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1. INTRODUCTION 

The analysis of nonlinear operators frequently involves their expansion 
in a series of multilinear operators. In this context, tensor products of mul- 
tilinear operators as defined here appear naturally. This tensor product 
construction is nontrivial; tensor products of bounded operators may or 
may not be bounded. J. Aguirre proved that the tensor product of the 
Calderon Commutator with itself is bounded. His proof used the duality of 
H’ and BMO on the bi-disc. A direct proof of the same fact is given here 
using techniques developed by R. R. Coifman and Y. Meyer in their work 
on the Cauchy Integral Operator. Finally, a counterexample shows that 
tensor products of bounded operators are not always bounded. This coun- 
terexample is an adaptation of an example due to Y. Meyer. 

2. TENSOR PRODUCTS 

Given two functions f and g their tensor product is the function of two 
variables f@ g defined below 

l-o g(x, Y) =f(x) . g(Y). 

Suppose A ,(f, g) and A2(f, g) are bilinear operators for f in a Banach 
space B, and g in a Banach space B2. Let f, and fi be in B, and let g, and 
g, be in B,, and define the tensor product 

This defines the tensor product on the space of finite linear combinations of 
tensor products, since we can extend it linearly. The question is whether 
A, 0 A2 can be extended boundedly to a more useful or natural space. The 
same question can be asked if the operators are multilinear. As an example 
we look at the tensor product of the Calderon Commutator with itself. 
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MULTILINEAR OPERATORS 231 

The Calderon Commutator is defined as follows: 

where A is a primitive of a, i.e., A’(x) = a(x). This is a bilinear operator for 
a in L” and fin L2, and the following holds 

IIC(~,f)ll2 G c II4 x Ilfll2’ 

Furthermore, if u(x, J) = u,(x) u2(y) andf(x, 4’) =fi(x).fi(.r) we obtain 

cOC(~,f~=C(~,,fi)OC(~,,fi) 

= p.v. ss Ab,,x,)-N-x,, Y,)-A(Y,,-~2)+AoI,, y2) 
(x, - .1’,)2(x, - .v# 

Xf(Yl, Y2) &l dY2, 
where A = A, @ A, and Ai is a primitive of ui. From now on we denote the 
expression in the numerator A,(A), the second difference of A. It is also 
clear that we can use the expression involving the principal value integral 
to define CO C not just for tensor products but for any a in L”(R’) and 
any f in L2(R2). But is this operator bounded when defined on those 
natural spaces? In this case the answer is yes, and this is the result of 
Aguirre mentioned previously. 

We conclude this section with the following elementary result: 

LEMMA. The symbol of the tensor product of two multilinear operators 
commuting with simultaneous translations of their arguments is equal to the 
tensor product of the svmbols of the two operators. 

Proof: 

A Q B(u, 0 b, ,..., a, @ 6,) = A(u, ,..., a,) 0 B(b, ,..., 6,) 

= ei.n’ul+---+“n)o,(u ,,..., u,)ri,(u,)...ci,(u,)du,...du, 
> 

1 ” 
X er-rz’rl+ .” fVn)02(u,,..., v,) b,(o,)...b,,(o,,)du, ‘.‘d~,~ 

where wi= (ui, u,), and dwi= dui doi. The proof easily extends to multiple 
tensor products of operators. 

409 II6 I-16 
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3. TEN.WR PRODUCTS OF THE HIGHER COMMUTATORS 

These are the commutators that appear in the analysis of the Cauchy 
Integral Operator and they will be defined below. Their tensor products are 
important because they can be viewed as Gateaux differentials at 0 of a 
generalized Cauchy Integral Operator. In this section we prove a general 
result yielding a certain integral representation of these operators based on 
a similar one in one variable. The nth commutator is defined as follows: 

where the Ai are primitives of the ai. We take the tensor product of c, with 
itself and we obtain the following formula: 

I II dzh(x1, x2, Yl, Y2) 
=p.v. (Xl~Yl)n+1(X2~y2)n+1f~Ylr Y2)@1 dY2, 

where D,D2Ai(x, y) = a,(~, y) and 

d2Ai(x19 x29 Yl, Y2)=Ai(S19 X2)-Ai(x19 .Y2)-Ai(.Ylv x2)+Ai(Y19 Y2). 

The following formula is known for the restriction of c, on the diagonal 
(see [3]): 

c,(a ,..., a,f)=p.v.~(l+itD))‘(a(l+itD)-l)nfdt/t. 

Here a also stands for the operation of multiplication by a. We let k, 
denote the multilinear version of the above integral expression. 

k,,(a, ,..., a,, f)=p.v.~Su,~Suj,Sf dtlt, 

where S = (1 + itD) - ‘. Then we form the tensor product K,, = k, 0 k,. Let 
Si=(l +itiDi)-’ for i= 1,2. We have 

KAa, Q b, ,..., ~nQLf,Qfi) 

~~~a,Slfl dtlltl *. . W,.fi dt,ltz 
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It is natural to investigate the relationship between K,, and C,. Note that 
C,(w, ,...7 M’,, f) is symmetric in the arguments u’,,..., war whereas 
&(w, ,..., M’,, f) is not. The following holds: 

PROPOSITION. C,= K,” where 

K,r(w,,..., wn.f)=$ c &(~‘~,~,,...r ~,~,n,,f) 
‘pin& 

is the symmetrization of K,, and S, is the symmetric group on n elements. 

Proof. K,” and C, are equal when restricted to the diagonal M’, = 
= WV,. By the polarization identity two symmetric linear operators that 

agree on the diagonal must agree everywhere. 

COROLLARY. Formally the following identity holds: 

p.v. (XI-.v,)(x-y2)-(A( D 
f(.YIv Yz) 

dv, &, 
XI, X,)-4-~,, Y2)-NV,, -~z)+A(y1,4’2)) . 

= f p,v. {J” S,S2(aS,S2)kfdt, dtzitlr2, 
k=O 

where D, D, A = a, and the Si are the same as before. 

The identity of this corollary is analogous to the one used to prove the 
boundedness of the Cauchy Integral Operator. The 0th term is the Hilbert 
Transform in the second variable followed by the Hilbert Transform in the 
first variable and is bounded. The second term is the tensor product of the 
Calderon commutator with itself and is also bounded. 

4. THE TENSOR PRODUCT OF THE CALDERON COMMUTATOR 

Let p(x) = f exp( - jxl) and q(x) = (i/2) sgn(x) exp( - 1x1). Then 

P-w=& and B(u) =&. 

Let p,(x) = p(x/t)/t and q,(x) = q(x/t)/t. Define 

P,(f)=f * ~,=[f(x-~) P,(Y)~Y and Q,(f,=f* qt. 
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For f = f(x,, x2) a function of two variables we define 

P,(f) = PI, * fx,(x*)v 

Q,(f) = qr, * fx,(xA Qz(f) = qt2 * fx,Cd 

For A, = Q,(Z- 2P,) the following identities hold (see [ 33): 

(*) t$A,= -Ql+8Q;t, 

(**) tip,= -2Q;. 

Given a function b(x) in L" we let b stand for the operator of mul- 
tiplication by b(x). 

(***) QbP=PP(b)Q+Q(b,P-QQ(b,Q. 

To prove these identities one simply has to check that the symbols satisfy 
certain algebraic identities. We will soon see that the significance of (***) 
is that it allows us to shift Q which carries the cancellation properties from 
the left of a multiplication operator to its right. 

THEOREM. Zf DID,A=a and a is in L”(R2) then the operator 

B(a, f I= P.V. Jj SI &as1 &f dt, &ltI t2 

is bounded for f in L2(R2) and the following estimate holds: 

where C is a constant, and Si = ( 1 + itiDi) -’ for i = 1,2. 

ProoJ: We will express the Si in terms of P and Q and we will exploit 
the special properties of these operators. 

Z Z itD -=- --=P,-iQ,. 
Z+itD I+ t2D2 Z-k t2D2 

By using the above identity we write B(a,f) as follows: 
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By carrying out the multiplications we see that the integrand involves the 
following terms: 

Since all integrals here are principal value integrals, any term above 
which is even in t, or t2 (or both) corresponds to an integral which is equal 
to 0. This applies to the following terms: 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14. 
16. For the remaining terms the principal value is no longer needed, so we 
can take the range of integration from 0 to CD. The boundedness of the 
remaining terms follows from the following two propositions: 

E’RoPosITIoN 1. B,(u, f) = sg sc Q, QlaP, P,fdt, dt,/t, t, is bounded 
on L2(R2) when a is in L “(R’). 

PROPOSITION 2. Bz(u, f) = sc s: P, Q2aQl P,f’dt, dt,/t, t, is bounded 
on L’(R’) \tlhen a is in Lz(R2). 

Moreover we have the estimates 

II4(4f)ll,dC Ibll, Ilfll2, i= 1, 2. 

Proof of Proposition 1. We use the identities ( * ) and ( ** ) to obtain 

Q,Q,uP,Pz=64Q:Q:uP,P,-8t, , 

= 640, - 802 - 80, + 04. 

By symmetry we need only prove the boundedness of 0,) O,, and 0,. 
First, we prove that 0, is bounded. We estimate the norm of 0, by duality. 

> 
2 

gQ:Q:aP,J’,f(dr, dt,lt,t,) dx, dx, 

G IlQ:Q:gll&+, IIQ,QzuP,P?fIIt~,~~,. 

Here we have applied Schwa&s inequality on the space 

L’(R4,, (dt, dt,/t, t2) dx, dx,) with R$=R:xR:. 
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Plancherel’s theorem easily gives the following estimate: 

II Q:Q: gll 2 = C II gll :2c,s2j. 

Therefore we need to estimate II Q, Q, UP, P2 f 11 tIcRt ). 
We apply identity ( ***) first on Q,aP, and then on Q,(P2a) P, and on 

Q,(Q2u) PI that appear after the first application of (***): 

llQ,QzaPlPzf ll2G IIPIP~(PIP~Q) Q,Qzf ll2+ IIf’,(Q,P,a) PlQzf II2 

+ IIP,V’,Q2a, Q,Pzf ll2+ IIQIPAQIP,~) Q,Qzf II2 

+ Il(Q,Q,a, PlPzf ll2+ IlQ,(Q,Q,a, QlPzf II2 

+ llP,Q2V’,Qza)Q1Qzf III+ IlQ2(Q,Qza)P,Qzf 112 

+ IlQ,QAQlQza) QlQzf lL=i ri. 

The estimate for T1 follows easily from Plancherel’s theorem: 

IIP1P,(P,P,~)Q,Q2f Il2~Cll4lm llQ,Qzf II2=Cll4lm Ilf 112. 

We estimate T2 as follows: 

T:<Il(QJ’2W,Qzf ll:=j lQJ’,42 IP,Q2f12(d~~,df,lt,)(dx2df2/f2). 

But, lQ,P2u12(dx, dr,/t,) is a Carleson measure, therefore 

T: G C I llP242, l(Qzf )*s1l2 dx,(dxz dr,/t,), 

where (. ) *J denotes the Hardy-Littlewood Maximal Function in the first 
variable. By the Maximal theorem and Plancherel’s theorem 

T4, T,, and T9 are estimated in the same way as T,. TX is estimated the 
same way as T,. The remaining terms involve multiplication by QI Q2u, 
and the estimate follows by observing that 

lQ1Q24~ 
dx dx, dt, dt, 

t1t2 

is a Generalized Carleson measure on R: x R: . 
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We now move on to Oz. An integration by parts yields 

By (**) the right-hand side becomes 

a 3c 

I i 
Q,(l -2P,) Q:aQ:Pzf dt, dtzjt,tz. 

0 0 

Since we have Q, Q, on the left of the integrand we can apply the duality 
argument as before to reduce this to an estimate for the following: 

IlQ,aQ:p2f IIL+,++). 

By applying (***) we obtain terms that can be treated in exactly the 
same way as the T,. We omit the details of the estimate for O4 since it is 
similar to that of 02. 

Proof of Proposition 2. We start by computing the symbol of B,(a, f ). 

B,(a, f)(x) = 1 ei-r’J+u’ W(y, u) 4y).f(u) dy du, 

where u=(u,, u,), JJ=(~,, y2), and W(p, u)= W,(r’,, u,) Wz(y2, u2) with 

W,(Y,, %)=/om 1 
1 t,u, dt, -_ 

+ t:cy, + uJ2 1 + t;u: t, ’ 

W,(.vz, u2) = sd ’̂ 1 
t202 + u2) 1 dtz ~_ 

+ t:cy, + u2y 1 + t;u; t, . 

By making the change of variables t( = tiuir i = 1, 2, and by setting si = 
( yi + ui)/ui, i = 1, 2, we obtain 

w2b29 u2)= w2b2) = s(: B(tzs,) Btz) dt,lt,. 

We integrate using the method of partial fractions to obtain 

1 
W,(s,)=c 1 + ,s,,I 
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Hence W19s2) = WI@,) w2(s2) = cY(Ogn(s2)- Wl(sl) Ws2bgn(s2). 
Since Wr(s,) IV,@,) is the symbol of j; j$ P,P,aQIQzfdf, drz/t,tZ and 
since W,(s,) is the symbol of jr P,aQ,fdrJt, we have proved the 
following identity: 

cc 30 
s I 

dt, dt2 
PlQ2aQlPzf - 

0 0 t,t2 

=cH,j” Ploe,(H,f)$--H,]om irn W’,aa,Q,(H,n$$, 
0 0 

where H2 is the Hilbert Transform in the second variable. Proposition 2 
now follows from Proposition 1. 

5. THE COUNTEREXAMPLE 

In this section we prove that the tensor product of bounded operators is 
not necessarily bounded. We start with a technical lemma. The idea behind 
its proof is the following: the outcome of a convolution a * p of an 
oscillatory function a and a smooth function p depends on the relative size 
of the support of p and the period of a; if the support of p is small the con- 
volution essentially reproduces a, if the support of p is large then the out- 
come is close to 0. 

Let p(x) be in C,“(R), with support in the interval (-LO), and with 
j p(t) dt = 1. For all positive u set p,(t) = p(t/u)/u. When u = 2-“* write 
pu= pm,. Let a(x), in Cm(R), be equal to 1 for x negative and equal to 
exp(i2”-) for x bigger than 1. 

LEMMA 1. a* pm = a(x) w,(x) with w,(x) satisfying 

Iw,(x)- 11 bCm2-2” and IwL(x)l 6 c2-mm2 for x<m-1, 

Iw,(x)l < c2mz-/x for x>m+l. 

Proof: Assume that m is large enough so that m < 10-62”2. 

J,(x) = a *p,(x) = j a(x - f) p(t/u) dt/u 

= 
f 

a(x - ut) p(r) dr with 24 = 2-“‘. 

Therefore, J,,,(x) = s exp(i2(x-Ur)2) p(t) dt and 



MULTILINEAR OPERATORS 239 

We see that s is given in terms of t by a diffeomorphism which is uniformly 
bounded for xu < 10e6. Therefore, 

J,(x) = exp(i&) j exp( - 2iuxs2”*) p”(s) ds with p#(.s) =p(t(s)) r’(s). 

Note that j p”(s) ds = 1 p(t) dr = 1 and the above formula for J,,, means 

J,(x)=exp(i2”*)(p#)^(22-“~ux), 

IJ,(x)-exp(i2”‘)l = 1 (exp(-2iuxs2”2)- 1) p#(s)ds 

Since x<m- 1, x2-m’<(m- l)‘-m2= -(2m- 1). Therefore, 

la *p,(x) -a(x)1 = IJ,(x) -exp(&)\ 6 Cm2-‘” for 1 Qx<m- 1. 

Setting w, = j exp( - 2iuxs2”‘) p#(s) ds we obtain by a similar argument 
that Ii&(x)1 6 C2-“m2. We now turn our attention to the case x > m + 1. 

We distinguish two cases according the whether I < 10P62m’ or 
.K > 10 P62m?. 

Case I. m + 1 <x < 10-62m’. We have already seen that IJ,(x)l = 
I(p”)“(2~x2”~)1 <C/224x2”* since (p#)^ is in the Schwarz Class. 

Case II. x> 10P62”2. Let g(x) = 2’ until the end of this proof. 

k(J,(x)) = j cosk(~t2)) PA-x- I’) dl 

= I Wg(y2)) g(m’) p(g(m2)b- Y)) 4 

I 
.x+g(-m21 

= cos(g(y2)) g(m2) p(g(m2)L~- 1’1) dy. .Y 

Set q(x, y) = J:; cos(g(t*)) dr. A simple integration by parts yields 

Re(J,(x)) = g(m’) [I+“-“: q(x, y) p’( g(m2)(x - v)) <v. 

We now need to estimate q(x, y). Let z= g(t’), then dt = Cdz/z(log, z)“’ 
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and dx, Y) = C j $$,’ cos z(dz/z(log, z)“*). After another integration by 
parts we obtain 

1 g(,J) 

I 1 

dY2) 
q(x, y) = sin z 

Gx2 w g(d) - 
sin z(zz’(log, z)-I’*)’ dz. 

&?(.a 

From the estimate l(z-‘(log, z)-“*)‘I < Cz-‘(log, z)-‘I* and recalling that 
x<r<y<x+g(-m*) we obtain 

Consequently, 

I 
0 

IRe(J,(x))l < Cx-‘g(m* -x2) -, IP’(.Y)l&. 

The same estimate can be obtained for Im(J,,,(x)). This completes the proof 
of Lemma 1. 

We let fo(x) be a function in C”(R) which is equal to 0 for x < 0 and 
which is equal to x-“*(log x)-i for x > 5. We let p. be a function in the 
Schwarz Class such that supp(@,) c { IuI < 10P4}. p and a remain as in 
Lemma 1. Choose k, so that 

zkm < m2em2 < 2zkm and set z, = 2km. 

Definef(x) = a(x) fo(x), where ti is the complex conjugate of a. Finally, let 
J(x) denote the characteristic function of the interval [0, $1 and define 

with 

b(x) = c exp(iz,x) po(x - m) 
m=l 

(note that b is in ~5”). 

PROPOSITION. Let q be a function in the Schwarz Class such that q(u) = 1 
for u in [t, $1 and supp(4) c [i, $1. Then the operator 

TA,B(~-) = f qk * ((4 k * @ P0.k * H2((A * Pk) F)) 
k=O 
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is not bounded on L2(R2). Here, H2 denotes the Hilbert Transform in the 
second variable, all convolutions are taken in the first variable, and 
pk = 2kp( 2kX). 

Proof. Note that qk * B( x1, x2) = qk * b(x, + x1). We Start by proving 

the following lemma. 

LEMMA 2. qk * exp(iz,x) p,,(x-m) is equal to 0 if k # k,, and it is 
equal to exp(iz,x) p,,(x - m) tf k = k,. 

Proof A direct computation of the Fourier Transform yields 

(exp(iz,x)p,(x-m))^(u)=exp(-im(u-z,))P,(u-z,). 

Hence 

qk * exp(iz,x) Po(x-m) 

= exp(ixu)q(2~ku)exp(-im(u-zz,))j+,(u-z,)du’ I 

= exp(ix(u+z,)q(2~k(u+z,))j+,(u)exp(-imu)du’. i 

By considering the support of PO we see that (~1 6 lop4 and since 
z, + r I z,,, -+ co with m we have: 

For k=k m, 3 < 2-km(~ + z,) -c: hence d(2-km(~ + z,,,)) = 1. Similarly, if 
k # k, the convolution is 0. This completes the proof of Lemma 2. 

Lemma 2 implies that qk * B = qk * b(x, +x2) = exp(iz,(x, +x2)) 
p,,(x,+x,-m) if k=k,, and that qk * B= 0 otherwise. Therefore the 
operator becomes 

T,df’) = f  qm * (exp(iz,(+~, +,y2) P&, +-x2 -ml G,(xly x2)) 
??I=0 

with G,(x, , x2) = pO.m * H,(A * Pd’h Pm = Pk,r 4m = qk,,,? 

HAA * ~2) = Hz((P,,, * a(-~, + y2)) J(-~,)f(x, + ~~1) 

=4x,) Http * a)f)(xl +-x2). 

Throughout the rest of the argument we will hold x2 fixed in the interval 
[m - 3, m - 3 + 41. All Fourier Transforms will be taken with respect to the 
first variable. Since supp(f$,) c {lull < 10-42km) and since 
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shows that supp((exp(iz,(x, + xz) pO(x, + x2 -m))“) c ((ur - z,j < 10p4} 
we obtain 

swpWMkh + x2)) P~(x, +x2 - 4 G,(x,~ x2)) h ) 
c{~u,-z,~~10-4+2k~10-4}. 

For such u,, d,,,(ar) = 1, hence the exterior convolution by q,,, in the 
definition of T is superfluous. 

LB(F) = f exp(kk + x2)) P~(x, + x2 - 4 G&I 9 x2) 
m=O 

with 

G&I, ~2) = 1 ~o,m( Xl -v1)J(v,)My, +x2)4v,, 

where 

h,(x)=H((a*p,)f)=H(S,~!,) by Lemma 1. 

LEMMA 3. h,(x)>Cm-"2for x in [m- 3, m- 23. 

Proof: We decompose few, into three parts by the following partition 
of unity: Jl(x) +J,(x) +J,(x) = 1 where the Ji are as in Fig. 1. For 
m-3<x<m-2 we have 

~Cm-‘~2(logm)‘~m~5~~Cm-‘~2, 
m/2 

W2fowm) = p.v. J- J2tr;!” &I = p.v. J Jzfo~~m(Y) - J2fowmcYo) dy 

X--)? 

But on the interval [m - 5, m - 11, w,, MI;, J2, and J2 are bounded by 
fixed constants, and for f. and f b we have the estimates: 

1 fol <rn-‘“(log m)-‘, lfbl <cm -‘12(log m))‘. 

r 
m-5 m-4 m-3 m-2 m-l 

FIGURE 1 
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So, an application of the Mean Value Theorem yields 

IH(J,f,w,)J C Cm-‘i2(log m)-‘. . 

Finally, 

The first integral is O(m-‘12(logm))‘) and the second is even smaller 
because of the decay of )t*,. This completes the proof of the lemma. 

Remark. So far we have required p. to be rapidly decaying, and to have 
a Fourier Transform compactly supported near the origin. We now claim 
that we can choose p. so that additionally it is positive for 1x1 ~4. Let p, 
be an even function such that supp(@,)c { 11.41 < $10P4}. Define PO= 
~5~ * p,. Then p. = pf is nonnegative. A translation allows us to assume that 
p,(O) # 0, i.e., p. is positive in a neighborhood of 0. Since (p,,( ./.s))~ (u) = 
@,(su) we see that for s> 1 the Fourier Transform of the dilated function 
has smaller support. By dilating by an s large enough we obtain a p. that 
satisfies the additional requirement. 

We now proceed to estimate G,(x,, x2) for 0 <x, < a and m - 3 <x2 6 
m-3++. Since O<y,dt and m-3<x,+y,6m-2, 

We observe that the terms 

~,(~~,,-~2)=ex~(~z,(~~,+x2))po(x,+x2-m)G,(x,,x2) 

are orthogonal in L’(R’), since they have Fourier Transforms with disjoint 
supports. In fact we have shown that 

Supp(Ct,(u,,x,))c{Ju,-z,~d10~4(1+2k~)}. 

Consequently 

aj 

m-3+(1/21 Ii2 

m-3 s 
IPo(X, + x2-m)G,(x,,x2)12dxLdx2. o 

Since m-3,(x,+x,<m-2, we have -3<x,+x,-m,< -2. But we 
know that p. is larger than a positive constant on that interval. Combining 
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this with our estimate on G, for the rectangle specified by the limits of 
integration, we conclude that the infinite series diverges since it majorizes 
the harmonic series. This completes the proof of the proposition. 

COROLLARY. The tensor product of two bounded operators is not 
necessarily bounded. 

Proof. The operator T&F) is the tensor product of the Hilbert Trans- 
form with C qm * ((4, * 6) pO,m * (a * pm f )). The latter is the discrete ver- 
sion of the operator 

I om Q,((Q,b) Po,,(P,o)f)~ 

which is bounded. 
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