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Abstract

We calculate the ionization cross sections for H, He or Ne atoms using νe and ν̄e scattering at keV energies. Such cross
sections are useful for e.g., ν̄e-oscillation experiments using a tritium source. Using realistic atomic wave functions, we find
that for Eν � 10 keV the atomic ionization cross sections, normalized to one electron per unit volume, are smaller than the
corresponding free electron ones, and that they approach it from below as energies of 20 keV are reached.

The scattering of electron-type neutrinos or antineu-
trinos from electrons gives a small cross section which
has been studied in refined experiments at rather high
energies. As the energy decreases though, these cross
sections become smaller, making their measurement
increasingly difficult. Nevertheless, low energy neu-
trino cross sections have been measured in reactor- and
solar-neutrino experiments. Very low energy reactor
experiments started with searches for neutral currents
where a threshold of 1.0 to 2.0 MeV was set [1], and
developed into numerous oscillation experiments [2].
The solar neutrino experiments use a calculated flux
from the sun and look at reactions with a low energy
threshold of about 0.2 MeV [3,4].

Here we wish to emphasise that νe or ν̄e with
energies of keV, may allow to study in terrestrial
experiments oscillations that up to now have only
been observed in neutrinos coming from the Sun.

E-mail address: gounaris@physics.auth.gr (G.J. Gounaris).

In addition, keV-energy neutrinos may be useful for
improving the present constraints on, e.g., the neutrino
anomalous magnetic moment [5].

In a realistic experiment of this kind, we need
to produce neutrinos (or antineutrinos) at a source,
then let them travel a distance comparable to their
oscillation length, so that a sufficient decrease of the
original flux becomes observable. Starting from the
oscillation length

�m2L

4Eν

= 1.27
L

km
�m2

eV2
GeV
Eν

= π

2
,

and assuming that the presently favoured LMA solar
neutrino solution with �m2 � 4.5 × 10−5 eV2, is
realized in nature [6], we are led to expect a νe
oscillation length L � 27.5 m and 275 m for neutrino
energies of 1 and 10 keV, respectively.

The situation may become even more interesting
if �m2 � 5 × 10−4 eV2, which is still consistent
with present measurements [6]. In this case L =
2.5 m and L = 25 m for neutrino energies of 1 and
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10 keV, respectively. A requirement for observing such
oscillations, is the study of the cross sections

(1)νe(ν̄e) e
− → νe(ν̄e) e

−,

at very low energies, where the binding of the elec-
trons to atoms cannot be ignored.

As an example of such an experiment, one can
consider the case where a source of tritium provides
a beam of antineutrinos through the decay 3H →
3He e−ν̄e. The surrounding or nearby volume is filled
with a gas (like He or Ne ) at atmospheric pressure. As
the antineutrinos (whose energy spectrum is peaked at
about 15 keV) travel through this medium, they will
scatter on the atomic electrons, ionizing the atoms [7].
The produced electrons will then be detected by
counters located on the walls of the surrounding
volume.

Since the decay of tritium is known, the only other
limitation is the ability of the experiment to measure
the scattering cross section of ν̄e’s on atomic electrons
at an average energy of 15 keV. To lowest order
in the Fermi coupling, the antineutrino or neutrino
cross section for producing electrons 1 is given by the
incoherent sum of the individual atomic electron cross
sections

dσ
(
νe[ν̄e] + Atom → νe[ν̄e] e− + Ion

)
(2)=Z dσ

(
νe[ν̄e] + e− → νe[ν̄e] e−)

.

The neutrino (antineutrino) ionization cross sec-
tions of hydrogen-like atoms have already been con-
sidered in [8], where it is stated that the ionization
cross section per electron, exceeds the free electron
cross section by a factor of 2 or 3 for neutrino ener-
gies of Eν ∼ Zαmc2. Subsequent studies computed
the electron spectra from inelastic scattering of neutri-
nos by atomic electrons (ionization) [9]. For 19F and
96Mo these studies found that the electron spectra dif-
fer significantly from the scattering on a free electron.

It is thus worthwhile to reconsider the neutrino scat-
tering from atomic structures, in order to determine
whether special effects exist that might justify such

1 In principle, electrons could also be produced from the scatter-
ing of keV νe off the nuclei of the atoms, provided that the isotopes
considered are close to being unstable under beta decay. We are not
interested in this case here, and we thus assume that the nuclear
binding of all isotopes involved is sufficiently strong.

an enhancement. Below we present a detail deriva-
tion of the neutrino ionization cross section of H,
He and Ne atoms, treating the atomic electrons non-
relativistically. This is justified for light and medium-
light atoms, where the average momenta of the bound
electrons are small. For the neutrinos and the final
electrons however, full relativistic kinematics are re-
tained. Since for light and medium atoms, the average
potential energy of the final electrons are much smaller
then their kinetic energy, we ignore the Coulomb wave
function correction for the final electrons. Finally, nu-
merical applications are given and the results are dis-
cussed.

The range of the electron–neutrino interaction at
very low energies is determined by the W or Z mass
as

λW ∼ 1
mZ

∼ 1
mW

∼ 1.5 × 10−16 cm,

which is eight orders of magnitude smaller than
the interelectron distances within an atom. Even if
νe (or ν̄e) is taken to be a plane wave which is
spread over the whole target region, there can never
be any interference or coherence phenomenon in an
ionization process in which the state of the target is
changed and the outgoing electron is looked at. Only
in elastic processes, where the target remains intact,
can interference phenomena appear, as, e.g., in the
MSW effect 2 [10]. Thus, in an ionization process the
incident neutrino interacts with only one electron at a
time.

At very low energies, after integrating out the W

and Z fields, the Standard Model dynamics described
by the diagrams in Fig. 1 induce the local effective
interaction Lagrangian

Leνe = − GF√
2

[
ν̄eγ

µ (1 − γ5)

2
νe

]

(3)×[
veēγµe− aeēγµγ5e

]
,

describing the νe and ν̄e interactions with electrons.
Here, ve = 1+4s2

W , ae = 1, and GF is the usual Fermi
coupling. This Lagrangian is used below to calculate
the invariant amplitude squared |F |2, summed over all
initial and final electron spin-states for the process

(4)νe(p1) e
−(p2)→ νe(p3) e

−(p4),

2 We come back to this at the end of the Letter.
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where the four-momenta are indicated in parentheses
and the corresponding energies are denoted by Ej .
The standard variables s = (p1 +p2)

2, t = (p1 −p3)
2,

u= (p1 − p4)
2 will be used.

We first consider the case where the initial electron
is free, so that p2

1 = p2
3 = 0, p2

2 = p2
4 = m2, with m

being the electron mass. Summing over all initial and
final electron spin states, we have
∣∣F (

νee
− → νee

−)∣∣2
free

(5)

= 2G2
F

{
(ve + ae)

2(s −m2)2

+ (ve − ae)
2(u−m2)2 + 2m2(v2

e − a2
e

)
t
}
.

In the lab system where the initial electron is at rest
(E2 = m), the differential cross section describing the
energy distribution of the final electron is

dσ
(
νee

− → νee
−)

dE4

∣∣∣∣
free

= mG2
F

8πE2
1

{
(ve + ae)

2E2
1

+(ve − ae)
2(E1 +m−E4)

2

(6)+m
(
v2
e − a2

e

)
(m−E4)

}
.

Integrating (6) over the allowed range

(7)m<E4 <m+ 2E2
1

m+ 2E1
,

we then obtain

σν
free ≡ σ

(
νe e

− → νe e
−)∣∣

free

(8)

= mG2
FE1

8π

{
(ve + ae)

2 2E1

m+ 2E1

+ 1
3
(ve − ae)

2
[

1 − m3

(m+ 2E1)3

]

−(
v2
e − a2

e

) 2mE1

(m+ 2E1)2

}
,

which agrees with the result quoted in [8].
For antineutrino scattering, crossing symmetry im-

plies that |F(ν̄ee− → ν̄ee
−)|2free is obtained from (5)

by interchanging s ↔ u. Because of the structure
of (5), such an interchange is equivalent to the substi-
tution ae → −ae. Thus the differential and integrated
cross sections for antineutrino scattering off free elec-
trons may be obtained from (6) and (8), respectively,
by substituting ae → −ae.

We turn next to the discussion of the neutrino
ionization cross section [11], where the basic process
is again given by (4), but now the energy of the initial
electron is fixed as

(9)E2 =m+ ε <m,

where ε is its binding energy, while its “squared-
momentum”

(10)p2
2 ≡ m̃2 =E2

2 − �p 2
2 ,

necessarily goes slightly 3 off-shell as | �p2| varies
according to the distribution dictated by the atomic
wave function. Using again s = (p1 +p2)

2, t = (p1 −
p3)

2, u = (p1 − p4)
2, p2

1 = p2
3 = 0, p2

4 = m2, and
summing over all initial and final electron spin states,
we find for the case when the initial electron is bound
to an atom that∣∣F (

νee
− → νee

−)∣∣2

(11)

= 2G2
F

{
(ve + ae)

2(s −m2)(s − m̃2)
+ (ve − ae)

2(u−m2)(u− m̃2)
+ 2m2(v2

e − a2
e

)
t
}
.

When m̃2 → m2, this expression coincides with the
free electron expression appearing in (5). As before,
|F(ν̄ee− → ν̄ee

−)|2 for bound initial electrons is
obtained from (11), by interchanging s ↔ u, which
is also equivalent to the simple substitution ae →
−ae in (11). This later substitution may then be used
for obtaining the antineutrino cross sections from the
neutrino ones given below. We will, therefore, discuss
from here on only the derivation of the neutrino cross
section, and simply quote the results for antineutrinos.

To present the subsequent steps of the calculation of
the neutrino ionization cross sections, it is convenient
to concentrate first to the He-atom. In the laboratory
frame, defined as the one where the atom is at rest,
we assume that the two He electrons are in a singlet
spin state described by the same momentum wave
function Ψn00(| �p2|); where n is the usual principal
quantum number, and the orbital angular momentum
quantum numbers are zero. If we neglect the repulsion
between the two electrons, each of the bound electrons
has a fixed binding energy given by the usual Balmer

3 Since the bound electron is non-relativistic to a very good
approximation, it cannot go far off-shell.
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formula

(12)ε = −m(Zα)2

2n2 ,

in which, for a He-atom in the ground state, n = 1
should be used (see (9)).

Denoting by E1 = Eν , the incoming neutrino en-
ergy in the laboratory frame, we write the (νe Heatom
→ νe e

− Heion) ionization cross section as

σνe
He = 1

2
σν

He

(13)

= 1
8E1E2

∫
d3p2

(2π)3
∣∣Ψn00(| �p2|)

∣∣2|F |2

× (2π)4 d"2(p1,p2;p3,p4),

where σν
He denotes the neutrino–He cross section

normalized to one He-atom per unit volume, while σνe
He

is the same cross section normalized to one electron
per unit volume. Moreover, |F |2 is given in (11), the
momentum wave functions are normalized as∫

d3p2

(2π)3
∣∣Ψn00(| �p2|)

∣∣2 = 1,

and d"2(p1,p2;p3,p4) is the usual 2-body phase
space satisfying [12]

(14)(2π)4 d"2(p1,p2;p3,p4)= 1
8π

(
s − m̃2

) dt .

Comparing (13) to the corresponding neutrino cross
section from a free electron, one identifies three dif-
ferences. These are first the “off-shell” effect in |F |2
which has been already discussed (compare (5), (11));
while the other two are the appearance in (13) of the
momentum wave function and the atom-related flux
factor.

For a spherically symmetric wave function as in
the case of Ψn00(| �p2|), the angular part of the bound
electron integral in (13) can be done immediately.
Denoting the magnitude of its space momentum as
k ≡ | �p2| and describing the Euler angles of �p2 as
(θ2, φ2), we obtain from (14), (13)

σνe
He = 1

64πE1E2

∫
2π d cosθ2 k

2 dk
(2π)3(s − m̃2)

(15)×∣∣Ψn00(k)
∣∣2|F |2 dt,

where, using (10), (9), (12), we write

(16)s = m̃2 + 2E1(E2 − k cosθ2),

(17)m̃2 = (m+ ε)2 − k2.

As seen from these equations, the centre of mass
energy of the neutrino-atomic electron system varies
with k.

According to (15), only the k-integration depends
explicitly on the detail form of the electron wave
function. The t and θ2 integrations are not affected by
it, and their ranges are given by 4

tmin ≡ −s +m2 + m̃2 − m2m̃2

s
< t < 0,

(18)−1 < cosθ2 < 1.

Therefore, it is convenient to carry out these two
integrations and define the quantities

Σ(Z,n)= 1
64πE1E2

1∫
−1

d cosθ2

2(s − m̃2)

0∫
tmin

dt|F |2,

(19)

= G2
F

32πE1E2

{
(ve + ae)

2Σ1 + (ve − ae)
2Σ2

+ 2m2(v2
e − a2

e

)
Σ3

}
,

with

Σ1 = 4E2
1

(
E2

2 + k2

3

)
+ 2E1E2

(
m̃2 − 2m2)

(20)+m4 − m4m̃2

4E1k
ln

(
s̄ + 2E1k

s̄ − 2E1k

)
,

(21)

Σ2 = 4E2
1

9
(
k2 + 3E2

2
) −E1E2

(
m2 − m̃2)

+ m4m̃2

6
(
s̄2 − 4E2

1k
2
)(
m2 + 3m̃2)

− s̄m6m̃4

3(s̄2 − 4E2
1k

2)2

+ m4

24E1k

(
m2 − 3m̃2) ln

(
s̄ + 2E1k

s̄ − 2E1k

)
,

4 There is a caveat concerning the θ2 integration, related to (16).
In order to have s > m2 for the whole range −1 < cos θ2 < 1, we
must ensure that k always remains sufficiently small, which is in
fact guaranteed by the consistency of the non-relativistic treatment
of the bound electron.
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(22)

Σ3 = − m2(m2 + 2m̃2)

8E1k
ln

(
s̄ + 2E1k

s̄ − 2E1k

)

+ m4m̃2

2
(
s̄2 − 4E2

1k
2
) −E1E2 +m2,

where Eqs. (16), (17), (11), (9), (12) and the definition

(23)s̄ = m̃2 + 2E1E2

are used. We also note here that Σ(Z,n) in (19) has
been so normalized that at k = 0 and m̃ = E2 = m

it becomes identical to the free electron cross sec-
tion appearing in (8). This guarantees that the neutrino
cross section from a bound electron will always co-
incide with the free electron one, as soon as E1 be-
comes much larger than the average k-momenta of
the atomic electrons. It may also be worth mention-
ing that the dependence of Σ(Z,n) on Z and n is
induced by its dependence on the binding energy ε

entering the definitions of E2 and m̃ (compare with
Eqs. (12), (9), (10)).

Combining (15) and (19) we write the ionization
cross section for a ground state He atom, normalized
to one electron per unit volume, as

(24)σνe
He = 1

2
σν

He =
kmax∫
0

4πk2 dk
(2π)3

∣∣Ψ100(k)
∣∣2
Σ(2,1),

where [11]

(25)Ψ100(k)= 8
√
π β5/2

(k2 + β2)2
,

and β ≡Zmα determines the range of k-values.
For the helium wave function, we use the hydrogen-

like wave function obtained from (25), for an effec-
tive atomic number Zeff = 2–5/16 derived from varia-
tional calculations. 5 Using (12) for Zeff, we obtain the
total He binding energy as EHe = −77.4 eV, which
is very close to the experimental total binding energy
of EHe,exp = −78.975 eV. The implied single elec-
tron binding energy is εHe � −24.6 eV, which is the
value we have used in the actual calculations. The
results are insensitive to the exact magnitude of this
value.

The upper bound of the integration in (24) is
determined by the requirement that s > m2, which

5 See, e.g., any of the books in [11].

according to (16) leads to

(26)kmax = √
E1(E1 + 2m+ 2ε)+ ε(ε + 2m)−E1.

The corresponding ionization cross section from
an unpolarized hydrogen atom in its ground state is
written in analogy to (24) as

(27)σνe
H = σν

H =
kmax∫
0

4πk2 dk
(2π)3

∣∣Ψ100(k)
∣∣2
Σ(1,1),

where Z = 1 is used.
Finally, for the Ne ionization from its ground state,

we have to remember that there are ten electrons in
this case, in the configuration 1s22s22p6. For the
wave functions we use the exponentials suggested
in [13], which reproduce the observed total binding
energy of the atom. For the binding energies of each
electron in the various bound states we use the values
ε1s = −870 eV, ε2s = −48.5 eV, ε2p = −21.7 eV.
The Fourier transforms to the momentum space are
straight-forward and will not be given here. The range
of momenta implied by the wave functions in [13] is
much smaller than Zmα.

The νeNe ionization cross section, normalized to
one electron per unit volume is given by

σνe
Ne = 1

10
σν

Ne

= 1
10

kmax∫
0

4πk2 dk
(2π)3

[
2
∣∣Ψ100(k)

∣∣2Σ(10,1)

+ 2
∣∣Ψ200(k)

∣∣2
Σ(10,2)

(28)+ 6
4π

∣∣R21(k)
∣∣2Σ(10,2)

]
.

We note that in the last term in (28), only the
radial part R21(k) of the Ψ21m-wave function appears.
This is because the angular dependence of the wave
function disappears when the contributions from all
six electrons in the (n= 2, l = 1)-shell are added.

We present in Fig. 2(a) the neutrino ionization cross
sections of the H, He and Ne atoms, normalized to
one electron per unit volume, as well as the νe e

− →
νe e

− cross section for the free electron case; while
in Fig. 2(b) the ratios of the same atomic cross
sections to the free electron one are presented. In
both cases the neutrino energies are at the keV-range.
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Fig. 1. Neutrino–electron Feynman diagrams

The corresponding results for the antineutrino case are
presented in Fig. 3(a), (b).

As seen in Figs. 2 and 3, the cross sections for bound
electrons are close to (but smaller than) the cross
sections for free electrons. For energies larger than
10 keV their difference is less than 5%. These results
are also rather insensitive to the exact magnitude of
the values of the binding energies. The same pattern
is repeated for antineutrinos, as seen in Fig. 3. As
an example we note that at 15 keV the neutrino or
antineutrino free electron cross sections, as well as the
cross sections of the H or He atoms per electron, are
all in the range of ∼ 6 ×10−48 cm2, while the Ne ones
are slightly smaller. We have thus to conclude that we
cannot reproduce the results of [8] for the H, He and
Ne atoms.

The structure of the results in Figs. 2 and 3 can
be understood intuitively. It just indicates that as Z

increases, the binding of the atomic electrons is also
increasing, obstructing the atom ionization through
neutrinos of keV energies. This binding effect is rather
small though, so that as the neutrino energy increases,
the atomic ionization cross section rapidly approaches
the free electron one.

Fig. 2. The νe ionization cross sections for the H, He and Ne
atoms divided by z, and the neutrino free electron cross section as
functions of the neutrino energy Eν (a); as well as the ratios of the
atomic to free electron cross sections (b).

To summarize, we can claim that as soon as the neu-
trino energy passes the 20 keV region, the ionization
cross sections for H, He and even the Ne atoms (nor-
malized to one electron per unit volume) become vir-
tually identical to the free electron cross section. In
fact, on the basis of Figs. 2, 3 we could also claim that
for a tritium experiment like the one suggested in [7],
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Fig. 3. The ν̄e ionization cross sections for the H, He and Ne atoms
divided by Z, and the antineutrino free electron cross section as
functions of the neutrino energy Eν̄ (a), as well as the ratios of the
atomic to free electron cross sections (b).

it would be probably impossible to discriminate these
ionization cross section from the free electron one.

Finally, a comment should be added on the condi-
tions under which coherent effects may appear in neu-
trino scattering. We have stressed above that there is
no coherence phenomenon affecting the magnitude of
the neutrino ionization cross section. It should be re-
membered however, that a coherent MSW [10] effect

at keV energies, will always be induced by the forward
elastic scattering of neutrinos (or antineutrinos) from
the electrons bound in the atoms. Since the electron
binding is not expected to play an important role in the
forward elastic process, this MSW effect is essentially
given by the forward free electron elastic amplitude
convoluted with the square of the electron wave func-
tion. Thus, at keV neutrino energies the MSW effect
may have some additional energy dependence com-
pared to the standard one in [10]; but it should soon
assimilate it as the energy approaches, e.g., the 20 keV
range. The detail study of this phenomenon is beyond
the scope of the present paper.
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