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Ventricular arrhythmogenesis during acute coronary syndromes is a common cause of sudden cardiac death,
but the underlying mechanisms remain incompletely understood. Recent evidence indicates an emerging
pathophysiologic role of endothelin-1 during myocardial ischaemia and evolving infarction. At the early stages
post-coronary occlusion, endothelin-1 enhances sympathetic activation, an effect mediated via the ETA receptor,
whereas the ETB receptor exerts protective actions. The importance of this interaction is clearly decreased during
subsequent stages, during which endothelin-1 may participate in the genesis of ventricular tachycardia or
fibrillation via other mechanisms; of these, the effects of endothelin-1 on repolarizing potassium currents and
electrical conduction via gap junctions merit further research. The relative roles of ETA and ETB receptors during
this phase are unclear. Evaluation of the arrhythmogenic effects of endothelin-1 during acute coronary
syndromes may provide the tools towards lowering sudden cardiac death rates.

© 2014 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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Ischaemia-related arrhythmias: the main cause of sudden death

Sudden cardiac death comprises over 10% of all deaths from natural
causes and constitutes a major health-related problem worldwide
(Rubart and Zipes, 2005). In approximately 80% of cases, sudden cardiac
arxou Avenue, 45110 Ioannina,
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death is caused by sustained ventricular tachycardia (VT) and ventricu-
lar fibrillation (VF) secondary to acute myocardial infarction (MI)
(Rubart and Zipes, 2005). Due to the high prevalence of coronary artery
disease, the annual number of sudden cardiac deaths in the general pop-
ulation is estimated at 250/million, with rates remaining stable during
the past decade (Kolettis, 2013). Arrhythmogenesis after acute coronary
occlusion often displays a biphasic pattern (Di Diego and Antzelevitch,
2011),with early clustering of VT/VF accounting formost of themortality,
due to its common occurrence prior to medical attendance (Rubart and
Zipes, 2005; Kolettis, 2013).
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Pathophysiology of ischaemia-related arrhythmias

Myocardial ischaemia induces profound changes in cardiac electro-
physiology that affect both, the ischaemic and the normal myocardium
(Luqman et al., 2007). Shortly after acute coronary occlusion, extracellu-
lar concentration of potassium ions rises, generating injury currents
towards normal myocardial areas that lead to myocardial cell depolari-
zation. Sodium-ion conductance diminishes, decreasing the amplitude
and slope of phase 0, and eventually slows conduction and alters refrac-
toriness (Luqman et al., 2007). Moreover, acute coronary occlusion
induces pronounced changes in the action potential duration in the
ischaemic zone, resulting in heterogeneous repolarization across the
myocardium (Carmeliet, 1999). As a result of these changes, abnormal
automaticity and triggered activity can initiate polymorphic VT or VF
that are sustained by multiple re-entrant circuits across the ischaemic
and normal myocardium.

Factors associated with early arrhythmogenesis

The identification of factors predisposing to primary VF during acute
MI has attracted multifaceted research efforts for decades (Kolettis,
2013). Positive family history of sudden cardiac death is common in
these patients (Piccini et al., 2008), indicating genetic predisposition, a
finding corroborated by genome-wide association studies (Aouizerat
et al., 2011). The incidence of primary VT/VF appears to be higher in
patients with larger infarct size (Gheeraert et al., 2006), as suggested
by angiographic studies showing that patients presenting with cardiac
arrest caused by acute MI are more likely to have proximal than distal
coronary lesions (Hreybe et al., 2007). However, wide variation exists,
with primary VF associated with small ischaemic myocardial areas
not uncommonly encountered in clinical practice; this observation is
supported by the lack of clear-cut association between the extent of
myocardial ischaemia and VT/VF in other clinical reports (Gheeraert
et al., 2000). Thus, the correlation between the size of ischaemic
myocardium and arrhythmogenesis is relatively weak, signifying the
presence of additional contributing factors.

Endothelin-1 during acute myocardial infarction

Shortly after its discovery in 1988 (Yanagisawa et al., 1988), marked
rises in endothelin-1 (ET-1) plasma levels were demonstrated in pa-
tients presenting with acute MI (Miyauchi et al., 1989). In the porcine
model of myocardial ischaemia, it was shown that even short periods
of coronary flow obstruction increase the production of ET-1, which
originates mainly from the ischaemic ventricular myocardium
(Tonnessen et al., 1993). Plasma ET-1 levels usually peak 6 h after coro-
nary occlusion and return to normal values within 24 h, but they can
remain elevated for substantially longer periods in patients with
continuing ischaemia or acute left ventricular failure (Kolettis et al.,
2013a). ET-1 plays an active role in the pathophysiology of the entire
spectrum of coronary artery disease, ranging from the formation of
atherosclerotic plaque, acute coronary syndromes to post-MI heart
failure (Kolettis et al., 2013a); amidst this array, the effects of ET-1 on
ventricular arrhythmogenesis during acute MI may have important
clinical ramifications.

Arrhythmogenic effects of ET-1

Early studies have demonstrated direct electrophysiologic effects of
ET-l, exerted via activation of L-type calcium channels (Yorikane et al.,
1991). It was subsequently shown that ET-1 infusion increased the
frequency of spontaneous diastolic calcium transients in isolated ventric-
ular cardiomyocytes, through activation of inositol triphosphate recep-
tors in the sarcoplasmic reticulum membrane (Proven et al., 2006). Via
this mechanism, ET-1 enhanced the occurrence of afterdepolarizations,
an action further supported by the regulation of repolarizing potassium
currents (Kiesecker et al., 2006), responsible for changes in action poten-
tial duration.

The importance of direct electrophysiologic actions of ET-1 during
acute coronary syndromes was initially debated, relative to those elicit-
ed due to aggravation of myocardial ischaemia (Szabo et al., 2000).
However, subsequent studies have demonstrated distinct arrhythmo-
genic effects of ET-1, independently of its vasoconstrictive properties.
In the in vivo canine model, low-dose ET-1 administration precipitated
severe ventricular arrhythmias, without signs of reduced coronary
blood flow or myocardial ischaemia (Szabo et al., 2000). Furthermore,
low-dose ET-l administered via the intracoronary (Toth et al., 1995)
or intrapericardial (Szokodi et al., 1998) routes in in vivo large
animal models resulted in polymorphic VT and VF, triggered by
afterdepolarizations following prolongation of the action potential.
Lastly, disparate features of ventricular arrhythmogenesis were demon-
strated after ET-1 administration and after the induction of myocardial
ischaemia, characterized by prominent differences in activation
patterns in the ischaemic and normal myocardium (Becker et al., 2000).

Endothelin receptor blockade during myocardial ischaemia

Given the documented rise of ET-1 production during MI (deterio-
rating myocardial ischaemia), along with its direct arrhythmogenic
effects, the hypothesis has been put forward that endothelin receptor
blockade may exert antiarrhythmic actions during acute MI (Duru
et al., 2001). This issue has been examined in a number of studies
(reviewed in Oikonomidis et al. (2010a)), but the results were contra-
dictory, due to the diversity in ischaemia protocols and experimental
settings, and to the nature of ET-1 examined (i.e., endogenous versus
exogenous origin). More importantly, these studies (Oikonomidis
et al., 2010a) included relatively short recording periods, despite the
need for longer observation, directed by the biphasic pattern of VT/VF
occurrence in the post-MI setting.

To overcome these limitations, our group (Baltogiannis et al., 2005)
previously evaluated the effects of selective ETA receptor blockade
in the in vivo rat model; this model is suitable for the study of
ischaemia-related arrhythmias, as the rat displays a large number of
episodes in response to coronary artery ligation. We used miniature
telemetry transmitters, which permit long-term recording in conscious,
unrestricted animals, without the confounding effects of anaesthesia
(Baltogiannis et al., 2005). We reported prominent reduction in the
total duration of VT/VF episodes during both, early and delayed phases
post-ligation, confirming the important pathophysiologic role of the
ETA receptor. To examine the role of the ETB receptor, we subsequently
evaluated the effects of dual ETA/ETB endothelin receptor blockade in
the same experimental setting (Kolettis et al., 2008); in this study, the
reduction in the duration of VT/VF episodes was mainly confined to the
delayed phase post-ligation, indicating a beneficial effect of functioning
ETB receptors during the early phase (Kolettis et al., 2008). Monophasic
action potential measurements suggested improved repolarization ho-
mogeneity as a candidate mechanism in both studies (Baltogiannis
et al., 2005; Kolettis et al., 2008), thereby attributing this action to ETA
receptor blockade. Another interesting finding in these experiments
(Kolettis et al., 2008) was the diverse effect of pre-treatment with dual
ETA/ETB endothelin receptor blockade on plasma catecholamines,
measured 24 h post-ligation; specifically, plasma norepinephrine
decreased, but epinephrine levels increased in treated rats (Kolettis
et al., 2008). These findings highlight the complex interaction between
the endothelin system and sympathetic activation, exerted at the
myocardial and adrenal gland levels.

Sympathetic activation: an important arrhythmogenic mechanism

Acute coronary occlusion increases sympathetic activation and
constitutes an essential mechanism underlying ischaemia-related
ventricular tachyarrhythmias (Schomig et al., 1991); by contrast, vagal
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stimulation in experimental animal settings exerts protective effects
(Vanoli et al., 1991). Nonetheless, data in man are relatively scarce
and available evidence originates from indirect information; for exam-
ple, low serum potassium has been consistently found in patients with
primary VF, considered a marker of catecholamine surge during acute
MI, as circulating catecholamines shift potassium intracellularly
through muscular β2-receptor stimulation of the sodium–potassium–

ATPase (Gheeraert et al., 2006). Additional information stems from
cross-sectional clinical reports, in which events causing extreme
emotional stress triggered both, acute MI (Wilbert-Lampen et al.,
2010) and ventricular tachyarrhythmias, often leading to sudden
cardiac death (Leor et al., 1996).

ET-1 and sympathetic activation: a complex interplay

The relation between ET-1 and the sympathetic system and the
resultant effects on arrhythmogenesis have attracted considerable
research interest recently (Kolettis, 2013). A clinical study (Wilbert-
Lampen et al., 2010), examining patients admitted with acute coronary
syndrome induced by emotional stress, reported a two-fold increase in
plasma ET-1 levels, as compared to similar patients without apparent
sympathetic activation as a precipitating factor. In addition, several
pieces of information derived fromexperimental data have demonstrat-
ed a complex interplay between ET-1 and sympathetic activation, with
ETA and ETB receptors exerting opposing effects (Tawa et al., 2012).
Importantly, this interplay appears to be exerted at the ventricular
myocardial level, but also at the adrenal gland level, albeit much less
information is available on the latter.

ETA and ETB receptors in the adrenal gland

The role of endogenous ET-1 in catecholamine secretion in response
to electrical stimulation has been investigated in isolated, perfused rat
adrenal glands (Nagayama et al., 2000); in these experiments, selective
ETA receptor blockade inhibited epinephrine and norepinephrine out-
put, whereas pre-treatment with selective ETB receptor blockade
abolished this response. These findings indicate a complex interaction,
during which activation of ETA receptors interferes with the endothelin
ETB receptor-mediated inhibitory effects on the secretion of adrenal
catecholamines (Nagayama et al., 2000).

ETA and ETB receptors in the ventricular myocardium

The opposing effects of ET receptors in norepinephrine release from
sympathetic nerve endings were first shown in a pivotal study, per-
formed in Langendorff-perfused rat hearts (Yamamoto et al., 2005); in
these experiments, the protective role of ETB receptors was indirectly
ascertained by pharmacological blockade orwith the use of a previously
characterized rat strain (Gariepy et al., 2000), deficient of functional ETB
receptors in the cardiovascular system.

Isaka and co-workers (Isaka et al., 2007) subsequently demonstrated
the presence of both endothelin receptors in cardiac sympathetic
nerve varicosities of guinea pig hearts. In isolated, Langendorff-
perfused beating preparations, selective ETA receptor blockade attenu-
ated norepinephrine release, whereas a less potent effect was shown
after dual ETA/ETB ET receptor; moreover, selective ETB receptor block-
ade markedly elevated local norepinephrine release (Isaka et al., 2007).

Current understanding on the modulation of norepinephrine
overflow by ET-1 in cardiac sympathetic nerve endings was summa-
rized in a recently published review by Tawa et al. (Tawa et al., 2012);
as elegantly described in this work,myocardial ischaemia causes imme-
diate norepinephrine release from sympathetic nerve endings and this
effect ismarkedly potentiated by reversal of norepinephrine transporter
in an outward direction at subsequent stages. ET-1 plays a prominent
pathophysiologic role in this process, by stimulating neuronal Na+/H+

exchanger via activation of ETA receptors, thereby modulating
norepinephrine release (Tawa et al., 2012); this is suggested by de-
creased norepinephrine release after pharmacological inhibition of the
Na+/H+ exchanger by 5-(N-ethyl-N-isopropyl)-amiloride (Yamamoto
et al., 2005; Isaka et al., 2007), but the second messengers mediating
this response remain unclear (Tawa et al., 2012). In contrast to these
effects, ETB receptors decrease norepinephrine overflow, possibly by
enhancement of nitric oxide production in cells containing nitric oxide
synthase.

Our group further addressed this issue in the in vivo ratmodel of MI,
using wild-type and ETB receptor-deficient rats (Oikonomidis et al.,
2010b). We found a marked temporal variation in VT/VF duration
post-MI, consisting of higher arrhythmogenesis in ETB receptor-
deficient rats during the early phase post-ligation, but lower during
the delayed phase. This pattern was accompanied by corresponding
changes in plasma catecholamines and non-invasive indices of sympa-
thetic activation, whereas the observed differences in VT/VF episodes
were abolished by β-blockade. These findings confirm the opposing
effects of endothelin receptors, but also shed further light on the differ-
ences in arrhythmogenic mechanisms between acute ischaemia and
evolving MI (Clements-Jewery et al., 2005).

Arrhythmogenesis during evolving myocardial infarction

After the initial stages of ischaemia, prolonged coronary artery
occlusion produces a progressive necrosis wavefront (Reimer and
Jennings, 1979). Evolving myocardial infarction results in a second
arrhythmogenic period that has been clearly described in animal
models (Kolettis et al., 2013b), and a similar pattern is also believed to
be present in man (Kolettis, 2013; Di Diego and Antzelevitch, 2011).
Delayed ventricular tachyarrhythmias during acute MI are important
not only in patients with late presentation, but also in hospitalized
patients, due to the associated increase in short-term morbidity and
mortality (Kolettis, 2013; Piccini et al., 2008). Thus, VT/VF during evolv-
ing MI constitute an important—and often neglected—therapeutic
target (Clements-Jewery et al., 2005).

Themechanisms underlying delayed arrhythmogenesis in the course
of acute MI are still under investigation, but sympathetic activation ap-
pears to play a less important role, when compared to early stages. This
conclusion is supported by experimental data in Langendorff-perfused
preparations, which are devoid of sympathetic activation and, as such,
do not exhibit delayed-phase VT/VF (Ravingerova et al., 1995); however,
the addition of catecholamines in the perfusion solution in this experi-
mental setting did not restore delayed-phase VT/VF, indicating the pres-
ence of factors (other than catecholamines) mediating VT/VF during
evolving MI (Clements-Jewery et al., 2002). These factors remain poorly
defined, but current evidence suggests ET-1 as a possible candidate,
based on its effects on ion channels and gap junctions.

Effects of ET-1 on ion channels

The regulatory action of ET-1 on ion currents has been demonstrated
by cellular studies long ago (Yorikane et al., 1991), and more recent
findings have fuelled further research interest. In isolated human
ventricular cardiomyocytes, ET-1 decreased the rapid component of
the delayed rectifier potassium channel (Magyar et al., 2000); likewise,
a marked inhibition of themain repolarizing potassium current IK1was
noted in isolated human atrial cardiomyocytes (Kiesecker et al., 2006).
The latter action of ET-1 was exerted via phosphorylation of Kir2.2
channel subunits and additional regulatory effects on Kir2.3 channels
(both mediated by protein kinase-C) (Kiesecker et al., 2006); this effect
was time-dependent, raising the possibility that a similar action on
ventricular cardiomyocytes may be (at least partly) responsible for
arrhythmogenesis during the time-frame of evolving MI.

Another potential mechanism involved in the genesis of delayed
VT/VF lies in the action of ET-1 on the transient outward current
(Ito). This calcium-independent current is activated immediately



Fig. 1. ET-1 and arrhythmias during acute MI. Effects of endothelin-1 (ET-1) during the
early ischaemic phase (upper panel) and evolving myocardial infarction (MI, lower
panel). During ischaemia (A), activation of ETA receptors increases arrhythmogenesis by
enhancing sympathetic response (red arrow) in the adrenal gland and the myocardium;
ETB receptors exert protective effects (green arrow). E: epinephrine, NE: norepinephrine.
During evolving necrosis (B), the arrhythmogenic actions of ET-1 appear to be exerted by
increased action potential duration (leading to early afterdepolarizations, EADs); another
possible mechanism is lower conductance mediated by decreased gap junction density.
The relative role of ETA and ETB receptors during this phase is unclear.

139T.M. Kolettis / Life Sciences 118 (2014) 136–140
after the upstroke of the action potential and contributes to early-phase
repolarization in many species including man, thereby influencing the
shape and duration of the action potential (Sah et al., 2002); further-
more, the transient outward current regulates the transmural sequence
of repolarization and contributes to the homogeneity of this process.
Secondary to these effects, critical alterations of the transient outward
current may promote the occurrence of early afterdepolarizations
under certain conditions (Zhao et al., 2012). Data derived from isolated
rat ventricular cardiomyocytes (Wagner et al., 2007) indicate a direct or
indirect effect of ET-1 on the transient outward current, based on the re-
sponses after long-term selective ETA receptor blockade. These findings
need to be confirmed under conditions of ischaemia and/or progressive
necrosis, along with varying degrees of sympathetic activation.

Effects of ET-1 on gap junctions

The conduction of electrical impulse via the gap junctions is a funda-
mental element of cardiac electrophysiology; changes in their function
induced by myocardial ischaemia decrease conduction velocity and set
the stage for the formation of re-entrant circuits. An important in vitro
study (Reisner et al., 2009), performed in cultures of neonatal rat ventric-
ular cardiomyocytes, examined the impulse conduction after exposure
to ET-1; after 3 h, a time-dependent decrease in conduction velocity
was observed, accompanied by a redistribution of connexins from the
membrane to cytosol, resulting in decreased density of gap junctions.
These findings introduce an additional mechanism of ET-1-mediated
arrhythmogenesis that needs to be confirmed in in vivo experiments.

Concluding comments

Sudden cardiac death, a major health-related problem, is caused
mainly by sustained ventricular tachycardia (VT) and fibrillation (VF)
secondary to acute MI. ET-1 rises markedly as a result of ischaemia and
subsequent progressivemyocardial necrosis and is involved in the gene-
sis of ventricular tachyarrhythmias, both during the early (pre-hospital)
and the delayed (in-hospital) phases. Current understanding and puta-
tive mechanisms underlying the involvement of ET-1 and its receptors
in ventricular arrhythmogenesis during acute MI are depicted in Fig. 1.

In addition to its vasoconstrictive effects, ET-1 exerts complex direct
electrophysiologic actions; cellular studies have demonstrated that ET-1
modulates the occurrence of afterdepolarizations by increasing the fre-
quency of spontaneous diastolic calcium transients and by increasing
the action potential duration. Likewise, low-dose ET-l administered via
the intracoronary or intrapericardial route resulted in polymorphic VT
and VF.

Based on the arrhythmogenic effects of ET-1, endothelin receptor
blockade may exert antiarrhythmic effects. Indeed, selective ETA recep-
tor blockade in the in vivo MI-rat model reduced the total duration of
VT/VF episodes during the early and delayed phases; these findings
suggest an important pathophysiologic role of the ETA receptor in the
genesis of ischaemia-related VT/VF. By contrast, such reduction was
mainly confined to the delayed phase after dual ETA/ETB endothelin
receptor blockade, indicating a beneficial effect of functioning ETB recep-
tors during the early stage post-acute coronary occlusion. Improved re-
polarization homogeneity and decreased sympathetic activation appear
as likely mechanisms, underlying the beneficial actions of ETA receptor
blockade in the setting of acute MI.

A complex interaction has been described between the endothelin
system and sympathetic activation, with profound importance in the
genesis of ischaemia-related VT/VF. This interaction appears to be
exerted at the myocardial and adrenal gland levels; in both, opposing
effects of ETA and ETB receptors have been demonstrated in ex vivo
studies, further corroborated by in vivo experiments.

After the initial stages of ischaemia, evolving myocardial necrosis
produces a second arrhythmogenic period, which is associated with
increased short-term morbidity and mortality. The mechanisms
underlying delayed arrhythmogenesis in the course of acute MI are
still under investigation, but sympathetic activation appears to play a
less prominent role, compared to early phase-VT/VF. By contrast,
increased ET-1 production may mediate arrhythmogenesis during
evolvingmyocardial necrosis, an effect that can be attributed to the pos-
sible alteration on repolarizing potassium currents and/or gap junction
conductance. However, more data are needed from in vivo experiments
before inferences can be made.

Deeper knowledge on the mechanisms underlying the
arrhythmogenesis during myocardial ischaemia and MI may translate
into lower morbidity and mortality during acute coronary syndromes.
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