly to C[p]. If h(p) ∈ C[p], then the initial form of h with
respect to w, denoted Inw(h), is the sum of all monomial terms in h for which the weight of the
term is minimised. The initial ideal of the Plücker ideal I with respect to w is the ideal

Inw(I ) := {
Inw(h)

∣∣ h ∈ I
}
.

In this context, the vector w is called a weight vector.
The scheme Proj C[p]/Inw(I ) can also be described as follows. Consider the ideal uwI :=

{uwh | h ∈ I } in C[u± 1
δ ;p]. Here the variable u has weight 0, and δ is a common denominator of

the weights wλ. Let X̃ be the closure of ProjC[u± 1
δ ;p]/(uwI ⊗ C[u± 1

δ ]) inside Proj C[u 1
δ ;p] =

Proj C[p] × Spec C[u 1
δ ]. X̃ defines a flat family of projective varieties over SpecC[u 1

δ ], whose

fibre at u
1
δ = ε is denoted X̃ε . Each of the fibres X̃ε , ε 	= 0, is isomorphic to X; indeed the ring
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map h �→ u−wh|u1/δ=ε induces an isomorphism ψε : X �→ X̃ε . We put X̃ε(a) := ψε(X(a)). Note
that X̃1 is naturally identified with X. The special fibre X̃0 is ProjC[p]/Inw(I ).

The same construction can be performed with C[u± 1
δ ;p] and C[u 1

δ ;p] replaced by K[p] and
K+[p] respectively. Note that since uw acts as an automorphism on K[p], Proj K[p]/(uwI ⊗ K) ∼=
Proj K[p]/(I ⊗ K) = X . Its closure in Proj K+[p], denoted X̄ , is a flat scheme over Spec K+.

Note that since C[u± 1
δ ] ↪→ K, we have a morphism X̄ → X̃, which is an isomorphism on the

fibres at u = 0. Though we have suppressed it from our notation, the schemes X̃ and X̄ depend
on w.

We will be primarily concerned with the case where the weight vector comes from a diag-
onally increasing tableau. Let T ∈ DIT(��;a), where a � K×. Then T gives rise to a weight
vector w(T ) = (wλ(T ))λ∈Λ, where wλ(T ) := val(T |λc ), for λ ∈ Λ.

Lemma 4.6. For any T ∈ DIT(��;a), the initial ideal Inw(T )(I ) ⊂ C[p] is generated by
quadratic binomials

pλpλ′ − pλ∨λ′pλ∧λ′ , (4.11)

for all λ,λ′ ∈ Λ. Here, ∧ and ∨ are the meet and join operators on Λ respectively.

Thus c = [cλ]λ∈Λ represents a point in X̃0 if and only if

cλcλ′ = cλ∨λ′cλ∧λ′ , (4.12)

for all λ,λ′ ∈ Λ. In this case, X̃0 is the Gel’fand–Tsetlin toric variety.

4.4. Proof of Theorem 4.2

Lemma 4.7. For T ∈ DIT(��;a), a � K×, let x ∈ X be a point satisfying

LT
(
pν(x)

) = cνu
wν(T ) (4.13)

for some [cν]ν∈Λ ∈ CΛ. Then c = [cν]ν∈Λ satisfies the relations (4.12). Conversely, if c satis-
fies (4.12), then there is a point x ∈ X for which (4.13) holds.

Proof. It is a general fact that a zero of the initial ideal over C lifts in this way to a zero of the
original ideal over K. See [19, Corollary 2.2]. �
Lemma 4.8. A point [cν]ν∈Λ is a solution to (4.12) if and only if for some skew partition λ/μ

and some ω1, . . . ,ω|λ/μ| ∈ C×, cν = cλΩν for all ν ∈ Λ.

Proof. The “if” direction is straightforward. For the “only if” direction, we note that for any
solution [cν]ν∈Λ to (4.12), if cν 	= 0 and cν′ 	= 0, then cν∧ν′ 	= 0 and cν∨ν′ 	= 0. Thus the set
{ν ∈ Λ | cν 	= 0} has a unique maximal partition λ and a unique minimal partition μ. With this
choice of λ and μ, it is now straightforward to check that one can consistently define ωi := cα/cβ ,
where β � α and the unique box of β/α corresponds to ωi . Thus we have cν = cλΩν for all
ν ∈ Λ. �
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Proof of Theorem 4.2. First consider the case where λ/μ = ��. By Proposition 2.3, a point
x ∈ X (a) is a solution to the equations:

h(p) = 0 for h(p) ∈ I, (4.14)∑
ν
k

qνpν = q��Ek(a) for 1 � k � N. (4.15)

If such an x exists and satisfies (4.13), then cν , the leading coefficient of pν , is of the form Ων for
some ω1, . . . ,ωN , by Lemma 4.8; thus, taking the leading term of (4.15), we find that Eqs. (4.3)
hold.

Conversely, suppose that we have a solution to (4.3). Then by Lemmas 4.8 and 4.7, there is
a point x′ ∈ X satisfying (4.2). Thus pν = pν(x

′) satisfy (4.14); however, Eqs. (4.15) are only
satisfied to first order, i.e. there exists a solution to (4.14) and∑

ν
k

qνpν = q��Yk for 1 � k � N, (4.16)

for some (Y1, . . . , YN) ∈ U , where

U = {
(Y1, . . . , YN) ∈ KN

∣∣ val(Yk) � �k,
[
u�k

]
Yk = ek(a)

}
.

Since Ων = u−w(T )pν(x
′)|u=0, we can view (ω1, . . . ,ωN) as the leading coefficients of local co-

ordinates on X near x′. In these coordinates, the initial form of (4.15) is just (4.3); moreover the
Jacobian condition required to apply Hensel’s lemma to the system of Eqs. (4.16) is exactly (4.1)
(see e.g. [4, Exercise 7.25]). Since this Jacobian condition is assumed to hold, by Hensel’s lemma,
the points p satisfying (4.14) and (4.16) are implicitly a function of the Y1, . . . , YN , in the neigh-
bourhood U . Since (E1(a), . . . ,EN(a)) ∈ U , there exists a solution to (4.14) and (4.15).

In the case where λ/μ 	= ��, we consider a tableau T̃ ∈ DIT(��; ã) for which the |μ| smallest
elements of ã form a subtableau of shape μ, the |λc| largest elements form a subtableau of
shape λc, and the remaining elements form T . Then T̃ |λ/μ = T and so the result follows from
Theorem 4.5(ii). �
4.5. Fibres of the Wronski map over C and R

We now describe how one can deduce results over C and R from Theorem 4.2 and Corol-
lary 4.4, which are stated over K. We will assume implicitly here that the solutions to (4.3) are
always distinct (i.e. multiplicity-free), and moreover that (4.1) holds for each solution.

As before, let a = {a1, . . . , aN } � K×, but now suppose that each ai ∈ C[u± 1
δ ] is a Laurent

polynomial in some rational power of u. Thus it makes sense to evaluate ai at u
1
δ = ε for ε ∈ C×.

We denote this evaluation ai(ε), and put a(ε) := {a1(ε), . . . , a|λ/μ|(ε)}.
We now show that for |ε| sufficiently small, we can evaluate a point x ∈ X (a) at u

1
δ = ε to

obtain a point x(ε) ∈ X(a(ε)). If x = xT for T ∈ SYT(��;a), then we will declare x(ε) to be
the point corresponding to the tableau T (ε), obtained by evaluating each entry of T at ε ≈ 0. We
can make a similar declaration if T ∈ DIT(��;a), in the cases where T (ε) is actually a tableau;
however, this is less refined, as the correspondence over K may not be one-to-one.
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Let T ∈ DIT(��;a). By Theorem 4.2, each such solution (ω1, . . . ,ωN) to (4.3) produces a
point x = xT ∈ X (a) satisfying (4.2). Letting pλ = u−w(T )pλ(x), the coordinates [pλ] define a
point x̄ ∈ X̄ over Spec K+.

Since the entries ai are Laurent polynomials in u
1
δ , x̄ is defined not just over K+, but over a

finite algebraic extension of C[u 1
δ ]. This extension is unramified at 0, since the solutions to (4.3)

are distinct, and therefore x̄ is an analytic function of u
1
δ in some neighbourhood of 0. We

define x̄(ε) to be the evaluation at this function at u
1
δ = ε, and thereby obtain our point x(ε) :=

ψ−1
ε (x̄(ε)) ∈ X(a(ε)), where ψε is the isomorphism X → X̃ε .
Note that x̄(0) has coordinates [Ωλ]λ∈Λ, which is just the solution to (4.3) that we started

with. For ε ≈ 0, x̄(ε) ≈ x̄(0). Thus, any time we have a correspondence between points in
X(a) and DIT(��;a) over K, we obtain a similar correspondence over C, wherein points in
the fibre X(a(ε)) are approximately described by solutions to (4.3), taken over all tableaux
T ∈ DIT(��;a). Put another way, (4.2) describes the asymptotic behaviour of x(ε) as ε → 0.
Specifically,

pν

(
x(ε)

) ≈ Ωνε
δwν(T ),

for ε ≈ 0.
If |ε| is sufficiently small, ‖ai‖ < ‖aj‖ implies that ai(ε) is of a smaller order of magni-

tude than aj (ε), i.e. log |ai(ε)| � log |aj (ε)|. From the proof of Corollary 4.4, we deduce the
following:

Corollary 4.9. Let a = {a1, . . . , aN } ⊂ C, with

log |a1| � · · · � log |aN |.

Then every tableau T ∈ SYT(��;a) corresponds to a point xT satisfying

pν(xT ) ≈ Ων,

where ωi = qαi−1 ai

qαi
, and αi is the shape of T |{a1,...,ai }.

Corollary 4.10. Let a = {a1, . . . , aN } ⊂ R, with

|a1| < · · · < |aN |.

There is a canonical bijective correspondence between tableaux T ∈ SYT(��;a) and points
xT ∈ X(a), which extends the correspondence of Corollary 4.9.

Proof. By Corollary 2.2, there is no ambiguity in extending the correspondence, if the roots of
the Wronskian are real. �
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5. Monodromy and sliding

5.1. When two roots have the same norm

We now consider the case of Theorem 4.2 where a = {a1, . . . , aN } � K×, with

‖a1‖ < · · · < ‖ak‖ = ‖ak+1‖ < · · · < ‖aN‖.

From the discussion in Section 4.5, this analysis will describe for us what happens to a fibre
X(a(ε)), when two of the roots have the same order of magnitude, while the others have different
orders of magnitude.

Let ci := LT(ai)u
−val(ai ) be the leading coefficient of ai . We have

ei(a) =
{

ci+1 · · · cN for i 	= k,

(ck + ck+1)ck+2 · · · cN for i = k.

Let T ∈ DIT(a). We apply Theorem 4.2 to find points in the fibre X (a) corresponding to T .
There are two cases: either ak and ak+1 are in the same row or column of T , or they are in
different rows and columns.

If ak and ak+1 are in the same row or column of T , then |Mi(T )| = 1 for all i. Thus, as in
the proof of Corollary 4.4, we have Ωαi

= ωi+1 · · ·ωN , where αi is the shape of T |{a1,...,ai } and
unique element in Mi(T ). Thus Eqs. (4.3) become

qαi
ωi+1 · · ·ωN =

{
q��ci+1 · · · cN if i 	= k,

q��(ck + ck+1)ck+2 · · · cN if i = k.

If we assume that ck + ck+1 	= 0, there is a unique solution for ω1, . . . ,ωN , and the Jacobian
condition (4.1) holds at this solution. Hence we deduce that there is a unique point x in the fibre
X (a) corresponding to T , provided ck + ck+1 	= 0.

Unlike in Corollary 4.4, the correspondence is two-to-one. The tableau T ′ obtained by swap-
ping the positions of ak and ak+1 in T gives rise to the same system of equations, and hence
also corresponds to x. Thus we have a choice when identifying x with a tableau Tx . However,
sometimes there is a reason to prefer one choice over the other. In keeping with the idea that the
entries of a tableau should be (weakly) increasing, if log |ck| � log |ck+1|, we will put Tx = T if
ak is above or left of ak+1, and Tx = T ′ otherwise. Similarly if log |ck+1| � log |ck|, Tx = T if
ak+1 is above or left of ak , and Tx = T ′ otherwise.

If ak and ak+1 are in different rows and columns, there are generally two points in the fibre
corresponding to T , and for a certain locus of points of ak, ak+1, there will be a double point
corresponding to T . We begin our analysis by finding this critical locus.

In this case, |Mi(T )| = 1 for i 	= k, and Mk(T ) = 2. Let αi ∈ Mi(T ) be the unique el-
ement for i 	= k, and Mk(T ) = {αk,α

′
k}. We distinguish the two elements of Mk(T ) by as-

serting that ak ∈ T |αk
and ak+1 ∈ T |α′

k
. We have Ωαi

= ωi+1 · · ·ωN , Ωαk
= ωk+1ωk+2 · · ·ωN ,

Ωα′
k
= ωkωk+2 · · ·ωN . Thus, the system of Eqs. (4.3) is

qαi
ωi+1 · · ·ωN = q��ci+1 · · · cN for i 	= k

qα ωk+1ωk+2 · · ·ωN + qα′ ωkωk+2 · · ·ωN = q��(ck + ck+1)ck+2 · · · cN,

k k
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which in turn simplifies to

ωi = qαi

qαi−1

ci for i 	= k, k + 1, (5.1)

qα′
k
ωk + qαk

ωk+1

qαk+1

= ck + ck+1, (5.2)

qαk−1

qαk+1

ωkωk+1 = ckck+1. (5.3)

Eqs. (5.1) give us ωi for all i 	= k, k + 1. Solving (5.2) and (5.3) for ωk , we find that

qα′
k

qαk+1

ω2
k − (ck + ck+1)ωk + qαk

qαk−1

ckck+1 = 0. (5.4)

This equation has a double root when the discriminant is zero:

(ck + ck+1)
2 − 4

qαk
qα′

k

qαk−1qαk+1

ckck+1 = 0. (5.5)

Lemma 5.1. Let L be the total horizontal and vertical distances between the two boxes in the
diagram αk+1/αk−1. Then

qαk
qα′

k

qαk−1qαk+1

= 1 − L−2.

Proof. Suppose the unique box of αk+1/α
′
k = αk/αk−1 is in row i1, and the box of αk+1/αk =

α′
k/αk−1 is in row i2. Then

L = ∣∣(αk+1)i1 − (αk+1)i2 + i2 − i1
∣∣.

We have

(αk+1)j = (
α′

k

)
j

= (αk)j = (αk−1)j for j 	= i1, i2,

(αk+1)i1 = 1 + (
α′

k

)
i1

= (αk)i1 = 1 + (αk−1)i1,

(αk+1)i2 = (
α′

k

)
i2

= 1 + (αk)i2 = 1 + (αk−1)i2 .

Thus by (2.1), we have

qα′
k

qαk+1

=
∏

j 	=d+1−i1

(j + (α′
k)d+1−j ) − (d + 1 − i1 + (α′

k)i1)

(j + (αk+1)d+1−j ) − (d + 1 − i1 + (αk+1)i1)
,

qαk−1

qαk

=
∏

j 	=d+1−i1

(j + (αk−1)d+1−j ) − (d + 1 − i1 − (αk−1)i1)

(j + (αk)d+1−j ) − (d + 1 − i1 + (αk)i1)
.

For j 	= d + 1 − i2, the terms in these two products are equal. Thus,
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qαk
qα′

k

qαk−1qαk+1

= (−i2 + (αk)i2 + i1 − (αk)i1)(−i2 + (α′
k)i2 + i1 − (α′

k)i1)

(−i2 + (αk−1)i2 + i1 − (αk−1)i1)(−i2 + (αk+1)i2 + i1 − (αk+1)i1)

= (−i2 + (αk+1)i2 + i1 − (αk+1)i1 + 1)(−i2 + (αk+1)i2 − 1 + i1 − (αk+1)i1)

(−i2 + (αk+1)i2 + i1 − (αk+1)i1)(−i2 + (αk+1)i2 + i1 − (αk+1)i1)

= (L − 1)(L + 1)

L2

= 1 − L−2. �
Lemma 5.2. The discriminant of (5.4) is non-zero if and only if the solutions to (5.1)–(5.3) are
a point at which the Jacobian condition (4.1) holds.

Proof. The matrix Jacobian matrix J of (4.1) is block upper triangular, with all diagonal blocks
non-zero of size 1 × 1, except for a 2 × 2 block in rows k, k + 1. Thus (4.1) holds iff the deter-
minant of this 2 × 2 block(

∂
∂ωk

qαk−1Ωαk−1
∂

∂ωk+1
qαk−1Ωαk−1

∂
∂ωk

(qαk
Ωαk

+ qα′
k
Ωα′

k
) ∂

∂ωk+1
(qαk

Ωαk
+ qα′

k
Ωα′

k
)

)
= Ωαk+1

(
qαk−1ωk+1 qαk−1ωk

qα′
k

qαk

)

is non-zero, i.e. iff qαk
ωk+1 	= qα′

k
ωk .

On the other hand, if (ωk,ωk+1) is one solution to (5.2) and (5.3), then the other solution
is (qαk

ωk+1/qα′
k
, qα′

k
ωk/qαk

). The discriminant of (5.4) is non-zero iff these two solutions are
distinct, i.e. iff qαk

ωk+1 	= qα′
k
ωk . �

Corollary 5.3. If ck, ck+1 ∈ R, then the system of Eqs. (5.2) and (5.3) has two distinct real
solutions, hence there are two points in X (a) corresponding to T , i.e. satisfying (4.2).

Proof. It is enough to check that the discriminant of (5.4) is positive. Since qλ > 0 for all λ ∈ Λ,
this is certainly true if ckck+1 < 0. Otherwise, we have

(ck + ck+1)
2 − 4

qαk
qα′

k

qαk−1qαk+1

ckck+1 = (ck + ck+1)
2 − 4

(
1 − L−2)ckck+1

> (ck + ck+1)
2 − 4ckck+1

= (ck − ck+1)
2

� 0.

By Lemma 5.2, we can apply Theorem 4.2 to conclude that we have two corresponding points in
the fibre X (a). �

The reason T is identified with two points in X (a) rather than one is that there is a tie in the
order of magnitude of the roots. As in the same-row/column case, the tableau T ′ ∈ DIT(��;a),
obtained by swapping the positions of ak and ak+1 in T , produces the same system of equations,
and hence is also identified with these same two points. Thus, we have a two-to-two correspon-
dence between tableaux in DIT(��;a) and points in X (a). Note that between this two-to-two
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correspondence, and the two-to-one correspondence earlier, we have found all |SYT(��)| points
in X (a).

Now suppose that log |ck| � log |ck+1|. This supposition effectively breaks the tie in the order
of magnitude of the roots, which gives a natural way to identify T with one of these two points
in X (a), and T ′ with the other. To see this, we put ck = ūv1b1 and ck+1 = ūv2b2, with v1 > v2,
and solve (5.2) and (5.3) over C{{ū}}.

Proposition 5.4. If ck = ūv1b1 and ck+1 = ūv2b2, and v1 > v2, then the one solution for
(ωk,ωk+1) satisfies

LT(ωk) = qαk
ck

qαk−1

, LT(ωk+1) = qαk+1ck+1

qαk

, (5.6)

and the other satisfies

LT(ωk+1) = qα′
k
ck

qαk−1

, LT(ωk) = qαk+1ck+1

qα′
k

. (5.7)

Proof. By Hensel’s lemma, there exists a solution for y1, y2 ∈ K+ to the system of equations

ūv1−v2qα′
k
y1 + qαk

y2

qαk+1

= ūv1−v2b1 + b2,

qαk−1

qαk+1

y1y2 = b1b2

with

LT(y1) = qαk
b1

qαk−1

, LT(y2) = qαk+1b2

qαk

.

Putting ωk = ūv1y1, ωk+1 = ūv2y2 gives the first solution. The other solution is obtained simi-
larly. �

Replacing ωk,ωk+1 by LT(ωk),LT(ωk+1), these are precisely the solutions to two different
systems of Eqs. (4.3) that we obtain if we perturb the norm of the entries so that ‖ak‖ 	= ‖ak+1‖.
The first solution (5.6) is the one that is consistent with breaking the tie so that ‖a1‖ < · · · <

‖ak‖ < ‖ak+1‖ < · · · < ‖aN‖. To see this, note that if ‖ak‖ < ‖ak+1‖, then Mk(T ) = {αk};
thus, as in the proof of Corollary 4.4, the solution to (4.3) is given by (4.6), which is consis-
tent with (5.6). Since log |ck| � log |ck+1|, this is the solution we identify with T . The second
solution (5.7) corresponds to ‖a1‖ < · · · < ‖ak−1‖ < ‖ak+1‖ < ‖ak‖ < · · · < ‖aN‖, since here
Mk(T ) = {αk+1}. This solution is identified with the other tableau, T ′.

In summary, suppose that either log |ck| � log |ck+1| or log |ck| � log |ck+1|. Then a solution
(ωk,ωk+1) to (5.2) and (5.3) is identified with the tableau T for which ωk ≈ ck and ωk+1 ≈ ck+1
(up to a ratio of qαs). If (ω̂k, ω̂k+1) denotes the other solution to (5.2) and (5.3) then ω̂k ≈ ck+1
and ω̂k+1 ≈ ck , and this solution corresponds to T ′.
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5.2. Proof of Theorem 3.5

Suppose that at = {(a1)t , . . . , (aN)t }, t ∈ [0,1] is a path in the space of multisubsets of P1(K),
with a0 = a as in Section 5.1, and for all t ∈ [0,1], (ai)t = ai if i 	= k, k + 1, and ‖ak‖ =
‖(ak)t‖ = ‖(ak+1)t‖ = ‖ak+1‖. Let (ci)t := LC((ai)t ), and suppose (ck)t and (ck+1)t , t ∈ [0,1]
are paths in R×. Let xt ∈ X (at ) be a path in X . Finally, suppose log |(ck)0| � log |(ck+1)0| and
log |(ck)1| � log |(ck+1)1|. From the discussion in Section 5.1, these hypotheses imply that there
are unique tableaux Tx0 and Tx1 corresponding to points x0 and x1. Since this correspondence is
defined asymptotically, for other values of t ∈ (0,1) we do not associate a unique corresponding
tableau Txt .

Theorem 5.5. With at and xt , as above, Tx0 and Tx1 are related as follows.

(i) If (ak)0 and (ak+1)0 are in the same row or column of Tx0 , or if (ck)0 (ck+1)0 > 0, then Tx1

is obtained from Tx0 by replacing (ak)0 with (ak+1)1 and (ak+1)0 with (ak)1.
(ii) If (ak)0 and (ak+1)0 are in different rows and columns of Tx0 and (ck)0 (ck+1)0 < 0, then Tx1

is obtained from Tx0 by replacing (ak)0 with (ak)1 and (ak+1)0 with (ak+1)1.

Proof. Let T0 = Tx0 , and Tt be the tableau obtained from T0 by replacing (ai)0 with (ai)t for
all i. Let T ′

t be the tableau obtained by swapping the positions of (ak)t and (ak+1)t in Tt . The
point xt satisfies the conditions of Theorem 4.2 for both tableaux Tt and T ′

t ; this is true with one
exception, noted and handled below. Thus we must have either Tx1 = T1 or Tx1 = T ′

1.
If (ak)0, (ak+1)0 are in the same row or column of Tx0 , then Tx1 = T ′

1 simply by definition.
There is one small problem, however, which is the aforementioned exception to the fact that the
point xt corresponds to both Tt and T ′

t : when (ck)t + (ck+1)t 	= 0, we have not established this
to be true; in fact it is false. To get around this, note that Theorem 1.2 guarantees that the fibre
X (at ) is reduced even if (ck)t + (ck+1)t = 0. Thus Tx1 is unaffected by small perturbations of
the path at . We can therefore perturb the path at so that (ck)t and (ck+1)t become complex paths
such that (ck)t + (ck+1)t 	= 0 for all t , and thence see that Tx1 = T ′

1. This establishes the first case
of (i).

For the remaining cases, suppose that (ak)0, (ak+1)0 are in different rows and columns of Tx0 .
Let ((ωk)t , (ωk+1)t ) be the solution to (5.2) and (5.3) which gives rise to the point xt ∈ X (at )

via (4.2), and let ((ω̂k)t , (ω̂k+1)t ) be the second solution to these equations. In each case, we
will need to determine whether x1 corresponds to T1 or T ′

1. From the discussion at the end of
Section 5.1, if x1 corresponds to T1, then (ωk)1 ≈ (ck)1 and (ωk+1)1 ≈ (ck+1)1. If x1 corresponds
to T ′

1, then (ωk+1)1 ≈ (ck)1 and (ωk)1 ≈ (ck+1)1.
Suppose that (ck)0 > 0 and (ck+1)0 > 0. Since x0 corresponds to T0 rather than T ′

0, we have
log(ωk)0 ≈ log(ck)0 and log(ω̂k)0 ≈ log(ck+1)0. Since log(ck)0 � log(ck+1)0, it follows that
log(ωk)0 � log(ω̂k)0. By Corollary 5.3, (ωk)t 	= (ω̂k)t for all t ∈ [0,1]; thus (ωk)t > (ω̂k)t > 0
for all t ∈ [0,1]. Since log(ck+1)1 � log(ck)1, it must be the case that (ωk)1 ≈ (ck+1)1 and
(ω̂k)1 ≈ (ck)1, rather than the other way around. Thus we see that Tx1 = T ′

1. Similarly, we have
Tx1 = T ′

1 if (ck)0 < 0 and (ck+1)0 < 0.
Now suppose (ck)0 > 0 and (ck+1)0 < 0. Then we must also have (ωk)0 ≈ (ck)0 > 0. Since

(ck)t (ck+1)t 	= 0 for all t , by (5.3), the signs of (ωk)t and (ck+1)t are independent of t . In partic-
ular, (ωk)1 is positive, while (ck+1)1 is negative. Since these have opposite signs, it cannot be the
case that (ωk)1 ≈ (ck+1)1, hence x1 is not identified with T ′

1. We must therefore have Tx1 = T1.
Similarly, Tx = T1 if (ck)0 < 0 and (ck+1)0 > 0. �
1
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Theorem 3.5 now follows.

Proof of Theorem 3.5. Let at = {(a1)t , . . . , (aN)t } ⊂ RP1, t ∈ [0,1] is a path in the space of
multisubsets of RP1.

First, consider the case where

log
∣∣(a1)t

∣∣ � · · · � log
∣∣(ak)t

∣∣, log
∣∣(ak+1)t

∣∣ � · · · � log
∣∣(aN)t

∣∣,
log |(ak)0| � log |(ak+1)0| and log |(ak+1)1| � log |(ak)1|. Let xt ∈ X(at ). Then by Theorem 5.5
and the discussion in Section 4.5 we see that Tx1 = slidea1(Tx0).

Second, suppose that∣∣(a1)t
∣∣ < · · · < ∣∣(ak)t

∣∣, ∣∣(ak+1)t
∣∣ < · · · < ∣∣(aN)t

∣∣,
|(ak)0| < |(ak+1)0| and |(ak+1)1| < |(ak)1|. There is an order and sign preserving homotopy
between this case and the previous. Since the correspondence of Corollary 4.10 between points
in X(a) and SYT(��;a) is established via such homotopies, the theorem holds in this case also.

Finally, a general path at � RP1 can be regarded as a concatenation of paths from the second
case; thus the theorem is true for any real path. �
5.3. Monodromy around special loops

Let λ/μ be a skew partition fitting inside ��. Throughout the rest of this section, we will
assume that k, L are positive integers with 1 � k < |λ/μ|, and L � 2.

For any such k, L, define a permutation sk,L of the set SYT(λ/μ) as follows. For T ∈
SYT(λ/μ), sk,L(T) is the tableau obtained by swapping entries k and k + 1 in T, if the total
of the horizontal and vertical distance between k and k + 1 equals L; otherwise sk,L(T) = T.

If a = {a1, . . . , a|λ/μ|} ⊂ FP1, then we define sk,L(T ) for T ∈ SYT(λ/μ;a), to satisfy
ord(sk,L(T )) = sk,L(ord(T )). If a ⊂ R, we also define sk,L(x) for x ∈ X(a+), by Tsk,L(x) =
sk,L(Tx).

Theorem 5.6. Fix k and L as above, and let a = {a1, . . . , a|λ/μ|} ⊂ RP1. There exists a loop
at ⊂ C, t ∈ [0,1], based at a such that the monodromy of the Wronski map around at is given by
sk,L. That is, a0 = a1 = a, every fibre X(at ) is reduced, and if xt ∈ X(at ) then x1 = sk,L(x0).

Proof. By the discussion in Section 4.5, it is enough to prove the result over K, with a as in
Section 5.1.

Consider a loop at = {(a1)t , . . . , (aN)t }, t ∈ [0,1] in the space of multisubsets of P1(K), with
a0 = a1 = a, and for all t ∈ [0,1], (ai)t = ai if i 	= k, k + 1, and ‖ak‖ = ‖(ak)t‖ = ‖(ak+1)t‖ =
‖ak+1‖. Let (ci)t := LC((ai)t ). Suppose that ((ck)t , (ck+1)t ) ∈ C2 is a small loop around the line{

(ck, ck+1)
∣∣ ck = (

1 + 2L−2 + 2L−1
√

1 + L−2
)
ck+1

}
. (5.8)

We show that if xt ∈ X (at ), then x1 = sk,L(x0).
Recall that a tableau Tt ∈ DIT(��;at ) corresponds to one or two points. If the distance be-

tween ak and ak+1 is 1 then these entries are in the same row or column, so Txt corresponds
to the single point xt ; hence x1 = x0 = sk,L(x0). Otherwise, Txt corresponds to xt and another
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point. Since the equations that give the leading terms of these two points, (5.2) and (5.3), define
a quadratic map

(ωk,ωk+1) �→
(

qα′
k
ωk + qαk

ωk+1

qαk+1

,
qαk−1

qαk+1

ωkωk+1

)
,

the two points will swap places under the monodromy of the loop at if and only if the leading
coefficients of at wrap around the critical locus (5.5). By Lemma 5.1, the line (5.8) is contained
in the critical locus iff the distance between (ak)t and (ak+1)t is L. �
5.4. Monodromy and limits

Let a = {a1, . . . , aN } ⊂ RP1, with |a1| < · · · < |aN |, and let x ∈ X(a).

Definition 5.7. Suppose that we have a decomposition of RP1 as the disjoint union of k intervals
I1, . . . , Ik . We then obtain a partition (b1, . . . ,bk) of a, where bi = a ∩ Ii . A partition of a of this
form is called a consecutive partition of a. Any number ci ∈ Ii is called an internal point for bi .

The two main cases we will consider are given in the examples below.

Example 5.8. For any a as above, let b0 = {a1, . . . , ai}, b∞ = {ai+1, . . . , aN } for some i. Then
(b0,b∞) is a consecutive partition of a. Moreover, for any tableau T ∈ SYT(��;a), T |b0 and
T |b∞ are both subtableaux of T .

Example 5.9. Let b = {ai, ai+1, . . . , aj }, bc = a \ b, for some i � j . Suppose that all elements
of b have the same sign. Then (b,bc) is a consecutive partition of a. In this case, for any tableau
T ∈ SYT(��;a), T |b is a subtableau of T .

Suppose we have a consecutive partition (b1, . . . ,bk) of a, coming from intervals I1, . . . , Ik ⊂
RP1. Let ci be an internal point for bi . We define points x[bi→ci ] ∈ X, as follows.

For each fixed i, we form a path at � RP1, t ∈ [0,1] satisfying the following conditions:

(i) a0 = a;
(ii) at is a set for t ∈ [0,1);

(iii) at ∩ Ij = bj , for j 	= i, t ∈ [0,1];
(iv) a1 = (

⋃
j 	=i bj ) ∪ {ci, ci, . . . , ci}.

Let x0 = x, and xt ∈ X(at ). Since at is a set for xt ∈ [0,1) there is a unique such path for
t ∈ [0,1). We define x[bi→ci ] to be the limit point x1 = limt→1 xt . By Corollary 2.2, x[bi→ci ]
depends only on bi and ci , not on the path chosen.

Since a1 is a multiset, the fibre X(a1) is typically non-reduced, so there may be distinct points
x, x′ ∈ X(a) with the same limit point x[bi→ci ] = x′

[bi→ci ]. This defines an equivalence relation
on the fibre X(a), which we will study further in Section 6.

Theorem 5.10. Let a, (b,bc) be as in Example 5.9, and let x, x′ ∈ X(a). Suppose that L � 2,
and k /∈ {i − 1, i, . . . , j}. For any internal point c1 for b, we have x[b→c1] = x′

[b→c1] if and only
if sk,L(x)[b→c ] = sk,L(x′)[b→c ].
1 1
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Proof. In order to see what happens to the point xt ∈ X(at ), as t approaches 1, we need to study
the fibre X(at ) when |ai |, . . . , |aj | are close to each other. Working over K, this corresponds to
looking at X (a) where, a = {a1, . . . , aN } ⊂ K× and

‖a1‖ � · · · � ‖ai−1‖ < ‖ai‖ = · · · = ‖aj‖ < ‖aj+1‖ � · · · � ‖aN‖. (5.9)

Let T be a weakly increasing tableau of shape �� with values in a. Let μ denote the shape of
T |{a1,...ai−1}, and let λ be the shape of T |{a1,...aj }. We will assume, moreover, that T |μ and Tλc

are diagonally increasing.
We say T corresponds to a point x ∈ X (a) if (4.5) holds. Since T may not be a diagonally

increasing tableau, Theorem 4.2 no longer provides us with the explicit system of equations
needed to find the leading terms of the points in X (a) corresponding to T . However, it is still
possible to write down such a system of equations by following the same lines of argument. The
main difference between this case and the analysis in the proof of Theorem 4.2 is that initial ideal
of the Plücker ideal Inw(T )(I ) is not binomial; it represents only a partial degeneration of X to
the Gel’fand–Tsetlin toric variety.

We consider the initial forms of Eqs. (4.14) and (4.15) to obtain a system of equations for the
leading terms of the Plücker coordinates of a point corresponding to T . This system will neces-
sarily be solvable, because the equations can be further degenerated to the case of Theorem 4.2,
which is solvable. The initial forms of (4.14) are given by Inw(T )(I ). We have

pνpν′ − pν∧ν′pν∨ν′ ∈ Inw(T )(I ) if ν � μ or ν � λ . (5.10)

The other quadratic relations in Inw(T )(I ) are more complicated; however they only involve
partitions which are between μ and λ. Moreover the initial forms of (4.15) only involve partitions
in this range. From this, one can see that the system of equations one obtains for LT(pν) for
μ � ν � λ depends only on {ai, . . . , aj } and the shapes λ and μ.

Moreover given a solution to these equations, we can solve for all remaining LT(pν). For
ν � μ, the equations determining LT(pν), up to a constant, are the same as those given by The-
orem 4.2 applied to the tableau T |μ. The constant is determined by the fact that we already have
a value for LT(pμ). Similarly, for ν � λ, the equations for LT(pν) are given by Theorem 4.2
applied to T |λc . All other LT(pν) are determined by (5.10).

Now suppose that all inequalities in (5.9) are strict, except for ‖ak‖ = ‖ak+1‖. Consider a loop
at = {(a1)t , . . . , (aN)t }, t ∈ [0,1] in the space of multisubsets of P1(K), with a0 = a1 = a, and
for all t ∈ [0,1], (al)t = al if i 	= k, k + 1, ‖ak‖ = ‖(ak)t‖ = ‖(ak+1)t‖ = ‖ak+1‖. Let xt , x

′
t ∈

X (at ).
Given a sufficiently small positive real number ε, suppose x0 and x′

0 are “close together,” in
that they have the following properties: for all ν ∈ Λ, val(pν(x0)) = val(pν(x

′
0)), and

1 − ε <

∣∣∣∣LT(pν(x0))

LT(pν(x
′
0))

∣∣∣∣ < 1 + ε.

Since the valuation of Plücker coordinates of xt , x′
t will be independent of t , the points xt and x′

t

must correspond to the same weakly increasing tableau Tt . We claim, moreover, that

LT(pν(x0))

LT(p (x′ ))
= LT(pν(xt ))

LT(p (x′))
for all ν ∈ Λ, t ∈ [0,1]. (5.11)
ν 0 ν t
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This follows from the discussion above. If μ � ν � λ, (5.11) is true because LT(pν(xt )) and
LT(pν(x

′
t )) are both independent of t . If ν � μ (or ν � λ), (5.11) is true because LT(pν(xt )) and

LT(pν(x
′
t )) must come from the same solution to (4.3) for the tableau Tt |μ (resp. Tt |λc ). For all

other ν ∈ Λ, the claim follows from (5.10).
In particular, we see that x1 and x′

1 are close together. Taking our loop to be the loop whose
monodromy is given by sk,L (as defined in the proof of Theorem 5.6), the result follows. �
6. Equivalence, dual equivalence, and the Littlewood–Richardson rule

6.1. Interpretations of equivalence and dual equivalence

Throughout this section, we assume that a = {a1, . . . , aN } ⊂ RP1, with |a1| < · · · < |aN |.
We now show that in the situation in Example 5.9, the equivalence relations on X(a) defined
in Section 5.4 by x[bi→ci ] = x′

[bi→ci ] are combinatorially described by the equivalence and dual
equivalence relations on tableaux.

We will need the following lemma:

Lemma 6.1. Let (b0,b∞) be as in Example 5.8. Let T ∈ SYT(��;a) and let xT ∈ X(a) be the
corresponding point. Let μ be the shape of T |b0 .

(i) The point (xT )[b0→0] is in Xμ(0) and corresponds to the tableau T |b∞ .
(ii) The point (xT )[b∞→∞] is in Xμ∨(∞) and corresponds to the tableau T |b0 .

Proof. This follows from Theorem 4.5. �
For φ ∈ SL2(R) and T ∈ SYT(��;a), define φ(T ) := slideφ(a)(T ). Here sliding is defined

using any path homotopic to a path of the form φt (a), t ∈ [0,1], where φt ∈ SL2(R) is any path
from φ0 = ( 1 0

0 1

)
to φ1 = φ. From Theorems 3.3 and 3.5, we have that φ(xT ) = xφ(T ); hence

φ(T ) does not depend on the choice of φt .

Theorem 6.2. Let T ,T ′ ∈ SYT(��;a), and let (b,bc) be as in Example 5.9. Choose any internal
point c2 for bc. Let xT , xT ′ ∈ X(a) be the points corresponding to T and T ′ respectively. Then
T |b ∼ T ′|b if and only if (xT )[bc→c2] = (xT ′)[bc→c2].

Proof. Since the action of SL2(R) on RP1 can take any three points to any other three points in
the same orientation, there exists φ ∈ SL2(R) be such that φ(c2) = ∞, |φ(a)| < 1 for a ∈ b, and
|φ(a)| > 1 for a ∈ bc.

Consider φ(T ) and φ(T ′). We can compute these, via a path at which first rectifies
T |b, T ′|b. By Theorem 3.3, it follows that φ(T )|φ(b) = slideφ(b)(rect(T |b)) and φ(T ′)|φ(b) =
slideφ(b)(rect(T ′|b)). Thus we have that T |b ∼ T ′|b if and only if φ(T )|φ(b) = φ(T ′)|φ(b).

By Proposition 2.1, (xT )[bc→c2] = (xT ′)[bc→c2] if and only if (xφ(T ))[φ(bc)→∞] =
(xφ(T ′))[φ(bc)→∞]. By Lemma 6.1(ii), this holds if and only if φ(T )|φ(b) = φ(T ′)|φ(b). �
Remark 6.3. Let c = {a1, . . . , ai−1} ⊂ a be the entries of T to the left of T |b. As an addendum
to the proof of Theorem 6.2, we give a quick proof of the fact that rect(T |b) = slideT |c(T |b) does
not depend on T |c.
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Proof. Keeping the same notation, assume now that c2 = 0. Consider x0 = (xT )[c→0]. By
Lemma 6.1(i), x0 corresponds to the tableau obtained by deleting the entries in c from T . Now,
φ(x0) = φ(xT )[φ(c)→∞], so by Lemma 6.1(ii), Tφ(x0) is the tableau obtained by deleting the
entries in φ(c) from φ(T ). Since rect(T |b) can be determined from φ(T )|φ(b), it can also be
determined from x0, which does not depend on T |c. �
Theorem 6.4. Let T ,T ′ ∈ SYT(��;a), and let (b,bc) be as in Example 5.9. Choose any internal
point c1 for b. Let xT , xT ′ ∈ X(a) be the points corresponding to T and T ′ respectively.

(i) If T |bc 	= T ′|bc , then (xT )[b→c1] 	= (xT ′)[b→c1].
(ii) If T |bc = T ′|bc , then T |b ∼∗ T ′|b if and only if (xT )[b→c1] = (xT ′)[b→c1].

(iii) The point (xT )[b→c1] is in Xλ(c1), where λ is the rectification shape of T |b.

(Note that T |bc , T ′|bc will generally not be subtableaux of T and T ′.)

Proof. Let at = {(a1)t , . . . , (aN)t } � RP1 be a path used to define (xT )[b→c1] and (xT ′)[b→c1].
Let Tt = slideat (T ), T ′

t = slideat (T
′). Let bt = at \ bc . Assume that the path of each (ai)t ∈ bt is

monotonic. Then for all of t ∈ [0,1), Tt |bt
∼∗ T |b, and T ′

t |bt
∼∗ T ′|b. We may therefore replace

T by T1−ε ; hence we may assume that all elements of b are arbitrarily close to c1.
Let φ ∈ SL2(R) be a transformation such that φ(c1) = 0, and consider φ(T ) and φ(T ′). Since

the elements of φ(b) are assumed to be close to zero, by Lemma 6.1(i), φ(T )|φ(bc) = φ(T ′)|φ(bc)

if and only if (xφ(T ))[φ(b)→0] = (xφ(T ′))[φ(b)→0]. By Proposition 2.1, this holds if and only if
(xT )[b→c1] = (xT ′)[b→c1]. Thus, to prove (i) and (ii), we must therefore show that φ(T )|φ(bc) =
φ(T ′)|φ(bc) if and only if T |b ∼∗ T ′|b and T |bc = T ′|bc .

Let c = {a1, . . . , ai−1} ⊂ a, be the entries in the subtableau of T to the left of T |b. Let ĉ =
{aj+1, . . . , aN } ⊂ a, be entries in the subtableau of T to the right of T |b. Note that φ(T ),φ(T ′)
can be computed by a path that brings the values in b past the values of c without changing
their relative order. Thus by definition of dual equivalence, if T |b ∼∗ T ′|b and T |bc = T ′|bc then
φ(T )|φ(bc) = φ(T ′)|φ(bc).

Conversely, suppose φ(T )|φ(bc) = φ(T ′)|φ(bc). We can recover T |bc and T ′|bc by sliding (the
answer does not depend on φ(T )|φ(b), φ(T ′)|φ(b)); hence we must have T |bc = T ′|bc . Moreover,
from the argument of the reverse direction, we see that slideT |b(T |c) = slideT ′|b(T ′|c). By the
same reasoning with 0 replaced by ∞, we have slideT |b(T |ĉ) = slideT ′|b(T ′|ĉ).

Let λ/μ be the shape of T |b and T ′|b. To show that T |b ∼∗ T ′|b, we must show that
slideT |b(V ) = slideT ′|b(V ), for any tableau V in SYT(μ; c) or in SYT(λc; ĉ). Since we already
know this for V = T |c and V = T |ĉ, and since the operators sk,L act transitively on SYT(μ; c)
and on SYT(λc; ĉ), the result now follows from Theorem 5.10.

Finally, for (iii) we have already seen that φ(T )|φ(bc) has shape λc, where λ is the rectification
shape of T |b. By Lemma 6.1(i), we have that (xφ(T ))[φ(b)→0] ∈ Xλ(0), and so by Proposition 2.1,
(xT )[b→c1] ∈ Xλ(c1). �
Remark 6.5. In the proof of Theorem 6.4, we showed that if slideT |b(V ) = slideT ′|b(V ) for some
V ∈ SYT(μ; c), then the same is true for every V ∈ SYT(μ; c). In fact our argument shows that
if slideT |b(V ) = slideT ′|b(V ) for any V ∈ SYT(μ; c), then (xT )[b→c1] = (xT ′)[b→c1], whence
T |b ∼∗ T ′|b. This combinatorial fact is a theorem of Haiman (see [9, Theorem 2.10]).
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6.2. Combinatorial consequences

A number of other combinatorial facts about equivalence and dual equivalence can be re-
proved using Theorems 6.2 and 6.4.

Corollary 6.6. The size of a dual equivalence class with rectification shape λ is |SYT(λ)|.

Proof. Let (b,bc), be a partition of a, as in Example 5.9. Let c1 be an internal point for b, and let
at be the path used to define x[b→c1]. By Theorem 6.4, a dual equivalence class with rectification
shape λ corresponds to a point in X(a1) supported on Xλ(c1). Since Wr is flat, the size of the
dual equivalence class is the multiplicity of the point in X(a1). By Corollary 2.6, the multiplicity
of such a point is |SYT(λ)|. �

We can also prove a fact that was used in Section 3.4 to give an alternate formulation on the
Littlewood–Richardson rule.

Corollary 6.7. There is a unique tableau in the intersection of any equivalence class of tableaux
with a dual equivalence class of the same rectification shape.

We need an additional lemma.

Lemma 6.8. Let (b1,b2) be a consecutive partition of a ⊂ RP1, and let c1, c2 be internal points
for b1,b2 respectively. Let x1 ∈ X({c1, . . . , c1} ∪ b2), and x2 = X(b1 ∪ {c2, . . . , c2}).

(i) If x1 ∈ Xλ(c1) and x2 ∈ Xλ∨(c2) for some λ ∈ Λ, then there exists a unique point x ∈ X(a)

such that xi = x[bi→ci ] for i = 1,2.
(ii) If no such λ exists then no such point x exists.

Proof. It suffices to prove this when c1 = 0 and c2 = ∞, and |a| < |a′| for all a ∈ b1, a′ ∈ b2.
By Lemma 6.1, if x ∈ X(a), then x[b2→c2] corresponds to the tableau Tx |b1 = Tx |λ, and x[b1→c1]
corresponds to tableau Tx |λc . Thus x[b1→c1] ∈ Xλ(c1) and x[b2→c2] ∈ Xλ∨(c2), from which (ii)
follows.

To prove (i), suppose that x1 ∈ Xλ(c1) and x2 ∈ Xλ∨(c2). Then x1 corresponds to a tableau
Tx1 ∈ SYT(λc;b2); x2 corresponds to a tableau Tx2 ∈ SYT(λ;b1). There exists T ∈ SYT(��;a)

such that T |bi
= Txi

for i = 1,2. Letting x = xT , by Lemma 6.1, we have xi = x[bi→ci ] for
i = 1,2, as required.

To prove uniqueness, we must show that if x, x′ ∈ X(a) and x[bi→ci ] = x′
[bi→ci ] for i = 1,2,

then x = x′. By Lemma 6.1 we have Tx |bi
= Tx′ |bi

for i = 1,2; hence Tx = Tx′ which implies
x = x′. �
Proof of Corollary 6.7. We will show that if T ∈ SYT(λ/μ;b) and T ′ ∈ SYT(λ′/μ′;b) both
have the same rectification shape ν, there is a unique tableau T ′′ ∈ SYT(λ/μ;b) such that T ∼∗
T ′′ and T ′ ∼ T ′′.

Choose a point x ∈ X such that π(x) ⊂ RP1 and Tx |b = T . Let x1 = x[b→c1], where c1 is
an internal point for b. Choose x′ ∈ X such that π(x′) ⊂ RP1 and Tx′ |b = T ′. Put a = π(x′),
bc = a \ b. Let x2 = x[bc→c ], where c2 is an internal point for bc.
2
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Since T and T ′ have the same rectification shape ν, x1 ∈ Xν(c1) and x2 ∈ Xν∨(c2). Thus,
by Lemma 6.8(i) there exists a unique point x′′ ∈ X(a) such that xi = x′′

[bi→ci ] for i = 1,2. By
Theorems 6.2 and 6.4, Tx′′ |b ∼∗ T and Tx′′ |b ∼ T ′. �

As a final note, recall from Remark 3.7 that evacuation defines a Z-action on standard Young
tableaux shape ��.

Corollary 6.9. The evacuation action on SYT(��) has order N .

Proof. Let ξ = 2π
N

( 0 1
−1 0

)
, and note that eNξ = ( 1 0

0 1

)
. Consider the loop at = {(a1)t , . . . , (aN)t },

where (aj )t = ψe(j−t)ξ (0) ∈ RP1 and ψ ∈ SL2(R) is chosen so that 0 < (a1)0 < · · · < (aN)0.
Let φ = ψeξψ−1 ∈ SL2(R). If T ∈ SYT(��;a0), then φ(T ) is obtained by sliding T using at .
But since at is a loop which cyclically rotates the elements of a0, sliding using at gives the
evacuation action on T . The result follows, since φN = ψ(eξ )Nψ−1 = ( 1 0

0 1

)
. �

6.3. Proof of the Littlewood–Richardson rule

Fix partitions λ, μ, ν, with |λ| = |μ| + |ν|. Let a = {a1, . . . , aN }, with 0 < a1 < · · · < aN .
Let b1 = {a1, . . . , a|μ|}, b2 = {a|μ|+1, . . . , a|λ|} and b3 = {a|λ|+1, . . . , aN }. Then (b1,b2,b3) is a
consecutive partition of a. Let c1, c2, c3 be internal points of b1, b2, b3 respectively.

We wish to count the number of points (with multiplicities) in the intersection

Y = Xμ(c1) ∩ Xν(c2) ∩ Xλ∨(c3).

This number is the Littlewood–Richardson number cλ
μν . First note that if a point y ∈ Y has multi-

plicity m, then by Corollary 2.6, the point y has multiplicity |SYT(μ)| · |SYT(ν)| · |SYT(λ∨)| · m
in the intersection

Ŷ = X
(
c
(|μ|)
1

) ∩ X
(
c
(|ν|)
2

) ∩ X
(
c
(|λ∨|)
3

)
.

Thus cλ
μν · |SYT(μ)| · |SYT(ν)| · |SYT(λ∨)| is the number of points in Ŷ that are supported on Y

(counted with multiplicities).
Since Wr is flat, the number of points in Ŷ supported on Y is the number of points x ∈ X(a)

such that x[b1→c1][b2→c2][b3→c3] ∈ Y . For a tableau T ∈ SYT(��;a), let xT be the corresponding
point in X(a). Then by Theorem 6.4, (xT )[b1→c1][b2→c2][b3→c3] ∈ Y if and only if the rectification
shapes of T |b1 , T |b2 , T |b3 are μ, ν and λ∨ respectively. Let Sλ

μν be the set of all tableaux with

this property. The number of points in Ŷ supported on Y is therefore |Sλ
μν |.

Note that if T ∈ Sλ
μν , then T |b1 has shape μ, and T |b3 has shape λc. Define an equivalence

relation on Sλ
μν by putting T ∼∗

2 T ′ if T |b2 ∼∗ T ′|b2 . But by Corollary 6.6, each equivalence
class of ∼∗

2 has size |[T ]| = |SYT(μ)| · |SYT(ν)| · |SYT(λ∨)|.
Putting everything together, we have

cλ
μν · ∣∣SYT(μ)

∣∣ · ∣∣SYT(ν)
∣∣ · ∣∣SYT

(
λ∨)∣∣ = ∣∣Sλ

μν

∣∣ =
∑

[T ]∈(Sλ
μν/∼∗

2)

∣∣[T ]∣∣
= ∣∣SYT(μ)

∣∣ · ∣∣SYT(ν)
∣∣ · ∣∣SYT

(
λ∨)∣∣ · ∣∣Sλ

μν/ ∼∗∣∣.
2
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Hence cλ
μν = |Sλ

μν/∼∗
2|, which is precisely the statement of the Littlewood–Richardson rule, as

formulated in Theorem 3.11.
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