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Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce
the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been
successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen spe-
cific T cells. EAE was also very useful to refute the idea that IFN-c producing T helper type 1 (Th1)
cells were the sole players within the pathogenic T cell response. Rather, ‘‘new’’ T cell lineages such
as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of
EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine net-
work that shapes T helper cell responses and lesion development in CNS specific autoimmunity.

� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Multiple sclerosis (MS) is the most common inflammatory
demyelinating disease in adult humans. Although its prevalence
is only about 1 in 1000 in Europe and the US, MS imposes a heavy
medical and economic burden on the society since it affects young
individuals in the most productive years of their lives [1]. The clin-
ical course of MS is relapsing remitting (RRMS) in about 70–80% of
patients. However, after a disease duration of 10 years, almost half
of the affected individuals experience a deterioration of symptoms
independently of relapses and enter into the secondary progressive
phase of the disease [2]. Many hypotheses have been put forward
on the etiology of MS and all of them have been disproved except
for one: the autoimmune hypothesis that argues in favor of the
idea that the myelin sheath is attacked by autoantigen specific im-
mune cells [3–6]. First, all the gene polymorphisms that have been
validated in genome wide association studies to be associated with
increased risk of developing MS affect immune genes. Prominent
examples are HLA class II DRB1⁄1501, IL2R, IL7R, CD58, and
IL12p35 [7]. None of these genes has a role in the development
or homeostasis of oligodendrocytes, astrocytes, or neurons. Second,
animal models of primary oligodendropathies do not recapitulate
histopathological hallmark features of MS [8–11]. Third (and per-
haps most importantly), therapeutic strategies that have been de-
rived from the animal model of inflammatory demyelination, i.e.,
al Societies. Published by Elsevier
experimental autoimmune encephalomyelitis (EAE) are at least
partially efficient in MS patients [12–15].

The current concept of the pathologic cascade in MS has largely
been developed in EAE and the most important key feature of this
concept is that immunological tolerance of autoreactive T cells is
broken [16–18]. Breach of tolerance can be due to a multitude of
reasons including elevated frequencies of autoreactive T cells,
molecular mimicry of foreign antigens that activate T cells that
have degenerate T cell receptors (TcR), true cross reactivity of T
cells that express two different TcRs, one of which recognizes a for-
eign antigen while the other one is autoreactive, or failure of reg-
ulatory T cells. Once autoreactive T cells are triggered in the
peripheral immune compartment, a chain of events is started.
Every step in this sequence of events, i.e. crossing of the blood
brain barrier, re-activation in the perivascular compartment, infil-
tration into the CNS parenchyma, immune cell/target cell interac-
tion within the CNS parenchyma, lesion development, and
resolution of inflammation as well as tissue repair have all been
extensively studied in EAE [18,19]. During the last 30 years, EAE
has become one of the most successful animal models in preclini-
cal research and basic T cell immunology. Indeed, EAE in its multi-
ple variants does not only recapitulate histopathological features
of MS as a prototypic organ specific autoimmune disease but is also
a suitable model to study T cell development during immune reac-
tions in vivo. Here, we will focus on the development of various
species of effector T cells and the cytokine network involved in
their generation as well as the effector cytokines that eventually
induce immunopathology during autoimmune CNS inflammation.
B.V. Open access under CC BY-NC-ND license.
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2. T Helper cell subsets

Upon recognition of their cognate antigen in the context of MHC
class II molecules and in the presence of co-stimulatory signals as
well as cytokine cues provided by innate immune cells, CD4+ T cells
are activated and initiate a developmental program that leads to
the commitment of the T cell to a specific effector cell phenotype.
It has long been recognized that there are at least two distinct
effector T helper cell phenotypes that are defined by a characteris-
tic cytokine signature. This categorization into IL-4 producing Th2
and IFN-c producing Th1 cells was first introduced by Mosmann
et al. who were looking for CD4+ T cell subsets that were particu-
larly suited to give B cell help and found that IL-4 producers but
not IFN-c producers were very efficient in promoting the produc-
tion of IgG1 in murine B cells [20]. Besides IL-4, Th2 also secrete
IL-5 and IL-13 but no IFN-c. In contrast Th1 cells produce IFN-c,
TNF, and lymphotoxin, but no IL-4. Th1 cells activate macrophages
and thus mediate phagocyte-dependent protective immune
responses.

The generation of Th1 cells from a naïve CD4+ T cell precursor
requires IL-12, a cytokine that is strictly T cell-extrinsic and is pro-
duced by activated antigen-presenting cells (APCs) [21]. Upon
sensing small amounts of IFN-c derived from innate immune cells
in combination with TcR signaling, the transcription factor T-bet is
upregulated in a Stat1 (signal transducer and activator of transcrip-
tion 1) dependent manner. T-bet, in turn, induces the expression of
IL-12Rb2 rendering nascent Th1 cells responsive to IL-12. IL-12, via
Stat4, further transactivates T-bet, which is the most important
transcription factor to stabilize the production of large amounts
of IFN-c determining the terminal commitment of T cells to the
Th1 lineage [22]. Because T-bet and Gata3, the master transcription
factors for Th1 and Th2 cells, respectively [23,24], cross-inhibit
each other [25], it has long been thought that the commitment of
T cells to the Th1 vs Th2 lineages was mutually exclusive, but this
view has recently been changing (see below).

Since the histopathological and clinical features not only in EAE
and MS but also in other organ-specific autoimmune diseases like
rheumatoid arthritis or psoriasis, could be explained by Th1 effec-
tor mechanisms, these cells and their key cytokine IFN-c were
thought to be the major mediators of organ-specific autoimmunity.
IFN-c was identified in the lesions of MS patients and administra-
tion of recombinant IFN-c triggered MS-relapses [26,27]. The fact
that myelin antigen specific T cell lines that had a pure Th1 pheno-
type were very potent in inducing EAE upon adoptive transfer into
recipient animals was also a very strong argument in favor of EAE
(and putatively also MS) as being a ‘‘Th1’’ disease. Consistent with
this idea, Tbx21�/� (T-bet deficient) mice were resistant to MOG35–55

induced EAE and neutralizing antibodies to the p40 subunit of IL-
12 reduced the disease severity in EAE mice [28,29]. However, as
of the mid 1990s it was difficult to reconcile the Th1 concept of
EAE with the observation that the newly generated Ifng�/� mice
and Ifngr�/� mice as well as Il12p35�/� mice were not resistant to
EAE, but were even hypersusceptible to the disease [30–32]. It
was later discovered that the p40 subunit of IL-12 not only paired
with p35 to form the biologically active heterodimeric molecule of
IL-12, but also with a p19 subunit to form a cytokine that was
termed IL-23 [33]. IL-23 did not induce Th1 cells but promoted
the secretion of a phylogenetically ancient cytokine, IL-17, in
CD4+ T cells. IL-17 had been cloned in 1993 [34,35]but did not re-
ceive a lot of attention because it had not been associated with
adaptive T helper cell responses up to then. Il23p19�/�mice (which
do not produce IL-23, but whose production of IL-12 is not im-
paired) were completely resistant to any model of induced autoim-
munity including EAE [36]. Thus, as of 2003 the IL-23/IL-17 axis
rapidly moved into the focus of research interest in autoimmunity
and chronic inflammation. Since IL-17 cannot be classified accord-
ing to the Th1/Th2 paradigm, IL-17 producing CD4+ T helper cells
were termed Th17 cells. However, whether or not Th17 cells are
a T helper cell lineage of their own, kindled a serious debate among
T cell immunologists. Even though the minimal requirements for
the definition of a ‘‘new’’ lineage, i.e. identification of the differen-
tiation factors that induce Th17 cells from naïve T cells, character-
ization of a distinct cytokine signature that is linked to distinct
effector functions of Th17 cells, and identification of a ‘‘master’’
transcription factor that controls the transcription of the signature
cytokines of Th17 cells have all been met [37–39], it remains a con-
cern that Th17 cells, in contrast to Th1 cells, do not seem to be sta-
ble in vivo and it is still not entirely clear whether long lived
memory T cells can be generated from the Th17 lineage [40]. Yet,
Th17 cells are found in the inflamed CNS of EAE mice and IL-17
is one of the cytokines that is strongly upregulated in MS lesions
[41], in the skin of psoriasis patients [42], in the gut of patients
with chronic inflammatory bowel disease [43], and in the joints
of patients with rheumatoid arthritis [44].

Further T helper cell subsets such as Th9 cells or Th22 cells have
recently been described based on their signature cytokines IL-9
and IL-22, respectively [45–48]. However, for these Th subsets it
is even less clear than for Th17 cells whether they represent stable
lineages. Th9 cells are induced by TGF-b plus IL-4 and produce
exceptionally large quantities of IL-9, high levels of IL-10 but only
trace amounts of IL-17 or IFN-c. Since IL-9 was formerly thought to
be a Th2 specific cytokine, most of the effector functions of Th9
cells were observed in models of allergic diseases. Indeed Th9 cells
act as key players in onset and progression of asthma serving as
strong inducers of mast cell responses [47]. However, despite ma-
jor differences in differentiation modes and functions, Th1, Th17
and Th9 cells are able to contribute to the pathogenesis of EAE
and MS [49]. Each T helper cell subset produces specific cytokines
which act as critical components of the immune inflammatory pro-
cess and are the key means by which T helper cells amplify im-
mune responses and recruit other effector cells of the adaptive
and innate immune system to shape specific types of immunity
(Fig. 1). In order to understand the coordinate recruitment of var-
ious effector cell subsets to the site of inflammation, it has been an
important focus in EAE research to elucidate the temporal and spa-
tial pattern of cytokine expression in the CNS during an autoim-
mune response (see also Table 1).

3. IFN-c

IFN-c, the hallmark Th1 cytokine, plays a significant role both in
immunostimulation and immunomodulation. IFN-c was first de-
scribed by Wheelock as an interferon-like virus inhibitor produced
by human leukocytes [50]. IFN-c, the only member of the type II
class of interferons, has been cloned and is located on human chro-
mosome 12 [51] and mouse chromosome 10 [52]. The Ifng gene is
highly conserved among species and contains four exons and three
introns [53]. The biologically active IFN-c protein is built from two
monomers in an anti-parallel inter-locking manner.

IFN-c is produced by NK and NKT cells that belong to the innate
immune system but is also a major product of activated T cells (see
above). The IFN-c receptor is composed of two subunits: the
ligand-binding a-chain [54] and the transmembrane b-chain, that
is essential for intracellular signaling [55,56]. Whereas the a-chain
is ubiquitously and constitutively expressed, the expression of the
b-chain is induced by distinct stimuli [57]. Upon binding of IFN-c
to its receptor the receptor associated Janus kinases Jak1 and
Jak2 become phosphorylated and phosphorylate in turn the down-
stream transcription factor Stat1a which binds to specific DNA
elements (IFN-c-activation sites) [58]resulting in rapid direct or



Fig. 1. Model of T helper cell differentiation. Naïve T cells can differentiate into T
helper type 1 (Th1), Th2, Th17 or Th9 cells depending on the cytokine environment.
The transcription factors Gata3, T-bet, Ror-ct or PU.1, and Irf4 are among others
required for the induction of Th2, Th1, Th17, or Th9 cells, respectively. Each T helper
cell subset secrets a distinct panel of effector cytokines, which in turn, affects
distinct types of target cells.
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indirect transcriptional activation of IFN-c target genes including
Fcc receptor or MHC class I and II [59].

IFN-c has a great impact on the regulation of the immune re-
sponse [60] since many immune cells express the IFN-c receptor
and respond to IFN-c: IFN-c stimulates the differentiation of Th1
cells, inhibits the differentiation of Th2 cells [61] and activates
cytotoxic T cells and NK cells [62]. Furthermore IFN-c influences
antibody production by promoting the secretion of IgG2a by B cells
[63] and stimulates macrophages to produce tumor necrosis factor
(TNF), IL-1, IL-6 and IL-8 [64]. Because of its influence on Th1 cells
Table 1
Effector cytokines in EAE.

Cytokine Source Receptor/

IFN-c T cells, NKT cells, NK cells Heterodim
IL-17A Th17 cells, CD8+ T cells, cd T cells, NKT cells, NK cells,

LTi cells, LTi-like cells, neutrophils, eosinophils, monocytes
Functiona
IL-17RA:
endotheli
IL-17RC:
cells, low

IL-21 Th17 cells, T follicular helper cells, NKT cells, NK cells Functiona
cc: on lym
non-hem
IL-21R: o
myeloid c

IL-9 Th9 cells, Th2 cells, Treg cells, NKT cells, mast cells Functiona
cc: on lym
non-haem
IL-9Ra: T
cells, airw

IL-22 Th17 cells, activated T cells, cd T cells, NKT cells, NK cells, LTi
cells, LTi-like cells

Functiona
IL-10R2:
non-hem
IL-22R1:
tissues, b

TNF Activated T cells, B cells, NK cells, monocytes, macrophages
(main producers), dendritic cells, astrocytes, microglia

TNFR1 (p
T cells or
TNFR2 (p
oligodend

GM-CSF Activated T cells, macrophages, dendritic cells (CD103+),
endothelial cells, fibroblasts, mesothelial cells

Functiona
On neutro
macropha
and macrophages, IFN-c was thought to be crucial for the induc-
tion of EAE. Indeed, in mice, high levels of IFN-c could be detected
in the CNS at the peak of EAE disease, but declined during recovery
[65]. However, unexpectedly, mice deficient for IFN-c or IFN-c
receptor were fully susceptible to EAE and even experienced an
EAE with higher morbidity and mortality [30,31]. Although it is
now known that IFN-c is also pro-apoptotic and initiates the con-
traction of effector T cell populations [66,67], development of EAE
in the genetic absence of IFN-c eliminated this cytokine as unique
non-redundant pathogenic factor in T cell mediated organ-specific
autoimmunity.

4. IL-17

IL-17 (IL-17A) is the prototypic cytokine of the IL-17 family
which contains IL-17, IL-17B, IL-17C, IL-17D, IL-17E (also called
IL-25), and IL-17F, which share 16–50% amino acid identity
[68,69]. Members of the IL-17 family of cytokines are structurally
homologous to the cysteine knot family of proteins. IL-17A and
IL-17F are the best characterized family members and have distinct
but overlapping (mostly proinflammatory) functions. IL-17F is
more important in mucosa associated immune responses [70]. IL-
17A and IL-17F are secreted by several cell types including subsets
of CD4+ T cells, CD8+ T cells, cd T cells, NKT cells, NK cells and neu-
trophils. In contrast, IL-17E (also called IL-25) is associated with
Th2 responses and is secreted by Th2 cells, mast cells, but also
intestinal epithelial cells. The receptor complex for IL-17E consists
of a IL-17RA/IL-17RB heterodimer and thus, shares the IL-17RA
subunit with the receptor for the proinflammatory family mem-
bers IL-17A and IL-17F, which is a heterodimeric molecule com-
posed of IL-17RA and IL-17RC. Sharing of IL-17RA by IL-17A,
IL-17F, and IL-17E might be one of the reasons why the clinical
phenotype of Il17ra�/� mice that are not resistant to EAE, has been
difficult to interpret. In fact, IL-17A (more than IL-17F) plays a
disease promoting role in EAE while IL-25 is protective [70,71].

Through IL-17RA binding, IL-17A activates NFjB signaling and
MAP kinases. Because IL-17A treatment failed to induce NFjB as
receptor distribution Refs.

er: IFN-cRa/b: inducible on all nucleated cells [180–183]
l heterodimer: IL-17RA/C
on hematopoietic cells, osteoblasts, fibroblasts,
al cells, epithelial cells
on epithelial cells, fibroblasts and other stromal
amounts on hematopoietic cells

[34,36,147,148,159,184–191]

l heterodimer: cc/IL-21R
phoid, but not on non-lymphoid and

atopoietic cells
n B cells, T cells, NK cells, some populations of
ells

[87–89,192–195]

l heterodimer: cc/IL-9Ra
phoid, but not on non-lymphoid and
atopoietic cells
cells, B cells, mast cells, macrophages, dendritic
ay epithelial cells, immature neurons

[45,46,90,96,196–203]

l heterodimer: IL-10R2/IL-22R1
ubiquitously expressed on hematopoietic and
atopoietic cells
on a variety of epithelial and parenchymal
ut not on lymphoid cells

[108,118,120,204–209]

55): on all nucleated cells (not on unstimulated
unstimulated oligodendrocytes)

75): expression on hematopoietic cells and
rocytes

[62,124,210–215]

l heterodimer: bc/GM-CSF(CSF2)Ra
phils, eosinophils, basophils, monocytes,
ges, dendritic cells, microglia, endothelial cells

[139,145,146,216–223]
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well as IL-6 production in embryonic fibroblasts deficient in the E3
ubiquitin ligase TRAF6, TRAF6 has been suggested to be involved
in the IL-17A induced NFjB activation [72]. TRAF6 is recruited to
the IL-17RA chain by the adaptor protein Act1, which binds di-
rectly to the SEFIR domain of IL-17RA [73]. Thus, Act1 and TRAF6
mediate downstream signaling of IL-17RA [74,75]. IL-17A induces
several proinflammatory cytokines (IL-6, IL-1b, TNF, GM-CSF) and
chemokines, in particular CCL20, which can attract CCR6 express-
ing Th17 cells in a positive feed forward loop, and ELR+ (glutamic
acid (E), leucin (L), arginine (R)) members of the CXC family of
chemokines (CXCL1 and CXCL2) that are strong attractants for
neutrophils [76,77]. Moreover IL-17R engagement increases the
generation of reactive oxygen species (ROS) in brain endothelial
cells resulting in disorganization of tight junctions and subse-
quently in blood brain barrier impairment [78,79]. Furthermore
IL-17A is thought to activate microglial cells [80]. Since upon stim-
ulation with IL-17, innate immune cells produce IL-1b and IL-6
which are factors that promote the differentiation of adaptive
immune cells towards the Th17 phenotype, this cytokine network
might constitute a feed forward loop resulting in enhanced tissue
inflammation [81].
5. IL-21

IL-21 is a member of the IL-2 family of cytokines. IL-21 plays a
significant role in the activation of NK cells and promotes the
expansion of B cells and T cells that have been activated by their
cognate antigen [82]. It is produced by NKT cells, but also by acti-
vated CD4+ T cells, especially by Th17 cells and follicular T helper
cells. The functional IL-21 receptor is a heterodimer composed of
the common c-chain (cc) which is shared by the receptors for IL-
2, IL-4, IL-7, IL-9, and IL-15, and the unique IL-21 receptor a chain
(IL-21Ra) [83]. Upon receptor binding, IL-21 activates both Jak1
and Jak3 resulting in signal transduction via Stat3 and Stat1 and
to a weaker extent via Stat5.

IL-21 is a T cell derived cytokine that has a prominent role in the
communication of T cells with other immune cells. IL-21 is in-
volved in the regulation of immunoglobulin production and termi-
nal differentiation of B cells into plasma cells [84,85]. IL-21 induces
the expression of killer inhibitory receptors (KIRs) on NK cells and
thus augments their cytolytic activity. A combination of IL-15 and
IL-21 increases the production of IFN-c by NK cells [86]. Among
effector T helper cells, the largest quantities of IL-21 are produced
by Th17 cells. And similar to IL-4 for Th2 cells and IFN-c for Th1
cells, IL-21 serves as an autocrine amplifier molecule for the gener-
ation of Th17 cells since IL-21 together with TGF-b is able to drive
the generation of Th17 cells from naïve T cells [87–89]. Thus, IL-21
acts back on T cells to increase the Th17 precursor frequency and
also on other immune cells to promote specific effector functions.
Due to the restricted expression of the functional IL-21 receptor,
which is not expressed on non-hematopoietic cells, IL-21 – unlike
IL-17 – does not induce a broad tissue response.
6. IL-9

Like IL-21, IL-9 is a member of the common c-chain receptor
cytokine family. Cellular sources of IL-9 are mast cells but also T
cells. IL-9 has been thought to be part of the Treg signature but
more recently it has been confirmed that IL-9 may be produced
by a specific subset of T helper cells (Th9 cells) that can be induced
in vitro with a combination of TGF-b and IL-4 [45,46,90]. Minor
amounts of IL-9 may also be produced by Th2 and Th17 cells. IL-
9 activates a heterodimeric receptor consisting of the cytokine-
specific IL-9 receptor a chain (IL-9Ra) and the common c-chain
[91]. Upon binding of IL-9 to its receptor, the kinases Jak1 and
Jak3 are phosphorylated and subsequently activate Stat1, Stat3
and Stat5 [92–94].

IL-9 was initially described as a cytokine that promotes the
expansion of mast cells [95]. Il9�/�mice harbor normal steady state
concentrations of mast cells, but show defects in the expansion and
recruitment of mast cell populations after intestinal nematode
infections or EAE induction [96,97]. The proinflammatory charac-
teristics of IL-9 are further supported by the observation that anti-
gen-specific, adoptively transferred Th9 cells are able to induce
EAE [49]. However, the net effect of IL-9 depends on the cellular
context. There are hints that IL-9 may act directly on Tregs (which
express IL-9Ra), enhancing their suppressive function and indi-
rectly on Th17 cells (which do not express IL-9Ra), promoting their
proliferation and/or accumulation [98]. IL-9 induces the expression
of the chemokine CCL20 by astrocytes, which enhances the migra-
tion of Th17 cells into the CNS. Accordingly mice treated with a
neutralizing anti-IL-9 antibody showed reduced expression of
CCL20 in astrocytes and decreased numbers of infiltrating Th17
cells resulting in reduced EAE [99].
7. IL-22

IL-22, which is part of the Th17 cytokine signature, is induced
upon IL-23R engagement and is also produced by NK cells, NKT
cells, cd T cells and lymphoid tissue inducer (LTi) cells. IL-22 is a
member of the IL-10 family of cytokines, which also includes IL-
10, IL-19,IL-20, IL-24, IL-28a, and IL-28b as well as IL-26 and IL-
29, two IL-10 family members that are only expressed in humans
[100–103]. Whereas the Il29 gene exists in mice, but is non-
functional due to the existence of a stop codon within the first exon
[104,105], the Il26 gene is disrupted in rodents [106]. The unique
IL-22R is a heterodimeric transmembrane receptor complex con-
sisting of IL-22R1 and IL-10R2. Binding of IL-22 to its receptor acti-
vates Jak-Stat signaling pathways, in particular Stat3. In addition to
the cell surface receptor complex, there is a secreted IL-22 binding
receptor, termed IL-22 binding protein (IL-22BP), which is encoded
by an independent gene that lacks sequences for the intracellular
and transmembrane domains of IL-22R [107–110]. In vitro, IL-
22BP binds IL-22 and inhibits the binding of IL-22 to its cell mem-
brane associated receptor. Interestingly, IL-22BP expression is
downregulated under inflammatory conditions [111,112]. This
suggests that IL-22 is the only IL-10 family member whose func-
tional activity can be regulated even after its secretion.

Similar to IL-17, IL-22 has a broad impact on epithelial cells.
However, in contrast to IL-17RA and IL-17RC, the functional IL-22
receptor complex is not expressed on hematopoietic cells. Thus,
IL-22 modulates local tissue responses and targets cells of the skin,
the digestive tract, the lungs and the kidney and promotes cell pro-
liferation and differentiation, thereby enhancing host defence and
wound-healing responses [113]. Moreover IL-22 exhibits protec-
tive functions by limiting tissue damage during inflammatory pro-
cesses of the liver [114], the gut [115,116]and the myocardium
[117]. The role of IL-22 in autoimmunity is not yet clear. Whereas
IL-22 exacerbates the inflammatory skin response in psoriasis
[118–120], the effector functions of IL-22 in EAE are not well
understood. While IL-22 contributes to breaching of the blood
brain barrier [78], IL-22 KO mice do not show a reduced phenotype
in the EAE model [121].
8. TNF

TNF is mainly produced by activated mononuclear phagocytic
cells, but also by NK cells, B cells, activated T cells, as well as by
resident cells of the CNS including astrocytes and microglial cells.
TNF is generated as a 27 kDa membrane-bound protein. Upon
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proteolytic cleavage by the matrix metalloprotease TNF-a convert-
ing enzyme (TACE), the resulting 17 kDa fragments form homo-
trimers and thus build the soluble active form of the cytokine. Both
the transmembrane and the soluble forms are biologically active.
There are two types of TNF receptors: TNF receptor 1 (TNFR1,
p55) is broadly expressed and can be activated by either soluble
or transmembrane TNF. TNF receptor 2 (TNFR2, p75) is preferen-
tially activated by the transmembrane form of TNF [122,123] and
is expressed by cells of the immune system including microglia
but also by macroglial cells. Oligodendrocytes express TNFR2 in a
constitutive manner and are induced to express TNFR1 by inflam-
matory stimuli [124]. While TNFR1 confers cytotoxic effects and
promotes apoptosis, TNFR2 mediated signaling modulates apopto-
sis but can also result in cell growth and proliferation [125].

More than 15 years ago, TNF was identified in active MS brain
lesions, both on the protein and mRNA level [126,127]. Thus, TNF
was considered to be involved in Th1 mediated tissue damage.
Accordingly, elimination of TNF producing macrophages, applica-
tion of a neutralizing anti-TNF antibody or of a soluble p55 mole-
cule prevented the induction of EAE [128–130] whereas
administration of recombinant TNF exacerbated clinical symp-
toms. [131]. Similarly, transgenic mice overexpressing TNF in the
CNS developed a spontaneous inflammatory demyelinating disease
and this demyelination was completely reversed by a neutralizing
anti-TNF antibody [132]. In line with these findings, Tnfr1(p55)�/�

mice were totally resistant to EAE. However, Tnfr2(p75)�/� mice
exhibited exacerbated EAE, with increased Th1 cytokine produc-
tion, and increased infiltration of CD4+ T cells and macrophages
in the CNS [133]. Also, mice deficient for TNF were not protected
from EAE; they even developed a more severe variant of EAE, char-
acterized by extensive inflammation and demyelination [134].In-
deed, after toxic demyelination, Tnfr2(p75)�/� mice showed
reduced proliferation of oligodendrocyte precursor cells and thus,
impaired remyelination as compared with wild type littermates
or Tnfr1(p55)�/� mice suggesting that TNF promotes remyelination
by acting directly on TNFR2+ oligodendrocyte precursors [135].Ta-
ken together, these observations support the hypothesis that TNF
may not only be a myelinolytic effector molecule of exaggerated
Th1 responses but also have a role in immunoregulation (by induc-
ing apoptosis) and tissue repair (by modulating remyelination).
9. GM-CSF

Granulocyte macrophage-colony stimulating factor (GM-CSF)
was originally defined by its ability to promote the proliferation
and differentiation of macrophages, granulocytes, and dendritic
cells from precursors [136,137]. GM-CSF is secreted by cells of
the innate immune system but also by T cells in response to
inflammatory stimuli such as IL-1, TNF and LPS [138,139].Notably,
GM-CSF is also a target of IL-23 and is part of the cytokine signa-
ture of Th17 cells. GM-CSF binds to a high-affinity heterodimeric
receptor composed of a GM-CSF specific a-chain and the common
signal-transduction subunit b (bc), which is shared with the recep-
tors for IL-3 and IL-5 [140,141]. GM-CSF mediates its effects
through different signaling pathways, including the Jak-Stat-
pathway, the MAP kinase pathway and the phosphoinositol-3-
kinase (PI3K) pathway.

GM-CSF has important functions in both physiological and
inflammatory conditions. In particular, it is critically involved in
the development of organ-specific autoimmune diseases including
EAE and collagen-induced arthritis. Mice that are deficient for GM-
CSF or received a neutralizing anti-GM-CSF antibody developed
attenuated EAE [142,143] whereas local administration of GM-
CSF leads to exacerbated EAE [144]. Interestingly, GM-CSF seems
to be a particularly important effector molecule of Th17 cells
because anti-GM-CSF antibody treatment selectively suppressed
IL-23-driven forms of EAE while EAE induced by adoptive transfer
of IL-12p70 polarized PLP specific T cells (Th1 cells) developed irre-
spective of GM-CSF blockade [143]. GM-CSF promotes inflamma-
tion in the CNS probably by enhancing the expression of MHC
class II and costimulatory molecules by local and/or infiltrating
APCs. Kopf and coworkers demonstrated that GM-CSF facilitates
the secretion of IL-6 and IL-23 by DCs and macrophages and thus
regulates the generation and maintenance of Th17 cells [145]. In
summary, GM-CSF appears to play a profound proinflammatory
role in EAE. However, while some evidence points to T cells, there
are still uncertainties on the most relevant cellular sources of GM-
CSF under conditions of chronic inflammation in the CNS
[143,146].

10. Individual effector cytokines and T helper cell subsets are
not equivalent

Cytokine knockout mice or mice that transgenically overexpress
a specific cytokine have been invaluable tools in deciphering the
role of cytokines in chronic inflammation and organ specific auto-
immunity. Unexpected observations like unimpaired susceptibility
to EAE of Ifng�/� mice, Tnf�/� mice, or Il17f�/� mice prompted con-
ceptual debates on whether or not it is possible to define one sol-
itary cytokine that is responsible for the induction of tissue
inflammation in a non-redundant manner. The answer to this
question might rather be no. The finding that both IFN-c and IL-
17 might be dispensable for induction of EAE, respectively, has
even fueled the swan song by some researchers of Th1 and Th17
cells as pathogenic T cells in EAE and other organ specific autoim-
mune diseases. However, it must be considered that distinct T
helper cell subsets do not only produce one solitary signature cyto-
kine but a panel of factors whose combined effects might be
responsible for a specific mode of immunity, i.e. IFN-c is not equiv-
alent to Th1 cells and IL-17 is not equivalent to Th17 cells.
Although there has been a tendency to rush into lineage assign-
ment to particular subsets of T helper cells (perhaps regarding
Th9 and Th22 cells), there is still a large body of experimental evi-
dence to suggest that the concept of distinct T helper cell lineages
is valid. Th1 and Th17 cells are clearly distinct. In the initial reports
on Th17 cells, it was shown that Th17 cells develop in the genetic
absence of Stat1, Stat4, and T-bet that are necessary and sufficient
to induce Th1 cells [147,148]. Moreover, IFN-c and IL-4 are both
inhibitory to the development of Th17 cells. Thus, Th1 cells and
Th17 cells are fundamentally different and induce different types
of immunity in vivo. While Th1 mediated immunity results in
inflammatory infiltrates dominated by activated macrophages,
Th17 cells induce neutrophilic inflammatory responses (Fig. 1).
11. Plasticity of T helper cells in EAE

T helper subsets (or even lineages) might be more plastic than
anticipated [149]. Plasticity might be dictated by factors in the
ambient milieu and adapt the T helper cell response to the require-
ments of a specific niche or compartment. But here too, T cell biol-
ogy is not completely arbitrary but follows specific rules and is
dependent on specific nodal points of T cell development. Upon
initial commitment to a specific developmental program, a T cell
will become responsive to modulatory cytokines in the ambient
milieu based on its receptor equipment. It will be essential
whether WSX1 or IL-6Ra will pair with the constitutively ex-
pressed gp130 to form a functional IL-27 receptor or a functional
IL-6 receptor in this T cell [150,151]. Similarly, expression of IL-
23R that pairs with IL-12Rb1 to form a functional IL-23R or expres-
sion of IL-12Rb2 that also associates with IL-12Rb1 but builds a



Fig. 2. cd T cells restrain regulatory T cell responses. cd T cells sense IL-23 produced
by antigen-presenting cells (APC) via a constitutively expressed IL-23 receptor. In
response to IL-23 cd T cells prevent the TGF-b driven conversion of naïve T cells into
Foxp3 expressing regulatory T cells (Tregs) and antagonize Treg mediated
suppression of ab T cells. This enhances the adaptive immune response by effector
ab T cells.
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functional IL-12 receptor will dictate terminal differentiation or
plasticity of a T cell that has already been committed to a develop-
mental program [152]. Yet, it depends on the lineage commitment
how fundamental the fate decisions of a given T cell can be. For
example, Th1 cells are relatively stable and cannot easily be repro-
grammed while Th2 cells might be switched into a Th1 phenotype
in a biased experimental system [153]. Adoptively transferred
LCMV specific Th2 cells can be reprogrammed to express T-bet
and produce IFN-c upon subsequent in vivo infection with LCMV
resulting in protective immunity and memory T cells that co-
express T-bet and Gata3 [153]. Th17 cells appear to be even less
stable. Although it is now clear that in vitro generated Th17 cells
and in vivo generated Th17 cells might be different in terms of
developmental plasticity [154], it remains to be determined
whether memory T cells that express a classic Th17 phenotype
really exist [40]. Using reporter mouse/fate tracking systems, it
has been shown that IL-17A or IL-17F producing T cells are repro-
grammed to produce both IL-17 and IFN-c or IFN-c only in the
spleen and within the CNS [155,156]. Yet, these reprogrammed
‘‘Th17’’ cells (even if they do not produce anything else but IFN-
c) seem to be distinct from classical Th1 cells. Although they lost
expression of IL-17, the expression of IL-23R, IL-1R, and CCR6 that
are not usually expressed by Th1 cells was kept up. Thus, the hom-
ing behavior of reprogrammed Th17 cells and their response to the
innate cytokine milieu in the inflamed tissue as well as their mode
of cell death and way of regulation by Tregs might be fundamen-
tally different from Th1 cells.

The contraction of T helper cell populations is an active process
and is regulated differentially depending on the compartment
(lymphoid tissue vs target tissue) and probably also depending
on the effector T cell lineage. While it has long been known that
Th1 cells are very susceptible to Fas/FasL induced cell death
[157]and Th2 cells to GrzB mediated apoptosis [158], it remains
to be determined whether there is a preferred mode of cell death
for Th17 cells. It appears that Th17 cells express high amounts of
IL-10Ra and are more susceptible to IL-10 mediated suppression
than Th1 or Th2 cells. It is likely that IL-10 which might be pro-
vided by Foxp3+ Tregs at the site of inflammation, signals directly
into Th17 cells. However, it is not yet clear whether sensing of IL-
10 leads to reprogramming of the inflammatory properties of Th17
cells or triggers their physical attrition.

12. Alternative sources of T helper cell associated cytokines

Expression of IL-23R, IL-1R, or CCR6 is highly linked to the
‘‘Th17 phenotype’’ in the inflamed tissue. But IL-23R is not only ex-
pressed on Th17 cells. In fact, cells of the innate immune system
like LTi cells, LTi like cells, NK cells, NKT cells, and cd T cells express
large amounts of IL-23R and respond to IL-23 with extensive secre-
tion of IL-17 and IL-22 [159]. We and others could recently show
that IL-23R+ cd T cells enter into the CNS at the time of onset of
clinical signs of EAE and accumulate in the CNS at the peak of
EAE followed by rapid contraction of the cd T cell population
[160,161]. Although CNS derived IL-23R+ cd T cells produce large
amounts of IL-17, cd T cell-derived IL-17 is unlikely to further con-
tribute to IL-17 induced immunopathology because large quanti-
ties of this cytokine are produced by antigen specific Th17 cells
that are also present in the CNS. However, an effector function un-
ique to cd T cells which is not shared with Th17 cells might be their
capacity to repress Treg responses [161]. IL-23 activated cd T cells
inhibit the generation of Foxp3+ Tregs from conventional T cells in
the peripheral immune compartment and in the target tissue of the
inflammation independently of IL-6 or IL-21. In addition, IL-23
activated cd T cells also inhibit the capacity of pre-existent
thymus-derived Tregs to suppress adaptive immune responses by
antigen specific conventional effector ab T cells (Fig. 2). Thus,
IL-23 shapes ab T cell responses in a cell intrinsic manner by guid-
ing and stabilizing their transcriptional program towards patho-
genic effector T cells and in a cell extrinsic manner by tipping
the Treg/effector T cell-balance against Tregs.

Even less is known about the role of IL-23R+ NKT cells. IL-23R+

NKT cells in the spleen rapidly produce large amounts of IL-17
upon stimulation with IL-23 or TcR triggering by aGalCer in an
IL-6 independent manner [162]. However, their contribution to
EAE is unknown while the role of IFN-c or IL-4 producing NKT cells
has been investigated in EAE. Depending on the timing and mode
of their activation with aGalCer, NKT cells can exacerbate EAE
[163] or downmodulate the inflammatory response [163–166].
While NKT cells home to secondary lymphoid tissue, gut associated
lymphoid tissue, and liver, recruitment to the CNS is under debate
[162,167,168].

In summary, we propose that the definition of the temporal pat-
tern of cytokine expression in the inflamed tissue can only be the
first step to understand the principles of immunopathology in
chronic inflammation and autoimmunity. It may be more impor-
tant to define the cellular sources of effector cytokines and under-
stand their plasticity in response to the environment of a specific
niche in order to predict immunopathology.

13. Concluding remarks

EAE has been an extremely useful model to study T cell devel-
opment and T cell fate decisions in vivo. Nevertheless, during the
last 2 decades, we have experienced many unexpected results
when analyzing EAE development in cytokine or transcription fac-
tor knock-out animals. Most of the time – after an initial shock –
these experiments promoted our understanding of T cell biology
and brought our concepts of T cell development and effector func-
tions to a higher level of understanding. Thus, where do we stand
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at the moment? Il12p35�/� mice, Il12rb2�/� mice, Ifng�/� mice,
Ifngr�/� mice, Il17�/� mice, Il21�/� mice, Il21r�/� mice, Il22�/� mice,
Tnf�/� mice, and Tnfr(p75)�/� mice are not resistant to EAE
although all of these cytokines are either required for the develop-
ment of Th1 responses or are signature effector cytokines of Th1 or
Th17 cells [31–33,121,133,134,169–171]. On the other hand,
Il23p19�/� mice, Il23r�/� mice, Il6�/� mice, T cell conditional
gp130�/� mice, and Gmcsf�/� mice are resistant to EAE corroborat-
ing the importance of the IL-23/Th17 axis for the development of
chronic inflammation and autoimmunity [36,87,142,172,173].
One conclusion to be drawn from these results is that it might be
unlikely that there is a unique non-redundant effector cytokine
that is the sole pathogenic factor in organ specific autoimmunity.
Furthermore, T helper cells maintain a certain degree of plasticity
even after commitment to a specific T helper cell lineage. In addi-
tion, pathogenic effector programs within T helper cells may be
driven by transcription factors like Stat3 or T-bet, and it may be
oversimplified to exclusively allot the expression of these tran-
scription factors to just one T cell subset. For example Th17 cells
and even Th2 cells are able to express the Th1 transcription factor
T-bet upon sensing particular cytokine cues and only then take on
proinflammatory and productive effector functions [153,156].

The development of proinflammatory T cell responses has sev-
eral checkpoints. Early during the response – perhaps during T cell
priming in secondary lymphoid tissue and also due to high
amounts of IL-6 receptor expression on naïve conventional T cells
– the availability of IL-6 might dictate whether a pathogenic or a
regulatory adaptive T cell response is primed [38,87]. A late check-
point might be the decision whether a pathogenic response will be
transient or sustained. Here, the responsiveness to IL-23 whose
receptor is not expressed on naïve T cells but on effector T cells
that are committed to the Th17 lineage, will determine the acqui-
sition of sustained effector functions which may no longer be
exclusively associated with the expression of IL-17.In contrast, it
has been shown that committed Th1 cells that keep sensing
IL-12 together with sustained TcR stimulation turn on down-
modulatory programs and start producing IL-10, which has been
shown to be an effector T cell intrinsic mechanism to limit immu-
nopathology [174–178]. This may offer a plausible explanation
why the administration of an anti-p40 antibody (ustekinumab)
that neutralizes both IL-12 and IL-23, had a zero net effect in pa-
tients with RRMS and did not reduce the number of gadolinium
enhancing lesions after 23 weeks [179]. It will be important to
understand the molecular mechanism of these late checkpoints
in order to identify targets for interventional approaches in auto-
immune diseases like MS where the initial steps of T cell commit-
ment have already occurred when the diagnosis is made. We feel
that for these particular questions of T cell development, EAE –
despite all its shortcomings in mimicking the exact clinical course
and histopathology of MS – might be an excellent model.

Acknowledgements

T.K. is supported by the DFG (KO 2964/3-1, 4-1, 5-1) and by the
Gemeinnützige Hertie-Stiftung (1.01.1/10/010).

References

[1] Kobelt, G., Jonsson, L., Henriksson, F., Fredrikson, S. and Jonsson, B. (2000)
Cost-utility analysis of interferon beta-1b in secondary progressive multiple
sclerosis. Int. J. Technol. Assess. Health Care 16, 768–780.

[2] Weinshenker, B.G., Bass, B., Rice, G.P., Noseworthy, J., Carriere, W., Baskerville,
J. and Ebers, G.C. (1989) The natural history of multiple sclerosis: a
geographically based study. I. Clinical course and disability. Brain 112 (Pt
1), 133–146.

[3] Sospedra, M. and Martin, R. (2005) Immunology of multiple sclerosis. Annu.
Rev. Immunol. 23, 683–747.
[4] Ascherio, A. and Munger, K.L. (2007) Environmental risk factors for multiple
sclerosis. Part II: Noninfectious factors. Ann. Neurol. 61, 504–513.

[5] Serafini, B., Rosicarelli, B., Franciotta, D., Magliozzi, R., Reynolds, R., Cinque, P.,
Andreoni, L., Trivedi, P., Salvetti, M., Faggioni, A., et al. (2007) Dysregulated
Epstein-Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204,
2899–2912.

[6] Willis, S.N., Stadelmann, C., Rodig, S.J., Caron, T., Gattenloehner, S., Mallozzi,
S.S., Roughan, J.E., Almendinger, S.E., Blewett, M.M., Bruck, W., et al. (2009)
Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis
brain. Brain J. Neurol. 132, 3318–3328.

[7] De Jager, P.L., Chibnik, L.B., Cui, J., Reischl, J., Lehr, S., Simon, K.C., Aubin, C.,
Bauer, D., Heubach, J.F., Sandbrink, R., et al. (2009) Integration of genetic risk
factors into a clinical algorithm for multiple sclerosis susceptibility: a
weighted genetic risk score. Lancet Neurol. 8, 1111–1119.

[8] Rosenbluth, J. (1980) Central myelin in the mouse mutant shiverer. J. Comp.
Neurol. 194, 639–648.

[9] Klugmann, M., Schwab, M.H., Puhlhofer, A., Schneider, A., Zimmermann, F.,
Griffiths, I.R. and Nave, K.A. (1997) Assembly of CNS myelin in the absence of
proteolipid protein. Neuron 18, 59–70.

[10] Li, C., Tropak, M.B., Gerlai, R., Clapoff, S., Abramow-Newerly, W., Trapp, B.,
Peterson, A. and Roder, J. (1994) Myelination in the absence of myelin-
associated glycoprotein. Nature 369, 747–750.

[11] Lappe-Siefke, C., Goebbels, S., Gravel, M., Nicksch, E., Lee, J., Braun, P.E.,
Griffiths, I.R. and Nave, K.A. (2003) Disruption of Cnp1 uncouples
oligodendroglial functions in axonal support and myelination. Nat. Genet.
33, 366–374.

[12] Keith, A.B., Arnon, R., Teitelbaum, D., Caspary, E.A. and Wisniewski, H.M.
(1979) The effect of Cop 1, a synthetic polypeptide, on chronic relapsing
experimental allergic encephalomyelitis in guinea pigs. J. Neurol. Sci. 42,
267–274.

[13] Johnson, K.P., Brooks, B.R., Cohen, J.A., Ford, C.C., Goldstein, J., Lisak, R.P.,
Myers, L.W., Panitch, H.S., Rose, J.W., Schiffer, R.B., et al. (1998) Extended use
of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical
effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1
Multiple Sclerosis Study Group. Neurology 50, 701–708.

[14] Baron, J.L., Madri, J.A., Ruddle, N.H., Hashim, G. and Janeway Jr., C.A. (1993)
Surface expression of alpha 4 integrin by CD4 T cells is required for their
entry into brain parenchyma. J. Exp. Med. 177, 57–68.

[15] Miller, D.H., Khan, O.A., Sheremata, W.A., Blumhardt, L.D., Rice, G.P., Libonati,
M.A., Willmer-Hulme, A.J., Dalton, C.M., Miszkiel, K.A. and O’Connor, P.W.
(2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N.
Engl. J. Med. 348, 15–23.

[16] Wekerle, H., Kojima, K., Lannes-Vieira, J., Lassmann, H. and Linington, C.
(1994) Animal models. Ann. Neurol. 36 (Suppl.), S47–S53.

[17] Gold, R., Linington, C. and Lassmann, H. (2006) Understanding pathogenesis
and therapy of multiple sclerosis via animal models: 70 years of merits and
culprits in experimental autoimmune encephalomyelitis research. Brain 129,
1953–1971.

[18] Korn, T., Mitsdoerffer, M. and Kuchroo, V.K. (2010) Immunological basis for
the development of tissue inflammation and organ-specific autoimmunity in
animal models of multiple sclerosis. Results Probl. Cell Differ. 51, 43–74.

[19] Becher, B., Bechmann, I. and Greter, M. (2006) Antigen presentation in
autoimmunity and CNS inflammation: how T lymphocytes recognize the
brain. J. Mol. Med. 84, 532–543.

[20] Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. and Coffman, R.L.
(1986) Two types of murine helper T cell clone. I. Definition according to
profiles of lymphokine activities and secreted proteins. J. Immunol. 136,
2348–2357.

[21] Hsieh, C.S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O’Garra, A. and Murphy, K.M.
(1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-
induced macrophages. Science 260, 547–549.

[22] Murphy, K.M., Ouyang, W., Farrar, J.D., Yang, J., Ranganath, S., Asnagli, H.,
Afkarian, M. and Murphy, T.L. (2000) Signaling and transcription in T helper
development. Annu. Rev. Immunol. 18, 451–494.

[23] Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G. and Glimcher, L.H.
(2000) A novel transcription factor, T-bet, directs Th1 lineage commitment.
Cell 100, 655–669.

[24] Zheng, W. and Flavell, R.A. (1997) The transcription factor GATA-3 is
necessary and sufficient for Th2 cytokine gene expression in CD4 T cells.
Cell 89, 587–596.

[25] Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. and Glimcher, L.H. (2005) T helper
cell fate specified by kinase-mediated interaction of T-bet with GATA-3.
Science 307, 430–433.

[26] Traugott, U. and Lebon, P. (1988) Interferon-gamma and Ia antigen are
present on astrocytes in active chronic multiple sclerosis lesions. J. Neurol.
Sci. 84, 257–264.

[27] Panitch, H.S., Hirsch, R.L., Schindler, J. and Johnson, K.P. (1987) Treatment of
multiple sclerosis with gamma interferon: exacerbations associated with
activation of the immune system. Neurology 37, 1097–1102.

[28] Bettelli, E., Sullivan, B., Szabo, S.J., Sobel, R.A., Glimcher, L.H. and Kuchroo, V.K.
(2004) Loss of T-bet, but not STAT1, prevents the development of
experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87.

[29] Leonard, J.P., Waldburger, K.E. and Goldman, S.J. (1995) Prevention of
experimental autoimmune encephalomyelitis by antibodies against
interleukin 12. J. Exp. Med. 181, 381–386.



3754 F. Petermann, T. Korn / FEBS Letters 585 (2011) 3747–3757
[30] Ferber, I.A., Brocke, S., Taylor-Edwards, C., Ridgway, W., Dinisco, C., Steinman,
L., Dalton, D. and Fathman, C.G. (1996) Mice with a disrupted IFN-gamma
gene are susceptible to the induction of experimental autoimmune
encephalomyelitis (EAE). J. Immunol. 156, 5–7.

[31] Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. and Ramshaw, I.A.
(1996) IFN-gamma plays a critical down-regulatory role in the induction and
effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune
encephalomyelitis. J. Immunol. 157, 3223–3227.

[32] Becher, B., Durell, B.G. and Noelle, R.J. (2002) Experimental autoimmune
encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest.
110, 493–497.

[33] Oppmann, B., Lesley, R., Blom, B., Timans, J.C., Xu, Y., Hunte, B., Vega, F., Yu, N.,
Wang, J., Singh, K., et al. (2000) Novel p19 protein engages IL-12p40 to form a
cytokine, IL-23, with biological activities similar as well as distinct from IL-
12. Immunity 13, 715–725.

[34] Yao, Z., Fanslow, W.C., Seldin, M.F., Rousseau, A.M., Painter, S.L., Comeau,
M.R., Cohen, J.I. and Spriggs, M.K. (1995) Herpesvirus Saimiri encodes a new
cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–
821.

[35] Rouvier, E., Luciani, M.F., Mattei, M.G., Denizot, F. and Golstein, P. (1993)
CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA
instability sequences, and homologous to a herpesvirus saimiri gene. J.
Immunol. 150, 5445–5456.

[36] Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L.,
To, W., Kwan, S., Churakova, T., et al. (2003) Interleukin-23 rather than
interleukin-12 is the critical cytokine for autoimmune inflammation of the
brain. Nature 421, 744–748.

[37] Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. and Stockinger, B.
(2006) TGFbeta in the context of an inflammatory cytokine milieu supports
de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189.

[38] Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L.
and Kuchroo, V.K. (2006) Reciprocal developmental pathways for the
generation of pathogenic effector TH17 and regulatory T cells. Nature 441,
235–238.

[39] Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J.,
Cua, D.J. and Littman, D.R. (2006) The orphan nuclear receptor RORgammat
directs the differentiation program of proinflammatory IL-17(+) T helper
cells. Cell 126, 1121–1133.

[40] Pepper, M., Linehan, J.L., Pagan, A.J., Zell, T., Dileepan, T., Cleary, P.P. and
Jenkins, M.K. (2010) Different routes of bacterial infection induce long-lived
TH1 memory cells and short-lived TH17 cells. Nat. Immunol. 11, 83–89.

[41] Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-
Gould, A., Strober, S., Cannella, B., Allard, J., et al. (2002) Gene-microarray
analysis of multiple sclerosis lesions yields new targets validated in
autoimmune encephalomyelitis. Nat. Med. 8, 500–508.

[42] Lowes, M.A., Kikuchi, T., Fuentes-Duculan, J., Cardinale, I., Zaba, L.C., Haider,
A.S., Bowman, E.P. and Krueger, J.G. (2008) Psoriasis vulgaris lesions contain
discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128, 1207–
1211.

[43] Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., Araki, Y., Bamba, T. and
Fujiyama, Y. (2003) Increased expression of interleukin 17 in inflammatory
bowel disease. Gut 52, 65–70.

[44] Chabaud, M., Durand, J.M., Buchs, N., Fossiez, F., Page, G., Frappart, L. and
Miossec, P. (1999) Human interleukin-17: a T cell-derived proinflammatory
cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–
970.

[45] Veldhoen, M., Uyttenhove, C., van Snick, J., Helmby, H., Westendorf, A., Buer,
J., Martin, B., Wilhelm, C. and Stockinger, B. (2008) Transforming growth
factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes
an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346.

[46] Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R.A.,
Mitsdoerffer, M., Strom, T.B., Elyaman, W., Ho, I.C., et al. (2008) IL-4 inhibits
TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-
9+ IL-10+ Foxp3(�) effector T cells. Nat. Immunol. 9, 1347–1355.

[47] Staudt, V., Bothur, E., Klein, M., Lingnau, K., Reuter, S., Grebe, N., Gerlitzki, B.,
Hoffmann, M., Ulges, A., Taube, C., et al. (2010) Interferon-regulatory factor 4
is essential for the developmental program of T helper 9 cells. Immunity 33,
192–202.

[48] Eyerich, S., Eyerich, K., Pennino, D., Carbone, T., Nasorri, F., Pallotta, S.,
Cianfarani, F., Odorisio, T., Traidl-Hoffmann, C., Behrendt, H., et al. (2009)
Th22 cells represent a distinct human T cell subset involved in epidermal
immunity and remodeling. J. Clin. Investig. 119, 3573–3585.

[49] Jager, A., Dardalhon, V., Sobel, R.A., Bettelli, E. and Kuchroo, V.K. (2009) Th1,
Th17, and Th9 effector cells induce experimental autoimmune
encephalomyelitis with different pathological phenotypes. J. Immunol. 183,
7169–7177.

[50] Wheelock, E.F. (1965) Interferon-like virus-inhibitor induced in human
leukocytes by phytohemagglutinin. Science 149, 310–311.

[51] Naylor, S.L., Sakaguchi, A.Y., Shows, T.B., Law, M.L., Goeddel, D.V. and Gray,
P.W. (1983) Human immune interferon gene is located on chromosome 12. J.
Exp. Med. 157, 1020–1027.

[52] Naylor, S.L., Gray, P.W. and Lalley, P.A. (1984) Mouse immune interferon
(IFN-gamma) gene is on chromosome 10. Somat. Cell Mol. Genet. 10, 531–
534.

[53] Gray, P.W. and Goeddel, D.V. (1982) Structure of the human immune
interferon gene. Nature 298, 859–863.
[54] Aguet, M., Dembic, Z. and Merlin, G. (1988) Molecular cloning and expression
of the human interferon-gamma receptor. Cell 55, 273–280.

[55] Soh, J., Mariano, T.M., Lim, J.K., Izotova, L., Mirochnitchenko, O., Schwartz, B.,
Langer, J.A. and Pestka, S. (1994) Expression of a functional human type I
interferon receptor in hamster cells: application of functional yeast artificial
chromosome (YAC) screening. J. Biol. Chem. 269, 18102–18110.

[56] Hemmi, S., Bohni, R., Stark, G., Di Marco, F. and Aguet, M. (1994) A novel
member of the interferon receptor family complements functionality of the
murine interferon gamma receptor in human cells. Cell 76, 803–810.

[57] Bach, E.A., Aguet, M. and Schreiber, R.D. (1997) The IFN gamma receptor: a
paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563–591.

[58] Shuai, K., Ziemiecki, A., Wilks, A.F., Harpur, A.G., Sadowski, H.B., Gilman, M.Z.
and Darnell, J.E. (1993) Polypeptide signalling to the nucleus through
tyrosine phosphorylation of Jak and Stat proteins. Nature 366, 580–583.

[59] Benveniste, E.N. and Benos, D.J. (1995) TNF-alpha- and IFN-gamma-mediated
signal transduction pathways: effects on glial cell gene expression and
function. FASEB 9, 1577–1584.

[60] Young, H.A. and Hardy, K.J. (1995) Role of interferon-gamma in immune cell
regulation. J. Leukoc. Biol. 58, 373–381.

[61] Seder, R.A. and Paul, W.E. (1994) Acquisition of lymphokine-producing
phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673.

[62] Degliantoni, G., Murphy, M., Kobayashi, M., Francis, M.K., Perussia, B. and
Trinchieri, G. (1985) Natural killer (NK) cell-derived hematopoietic colony-
inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis
factor and synergism with immune interferon. J. Exp. Med. 162, 1512–
1530.

[63] Snapper, C.M. and Paul, W.E. (1987) Interferon-gamma and B cell stimulatory
factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947.

[64] Schreiber, R.D., Hicks, L.J., Celada, A., Buchmeier, N.A. and Gray, P.W. (1985)
Monoclonal antibodies to murine gamma-interferon which differentially
modulate macrophage activation and antiviral activity. J. Immunol. 134,
1609–1618.

[65] Merrill, J.E., Kono, D.H., Clayton, J., Ando, D.G., Hinton, D.R. and Hofman, F.M.
(1992) Inflammatory leukocytes and cytokines in the peptide-induced
disease of experimental allergic encephalomyelitis in SJL and B10.PL mice.
Proc. Natl. Acad. Sci. USA 89, 574–578.

[66] Refaeli, Y., Van Parijs, L., Alexander, S.I. and Abbas, A.K. (2002) Interferon
gamma is required for activation-induced death of T lymphocytes. J. Exp.
Med. 196, 999–1005.

[67] Chu, C.Q., Wittmer, S. and Dalton, D.K. (2000) Failure to suppress the
expansion of the activated CD4 T cell population in interferon gamma-
deficient mice leads to exacerbation of experimental autoimmune
encephalomyelitis. J. Exp. Med. 192, 123–128.

[68] Aggarwal, S. and Gurney, A.L. (2002) IL-17: prototype member of an
emerging cytokine family. J. Leukoc. Biol. 71, 1–8.

[69] Kawaguchi, M., Adachi, M., Oda, N., Kokubu, F. and Huang, S.K. (2004) IL-17
cytokine family. J. Allergy Clin. Immunol. 114, 1265–1273.

[70] Yang, X.O., Chang, S.H., Park, H., Nurieva, R., Shah, B., Acero, L., Wang, Y.H.,
Schluns, K.S., Broaddus, R.R., Zhu, Z., et al. (2008) Regulation of inflammatory
responses by IL-17F. J. Exp. Med. 205, 1063–1075.

[71] Kleinschek, M.A., Owyang, A.M., Joyce-Shaikh, B., Langrish, C.L., Chen, Y.,
Gorman, D.M., Blumenschein, W.M., McClanahan, T., Brombacher, F., Hurst,
S.D., et al. (2007) IL-25 regulates Th17 function in autoimmune
inflammation. J. Exp. Med. 204, 161–170.

[72] Schwandner, R., Yamaguchi, K. and Cao, Z. (2000) Requirement of tumor
necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal
transduction. J. Exp. Med. 191, 1233–1240.

[73] Chang, S.H., Park, H. and Dong, C. (2006) Act1 adaptor protein is an
immediate and essential signaling component of interleukin-17 receptor. J.
Biol. Chem. 281, 35603–35607.

[74] Qian, Y., Liu, C., Hartupee, J., Altuntas, C.Z., Gulen, M.F., Jane-Wit, D., Xiao, J.,
Lu, Y., Giltiay, N., Liu, J., et al. (2007) The adaptor Act1 is required for
interleukin 17-dependent signaling associated with autoimmune and
inflammatory disease. Nat. Immunol. 8, 247–256.

[75] Iwakura, Y., Ishigame, H., Saijo, S. and Nakae, S. (2011) Functional
specialization of interleukin-17 family members. Immunity 34, 149–162.

[76] Carlson, T., Kroenke, M., Rao, P., Lane, T.E. and Segal, B. (2008) The Th17-ELR+
CXC chemokine pathway is essential for the development of central nervous
system autoimmune disease. J. Exp. Med. 205, 811–823.

[77] Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat, C.,
Pin, J.J., Garrone, P., Garcia, E., Saeland, S., et al. (1996) T cell interleukin-17
induces stromal cells to produce proinflammatory and hematopoietic
cytokines. J. Exp. Med. 183, 2593–2603.

[78] Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard,
M., Giuliani, F., Arbour, N., Becher, B. and Prat, A. (2007) Human T(H)17
lymphocytes promote blood-brain barrier disruption and central nervous
system inflammation. Nat. Med. 13, 1173–1175.

[79] Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E.,
Bechmann, I., Becher, B., Luhmann, H.J., Waisman, A., et al. (2010) Cellular
mechanisms of IL-17-induced blood-brain barrier disruption. FASEB 24,
1023–1034.

[80] Kawanokuchi, J., Shimizu, K., Nitta, A., Yamada, K., Mizuno, T., Takeuchi, H.
and Suzumura, A. (2008) Production and functions of IL-17 in microglia. J.
Neuroimmunol. 194, 54–61.

[81] Ogura, H., Murakami, M., Okuyama, Y., Tsuruoka, M., Kitabayashi, C.,
Kanamoto, M., Nishihara, M., Iwakura, Y. and Hirano, T. (2008) Interleukin-



F. Petermann, T. Korn / FEBS Letters 585 (2011) 3747–3757 3755
17 promotes autoimmunity by triggering a positive-feedback loop via
interleukin-6 induction. Immunity 29, 628–636.

[82] Spolski, R. and Leonard, W.J. (2008) Interleukin-21: basic biology and
implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79.

[83] Collins, M., Whitters, M.J. and Young, D.A. (2003) IL-21 and IL-21 receptor: a
new cytokine pathway modulates innate and adaptive immunity. Immunol.
Res. 28, 131–140.

[84] Ozaki, K., Spolski, R., Feng, C.G., Qi, C.F., Cheng, J., Sher, A., Morse 3rd, H.C., Liu,
C., Schwartzberg, P.L. and Leonard, W.J. (2002) A critical role for IL-21 in
regulating immunoglobulin production. Science 298, 1630–1634.

[85] Ozaki, K., Spolski, R., Ettinger, R., Kim, H.P., Wang, G., Qi, C.F., Hwu, P., Shaffer,
D.J., Akilesh, S., Roopenian, D.C., et al. (2004) Regulation of B cell
differentiation and plasma cell generation by IL-21, a novel inducer of
Blimp-1 and Bcl-6. J. Immunol. 173, 5361–5371.

[86] Strengell, M., Matikainen, S., Siren, J., Lehtonen, A., Foster, D., Julkunen, I. and
Sareneva, T. (2003) IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma
production in human NK and T cells. J. Immunol. 170, 5464–5469.

[87] Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T.B., Oukka, M. and
Kuchroo, V.K. (2007) IL-21 initiates an alternative pathway to induce
proinflammatory T(H)17 cells. Nature 448, 484–487.

[88] Nurieva, R., Yang, X.O., Martinez, G., Zhang, Y., Panopoulos, A.D., Ma, L.,
Schluns, K., Tian, Q., Watowich, S.S., Jetten, A.M., et al. (2007) Essential
autocrine regulation by IL-21 in the generation of inflammatory T cells.
Nature 448, 480–483.

[89] Zhou, L., Ivanov, I.I., Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E.,
Leonard, W.J. and Littman, D.R. (2007) IL-6 programs T(H)-17 cell
differentiation by promoting sequential engagement of the IL-21 and IL-23
pathways. Nat. Immunol. 8, 967–974.

[90] Schmitt, E., Germann, T., Goedert, S., Hoehn, P., Huels, C., Koelsch, S., Kuhn, R.,
Muller, W., Palm, N. and Rude, E. (1994) IL-9 production of naive CD4+ T cells
depends on IL-2, is synergistically enhanced by a combination of TGF-beta
and IL-4, and is inhibited by IFN-gamma. J. Immunol. 153, 3989–3996.

[91] Renauld, J.C., Druez, C., Kermouni, A., Houssiau, F., Uyttenhove, C., Van Roost,
E. and Van Snick, J. (1992) Expression cloning of the murine and human
interleukin 9 receptor cDNAs. Proc. Natl. Acad. Sci. USA 89, 5690–5694.

[92] Bauer, J.H., Liu, K.D., You, Y., Lai, S.Y. and Goldsmith, M.A. (1998)
Heteromerization of the gammac chain with the interleukin-9 receptor
alpha subunit leads to STAT activation and prevention of apoptosis. J. Biol.
Chem. 273, 9255–9260.

[93] Demoulin, J.B., Uyttenhove, C., Van Roost, E., DeLestre, B., Donckers, D., Van
Snick, J. and Renauld, J.C. (1996) A single tyrosine of the interleukin-9 (IL-9)
receptor is required for STAT activation, antiapoptotic activity, and growth
regulation by IL-9. Mol. Cell. Biol. 16, 4710–4716.

[94] Demoulin, J.B., Van Roost, E., Stevens, M., Groner, B. and Renauld, J.C. (1999)
Distinct roles for STAT1, STAT3, and STAT5 in differentiation gene induction
and apoptosis inhibition by interleukin-9. J. Biol. Chem. 274, 25855–25861.

[95] Renauld, J.C., Goethals, A., Houssiau, F., Van Roost, E. and Van Snick, J. (1990)
Cloning and expression of a cDNA for the human homolog of mouse T cell and
mast cell growth factor P40. Cytokine 2, 9–12.

[96] Nowak, E.C., Weaver, C.T., Turner, H., Begum-Haque, S., Becher, B., Schreiner,
B., Coyle, A.J., Kasper, L.H. and Noelle, R.J. (2009) IL-9 as a mediator of Th17-
driven inflammatory disease. J. Exp. Med. 206, 1653–1660.

[97] Townsend, J.M., Fallon, G.P., Matthews, J.D., Smith, P., Jolin, E.H. and
McKenzie, N.A. (2000) IL-9-deficient mice establish fundamental roles for
IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell
development. Immunity 13, 573–583.

[98] Elyaman, W., Bradshaw, E.M., Uyttenhove, C., Dardalhon, V., Awasthi, A.,
Imitola, J., Bettelli, E., Oukka, M., van Snick, J., Renauld, J.C., et al. (2009) IL-9
induces differentiation of TH17 cells and enhances function of FoxP3+ natural
regulatory T cells. Proc. Natl. Acad. Sci. USA 106, 12885–12890.

[99] Zhou, Y., Sonobe, Y., Akahori, T., Jin, S., Kawanokuchi, J., Noda, M., Iwakura, Y.,
Mizuno, T. and Suzumura, A. (2011) IL-9 promotes Th17 cell migration into
the central nervous system via CC chemokine ligand-20 produced by
astrocytes. J. Immunol., doi:10.4049/jimmunol.1003307.

[100] Blumberg, H., Conklin, D., Xu, W.F., Grossmann, A., Brender, T., Carollo, S.,
Eagan, M., Foster, D., Haldeman, B.A., Hammond, A., et al. (2001) Interleukin
20: discovery, receptor identification, and role in epidermal function. Cell
104, 9–19.

[101] Gallagher, G., Dickensheets, H., Eskdale, J., Izotova, L.S., Mirochnitchenko,
O.V., Peat, J.D., Vazquez, N., Pestka, S., Donnelly, R.P. and Kotenko, S.V. (2000)
Cloning, expression and initial characterization of interleukin-19 (IL-19), a
novel homologue of human interleukin-10 (IL-10). Genes Immun. 1, 442–
450.

[102] Kotenko, S.V., Gallagher, G., Baurin, V.V., Lewis-Antes, A., Shen, M., Shah, N.K.,
Langer, J.A., Sheikh, F., Dickensheets, H. and Donnelly, R.P. (2003) IFN-
lambdas mediate antiviral protection through a distinct class II cytokine
receptor complex. Nat. Immunol. 4, 69–77.

[103] Pestka, S., Krause, C.D., Sarkar, D., Walter, M.R., Shi, Y. and Fisher, P.B. (2004)
Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 22,
929–979.

[104] Bartlett, N.W., Buttigieg, K., Kotenko, S.V. and Smith, G.L. (2005) Murine
interferon lambdas (type III interferons) exhibit potent antiviral activity
in vivo in a poxvirus infection model. J. Gen. Virol. 86, 1589–1596.

[105] Lasfar, A., Lewis-Antes, A., Smirnov, S.V., Anantha, S., Abushahba, W., Tian, B.,
Reuhl, K., Dickensheets, H., Sheikh, F., Donnelly, R.P., et al. (2006)
Characterization of the mouse IFN-lambda ligand-receptor system: IFN-
lambdas exhibit antitumor activity against B16 melanoma. Cancer Res. 66,
4468–4477.

[106] Schoenborn, J.R., Dorschner, M.O., Sekimata, M., Santer, D.M., Shnyreva, M.,
Fitzpatrick, D.R., Stamatoyannopoulos, J.A. and Wilson, C.B. (2007)
Comprehensive epigenetic profiling identifies multiple distal regulatory
elements directing transcription of the gene encoding interferon-gamma.
Nat. Immunol. 8, 732–742.

[107] Dumoutier, L., Lejeune, D., Colau, D. and Renauld, J.C. (2001) Cloning and
characterization of IL-22 binding protein, a natural antagonist of IL-10-
related T cell-derived inducible factor/IL-22. J. Immunol. 166, 7090–7095.

[108] Kotenko, S.V., Izotova, L.S., Mirochnitchenko, O.V., Esterova, E., Dickensheets,
H., Donnelly, R.P. and Pestka, S. (2001) Identification of the functional
interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a
common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived
inducible factor, IL-TIF) receptor complexes. J. Biol. Chem. 276, 2725–2732.

[109] Wei, C.C., Ho, T.W., Liang, W.G., Chen, G.Y. and Chang, M.S. (2003) Cloning
and characterization of mouse IL-22 binding protein. Genes Immun. 4, 204–
211.

[110] Xu, W., Presnell, S.R., Parrish-Novak, J., Kindsvogel, W., Jaspers, S., Chen, Z.,
Dillon, S.R., Gao, Z., Gilbert, T., Madden, K., et al. (2001) A soluble class II
cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc.
Natl. Acad. Sci. USA 98, 9511–9516.

[111] Weiss, B., Wolk, K., Grunberg, B.H., Volk, H.D., Sterry, W., Asadullah, K. and
Sabat, R. (2004) Cloning of murine IL-22 receptor alpha 2 and comparison
with its human counterpart. Genes Immun. 5, 330–336.

[112] Wolk, K., Witte, E., Hoffmann, U., Doecke, W.D., Endesfelder, S., Asadullah, K.,
Sterry, W., Volk, H.D., Wittig, B.M. and Sabat, R. (2007) IL-22 induces
lipopolysaccharide-binding protein in hepatocytes: a potential systemic role
of IL-22 in Crohn’s disease. J. Immunol. 178, 5973–5981.

[113] Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K. and Sabat, R. (2004)
IL-22 increases the innate immunity of tissues. Immunity 21, 241–254.

[114] Zenewicz, L.A., Yancopoulos, G.D., Valenzuela, D.M., Murphy, A.J., Karow, M.
and Flavell, R.A. (2007) Interleukin-22 but not interleukin-17 provides
protection to hepatocytes during acute liver inflammation. Immunity 27,
647–659.

[115] Zheng, Y., Valdez, P.A., Danilenko, D.M., Hu, Y., Sa, S.M., Gong, Q., Abbas, A.R.,
Modrusan, Z., Ghilardi, N., de Sauvage, F.J., et al. (2008) Interleukin-22
mediates early host defense against attaching and effacing bacterial
pathogens. Nat. Med. 14, 282–289.

[116] Sugimoto, K., Ogawa, A., Mizoguchi, E., Shimomura, Y., Andoh, A., Bhan, A.K.,
Blumberg, R.S., Xavier, R.J. and Mizoguchi, A. (2008) IL-22 ameliorates
intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.
118, 534–544.

[117] Chang, H., Hanawa, H., Liu, H., Yoshida, T., Hayashi, M., Watanabe, R., Abe, S.,
Toba, K., Yoshida, K., Elnaggar, R., et al. (2006) Hydrodynamic-based delivery
of an interleukin-22-Ig fusion gene ameliorates experimental autoimmune
myocarditis in rats. J. Immunol. 177, 3635–3643.

[118] Wolk, K., Witte, E., Wallace, E., Docke, W.D., Kunz, S., Asadullah, K., Volk, H.D.,
Sterry, W. and Sabat, R. (2006) IL-22 regulates the expression of genes
responsible for antimicrobial defense, cellular differentiation, and mobility in
keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36, 1309–1323.

[119] Boniface, K., Bernard, F.X., Garcia, M., Gurney, A.L., Lecron, J.C. and Morel, F.
(2005) IL-22 inhibits epidermal differentiation and induces proinflammatory
gene expression and migration of human keratinocytes. J. Immunol. 174,
3695–3702.

[120] Zheng, Y., Danilenko, D.M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J.
and Ouyang, W. (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-
induced dermal inflammation and acanthosis. Nature 445, 648–651.

[121] Kreymborg, K., Etzensperger, R., Dumoutier, L., Haak, S., Rebollo, A., Buch, T.,
Heppner, F.L., Renauld, J.C. and Becher, B. (2007) IL-22 is expressed by Th17
cells in an IL-23-dependent fashion, but not required for the development of
autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104.

[122] Grell, M., Wajant, H., Zimmermann, G. and Scheurich, P. (1998) The type 1
receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis
factor. Proc. Natl. Acad. Sci. USA 95, 570–575.

[123] Grell, M. (1995) Tumor necrosis factor (TNF) receptors in cellular signaling of
soluble and membrane-expressed TNF. J. Inflamm. 47, 8–17.

[124] Tchelingerian, J.L., Monge, M., Le Saux, F., Zalc, B. and Jacque, C. (1995)
Differential oligodendroglial expression of the tumor necrosis factor
receptors in vivo and in vitro. J. Neurochem. 65, 2377–2380.

[125] Sheehan, K.C., Pinckard, J.K., Arthur, C.D., Dehner, L.P., Goeddel, D.V. and
Schreiber, R.D. (1995) Monoclonal antibodies specific for murine p55 and
p75 tumor necrosis factor receptors: identification of a novel in vivo role for
p75. J. Exp. Med. 181, 607–617.

[126] Hofman, F.M., Hinton, D.R., Johnson, K. and Merrill, J.E. (1989) Tumor necrosis
factor identified in multiple sclerosis brain. J. Exp. Med. 170, 607–612.

[127] Selmaj, K., Raine, C.S., Cannella, B. and Brosnan, C.F. (1991) Identification of
lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin.
Investig. 87, 949–954.

[128] Ruddle, N.H., Bergman, C.M., McGrath, K.M., Lingenheld, E.G., Grunnet, M.L.,
Padula, S.J. and Clark, R.B. (1990) An antibody to lymphotoxin and tumor
necrosis factor prevents transfer of experimental allergic encephalomyelitis.
J. Exp. Med. 172, 1193–1200.

[129] Selmaj, K., Papierz, W., Glabinski, A. and Kohno, T. (1995) Prevention of
chronic relapsing experimental autoimmune encephalomyelitis by soluble
tumor necrosis factor receptor I. J. Neuroimmunol. 56, 135–141.

http://dx.doi.org/10.4049/jimmunol.1003307


3756 F. Petermann, T. Korn / FEBS Letters 585 (2011) 3747–3757
[130] Baker, D., Butler, D., Scallon, B.J., O’Neill, J.K., Turk, J.L. and Feldmann, M.
(1994) Control of established experimental allergic encephalomyelitis by
inhibition of tumor necrosis factor (TNF) activity within the central nervous
system using monoclonal antibodies and TNF receptor-immunoglobulin
fusion proteins. Eur. J. Immunol. 24, 2040–2048.

[131] Kuroda, Y. and Shimamoto, Y. (1991) Human tumor necrosis factor-alpha
augments experimental allergic encephalomyelitis in rats. J. Neuroimmunol.
34, 159–164.

[132] Probert, L., Akassoglou, K., Pasparakis, M., Kontogeorgos, G. and Kollias, G.
(1995) Spontaneous inflammatory demyelinating disease in transgenic mice
showing central nervous system-specific expression of tumor necrosis factor
alpha. Proc. Natl. Acad. Sci. USA 92, 11294–11298.

[133] Suvannavejh, G.C., Lee, H.O., Padilla, J., Dal Canto, M.C., Barrett, T.A. and
Miller, S.D. (2000) Divergent roles for p55 and p75 tumor necrosis factor
receptors in the pathogenesis of MOG(35–55)-induced experimental
autoimmune encephalomyelitis. Cell. Immunol. 205, 24–33.

[134] Liu, J., Marino, M.W., Wong, G., Grail, D., Dunn, A., Bettadapura, J., Slavin, A.J.,
Old, L. and Bernard, C.C. (1998) TNF is a potent anti-inflammatory cytokine in
autoimmune-mediated demyelination. Nat. Med. 4, 78–83.

[135] Arnett, H.A., Mason, J., Marino, M., Suzuki, K., Matsushima, G.K. and Ting, J.P.
(2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and
remyelination. Nat. Neurosci. 4, 1116–1122.

[136] Burgess, A.W. and Metcalf, D. (1980) The nature and action of granulocyte-
macrophage colony stimulating factors. Blood 56, 947–958.

[137] Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu,
S. and Steinman, R.M. (1992) Generation of large numbers of dendritic cells
from mouse bone marrow cultures supplemented with granulocyte/
macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702.

[138] Sieff, C.A., Niemeyer, C.M. and Faller, D.V. (1988) Human colony-stimulating
factors and stromal cell function. Soc. Gen. Physiol. Ser. 43, 47–55.

[139] Hamilton, J.A. (2008) Colony-stimulating factors in inflammation and
autoimmunity. Nat. Rev. Immunol. 8, 533–544.

[140] Kitamura, T., Sato, N., Arai, K. and Miyajima, A. (1991) Expression cloning of
the human IL-3 receptor cDNA reveals a shared beta subunit for the human
IL-3 and GM-CSF receptors. Cell 66, 1165–1174.

[141] Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W.
and Plaetinck, G. (1991) A human high affinity interleukin-5 receptor (IL5R)
is composed of an IL5-specific alpha chain and a beta chain shared with the
receptor for GM-CSF. Cell 66, 1175–1184.

[142] McQualter, J.L., Darwiche, R., Ewing, C., Onuki, M., Kay, T.W., Hamilton, J.A.,
Reid, H.H. and Bernard, C.C. (2001) Granulocyte macrophage colony-
stimulating factor: a new putative therapeutic target in multiple sclerosis.
J. Exp. Med. 194, 873–882.

[143] Kroenke, M.A., Carlson, T.J., Andjelkovic, A.V. and Segal, B.M. (2008) IL-12-
and IL-23-modulated T cells induce distinct types of EAE based on histology,
CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205,
1535–1541.

[144] Marusic, S., Miyashiro, J.S., Douhan 3rd, J., Konz, R.F., Xuan, D., Pelker, J.W.,
Ling, V., Leonard, J.P. and Jacobs, K.A. (2002) Local delivery of granulocyte
macrophage colony-stimulating factor by retrovirally transduced antigen-
specific T cells leads to severe, chronic experimental autoimmune
encephalomyelitis in mice. Neurosci. Lett. 332, 185–189.

[145] Sonderegger, I., Iezzi, G., Maier, R., Schmitz, N., Kurrer, M. and Kopf, M. (2008)
GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell
development and survival. J. Exp. Med. 205, 2281–2294.

[146] King, I.L., Kroenke, M.A. and Segal, B.M. (2010) GM-CSF-dependent, CD103+
dermal dendritic cells play a critical role in Th effector cell differentiation
after subcutaneous immunization. J. Exp. Med. 207, 953–961.

[147] Park, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.H., Wang, Y., Hood,
L., Zhu, Z., Tian, Q., et al. (2005) A distinct lineage of CD4 T cells regulates
tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–
1141.

[148] Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy,
K.M. and Weaver, C.T. (2005) Interleukin 17-producing CD4+ effector T cells
develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat.
Immunol. 6, 1123–1132.

[149] Murphy, E., Shibuya, K., Hosken, N., Openshaw, P., Maino, V., Davis, K.,
Murphy, K. and O’Garra, A. (1996) Reversibility of T helper 1 and 2
populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913.

[150] Stumhofer, J.S., Laurence, A., Wilson, E.H., Huang, E., Tato, C.M., Johnson, L.M.,
Villarino, A.V., Huang, Q., Yoshimura, A., Sehy, D., et al. (2006) Interleukin 27
negatively regulates the development of interleukin 17-producing T helper
cells during chronic inflammation of the central nervous system. Nat.
Immunol. 7, 937–945.

[151] Stumhofer, J.S., Silver, J.S., Laurence, A., Porrett, P.M., Harris, T.H., Turka, L.A.,
Ernst, M., Saris, C.J., O’Shea, J.J. and Hunter, C.A. (2007) Interleukins 27 and 6
induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8,
1363–1371.

[152] Lee, Y.K., Turner, H., Maynard, C.L., Oliver, J.R., Chen, D., Elson, C.O. and
Weaver, C.T. (2009) Late developmental plasticity in the T helper 17 lineage.
Immunity 30, 92–107.

[153] Hegazy, A.N., Peine, M., Helmstetter, C., Panse, I., Frohlich, A., Bergthaler, A.,
Flatz, L., Pinschewer, D.D., Radbruch, A. and Lohning, M. (2010) Interferons
direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell
subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128.
[154] Lexberg, M.H., Taubner, A., Forster, A., Albrecht, I., Richter, A., Kamradt, T.,
Radbruch, A. and Chang, H.D. (2008) Th memory for interleukin-17
expression is stable in vivo. Eur. J. Immunol. 38, 2654–2664.

[155] Kurschus, F.C., Croxford, A.L., Heinen, A.P., Wortge, S., Ielo, D. and Waisman,
A. (2010) Genetic proof for the transient nature of the Th17 phenotype. Eur. J.
Immunol. 40, 3336–3346.

[156] Hirota, K., Duarte, J.H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D.J., Ahlfors, H.,
Wilhelm, C., Tolaini, M., Menzel, U., et al. (2011) Fate mapping of IL-17-
producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263.

[157] Zhang, X., Brunner, T., Carter, L., Dutton, R.W., Rogers, P., Bradley, L., Sato, T.,
Reed, J.C., Green, D. and Swain, S.L. (1997) Unequal death in T helper cell
(Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-
mediated apoptosis. J. Exp. Med. 185, 1837–1849.

[158] Devadas, S., Das, J., Liu, C., Zhang, L., Roberts, A.I., Pan, Z., Moore, P.A., Das, G.
and Shi, Y. (2006) Granzyme B is critical for T cell receptor-induced cell death
of type 2 helper T cells. Immunity 25, 237–247.

[159] Cua, D.J. and Tato, C.M. (2010) Innate IL-17-producing cells: the sentinels of
the immune system. Nat. Rev. Immunol. 10, 479–489.

[160] Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C. and Mills,
K.H. (2009) Interleukin-1 and IL-23 induce innate IL-17 production from
gammadelta T cells, amplifying Th17 responses and autoimmunity.
Immunity 31, 331–341.

[161] Petermann, F., Rothhammer, V., Claussen, M.C., Haas, J.D., Blanco, L.R., Heink,
S., Prinz, I., Hemmer, B., Kuchroo, V.K., Oukka, M., et al. (2010) Gammadelta T
cells enhance autoimmunity by restraining regulatory T cell responses via an
interleukin-23-dependent mechanism. Immunity 33, 351–363.

[162] Rachitskaya, A.V., Hansen, A.M., Horai, R., Li, Z., Villasmil, R., Luger, D.,
Nussenblatt, R.B. and Caspi, R.R. (2008) Cutting edge: NKT cells constitutively
express IL-23 receptor and RORgammat and rapidly produce IL-17 upon
receptor ligation in an IL-6-independent fashion. J. Immunol. 180, 5167–
5171.

[163] Pal, E., Tabira, T., Kawano, T., Taniguchi, M., Miyake, S. and Yamamura, T.
(2001) Costimulation-dependent modulation of experimental autoimmune
encephalomyelitis by ligand stimulation of V alpha 14 NK T cells. J. Immunol.
166, 662–668.

[164] Miyamoto, K., Miyake, S. and Yamamura, T. (2001) A synthetic glycolipid
prevents autoimmune encephalomyelitis by inducing TH2 bias of natural
killer T cells. Nature 413, 531–534.

[165] Furlan, R., Bergami, A., Cantarella, D., Brambilla, E., Taniguchi, M., Dellabona,
P., Casorati, G. and Martino, G. (2003) Activation of invariant NKT cells by
alphaGalCer administration protects mice from MOG35–55-induced EAE:
critical roles for administration route and IFN-gamma. Eur. J. Immunol. 33,
1830–1838.

[166] Singh, A.K., Wilson, M.T., Hong, S., Olivares-Villagomez, D., Du, C., Stanic, A.K.,
Joyce, S., Sriram, S., Koezuka, Y. and Van Kaer, L. (2001) Natural killer T cell
activation protects mice against experimental autoimmune
encephalomyelitis. J. Exp. Med. 194, 1801–1811.

[167] Yokote, H., Miyake, S., Croxford, J.L., Oki, S., Mizusawa, H. and Yamamura, T.
(2008) NKT cell-dependent amelioration of a mouse model of multiple
sclerosis by altering gut flora. Am. J. Pathol. 173, 1714–1723.

[168] Mars, L.T., Gautron, A.S., Novak, J., Beaudoin, L., Diana, J., Liblau, R.S. and
Lehuen, A. (2008) Invariant NKT cells regulate experimental autoimmune
encephalomyelitis and infiltrate the central nervous system in a CD1d-
independent manner. J. Immunol. 181, 2321–2329.

[169] Zhang, G.X., Gran, B., Yu, S., Li, J., Siglienti, I., Chen, X., Kamoun, M. and
Rostami, A. (2003) Induction of experimental autoimmune
encephalomyelitis in IL-12 receptor-beta 2-deficient mice. IL-12
responsiveness is not required in the pathogenesis of inflammatory
demyelination in the central nervous system. J. Immunol. 170, 2153–2160.

[170] Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S.,
Sudo, K. and Iwakura, Y. (2006) IL-17 plays an important role in the
development of experimental autoimmune encephalomyelitis. J. Immunol.
177, 566–573.

[171] Sonderegger, I., Kisielow, J., Meier, R., King, C. and Kopf, M. (2008) IL-21 and
IL-21R are not required for development of Th17 cells and autoimmunity
in vivo. Eur. J. Immunol. 38, 1833–1838.

[172] Awasthi, A., Riol-Blanco, L., Jager, A., Korn, T., Pot, C., Galileos, G., Bettelli, E.,
Kuchroo, V.K. and Oukka, M. (2009) Cutting edge: IL-23 receptor gfp reporter
mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182,
5904–5908.

[173] Korn, T., Mitsdoerffer, M., Croxford, A.L., Awasthi, A., Dardalhon, V.A.,
Galileos, G., Vollmar, P., Stritesky, G.L., Kaplan, M.H., Waisman, A., et al.
(2008) IL-6 controls Th17 immunity in vivo by inhibiting the conversion of
conventional T cells into Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA
105, 18460–18465.

[174] Berghmans, N., Dillen, C. and Heremans, H. (2006) Exogenous IL-12
suppresses experimental autoimmune encephalomyelitis (EAE) by tuning
IL-10 and IL-5 levels in an IFN-gamma-dependent way. J. Neuroimmunol.
176, 63–75.

[175] Jankovic, D., Kullberg, M.C., Feng, C.G., Goldszmid, R.S., Collazo, C.M., Wilson,
M., Wynn, T.A., Kamanaka, M., Flavell, R.A. and Sher, A. (2007) Conventional
T-bet(+)Foxp3(-) Th1 cells are the major source of host-protective regulatory
IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283.

[176] Chang, H.D., Helbig, C., Tykocinski, L., Kreher, S., Koeck, J., Niesner, U. and
Radbruch, A. (2007) Expression of IL-10 in Th memory lymphocytes is



F. Petermann, T. Korn / FEBS Letters 585 (2011) 3747–3757 3757
conditional on IL-12 or IL-4, unless the IL-10 gene is imprinted by GATA-3.
Eur. J. Immunol. 37, 807–817.

[177] Gabrysova, L., Nicolson, K.S., Streeter, H.B., Verhagen, J., Sabatos-Peyton, C.A.,
Morgan, D.J. and Wraith, D.C. (2009) Negative feedback control of the
autoimmune response through antigen-induced differentiation of IL-10-
secreting Th1 cells. J. Exp. Med. 206, 1755–1767.

[178] Kemp, K.L., Levin, S.D. and Stein, P.L. (2010) Lck regulates IL-10 expression in
memory-like Th1 cells. Eur. J. Immunol. 40, 3210–3219.

[179] Segal, B.M., Constantinescu, C.S., Raychaudhuri, A., Kim, L., Fidelus-Gort, R.
and Kasper, L.H. (2008) Repeated subcutaneous injections of IL12/23 p40
neutralising antibody, ustekinumab, in patients with relapsing-remitting
multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised,
dose-ranging study. Lancet Neurol. 7, 796–804.

[180] Perussia, B., Mangoni, L., Engers, H.D. and Trinchieri, G. (1980) Interferon
production by human and murine lymphocytes in response to alloantigens. J.
Immunol. 125, 1589–1595.

[181] Herberman, R.B. and Ortaldo, J.R. (1981) Natural killer cells: their roles in
defenses against disease. Science 214, 24–30.

[182] Sato, N., Yahata, T., Santa, K., Ohta, A., Ohmi, Y., Habu, S. and Nishimura, T.
(1996) Functional characterization of NK1.1 + Ly-6C+ cells. Immunol. Lett.
54, 5–9.

[183] Celada, A. (1988) The interferon gamma receptor. Lymphokine Res. 7, 61–73.
[184] Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B.,

Sedgwick, J.D., McClanahan, T., Kastelein, R.A. and Cua, D.J. (2005) IL-23
drives a pathogenic T cell population that induces autoimmune
inflammation. J. Exp. Med. 201, 233–240.

[185] Liu, S.J., Tsai, J.P., Shen, C.R., Sher, Y.P., Hsieh, C.L., Yeh, Y.C., Chou, A.H., Chang,
S.R., Hsiao, K.N., Yu, F.W., et al. (2007) Induction of a distinct CD8 Tnc17
subset by transforming growth factor-beta and interleukin-6. J. Leukoc. Biol.
82, 354–360.

[186] Lockhart, E., Green, A.M. and Flynn, J.L. (2006) IL-17 production is dominated
by gammadelta T cells rather than CD4 T cells during Mycobacterium
tuberculosis infection. J. Immunol. 177, 4662–4669.

[187] Ferretti, S., Bonneau, O., Dubois, G.R., Jones, C.E. and Trifilieff, A. (2003) IL-17,
produced by lymphocytes and neutrophils, is necessary for
lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger.
J. Immunol. 170, 2106–2112.

[188] Molet, S., Hamid, Q., Davoine, F., Nutku, E., Taha, R., Page, N., Olivenstein, R.,
Elias, J. and Chakir, J. (2001) IL-17 is increased in asthmatic airways and
induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin.
Immunol. 108, 430–438.

[189] Zhou, Q., Desta, T., Fenton, M., Graves, D.T. and Amar, S. (2005) Cytokine
profiling of macrophages exposed to Porphyromonas gingivalis, its
lipopolysaccharide, or its FimA protein. Infect. Immun. 73, 935–943.

[190] Kuestner, R.E., Taft, D.W., Haran, A., Brandt, C.S., Brender, T., Lum, K., Harder,
B., Okada, S., Ostrander, C.D., Kreindler, J.L., et al. (2007) Identification of the
IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J.
Immunol. 179, 5462–5473.

[191] Toy, D., Kugler, D., Wolfson, M., Vanden Bos, T., Gurgel, J., Derry, J., Tocker, J.
and Peschon, J. (2006) Cutting edge: interleukin 17 signals through a
heteromeric receptor complex. J. Immunol. 177, 36–39.

[192] Chtanova, T., Tangye, S.G., Newton, R., Frank, N., Hodge, M.R., Rolph, M.S. and
Mackay, C.R. (2004) T follicular helper cells express a distinctive
transcriptional profile, reflecting their role as non-Th1/Th2 effector cells
that provide help for B cells. J. Immunol. 173, 68–78.

[193] Parrish-Novak, J., Dillon, S.R., Nelson, A., Hammond, A., Sprecher, C., Gross,
J.A., Johnston, J., Madden, K., Xu, W., West, J., et al. (2000) Interleukin 21 and
its receptor are involved in NK cell expansion and regulation of lymphocyte
function. Nature 408, 57–63.

[194] Leonard, W.J. and Spolski, R. (2005) Interleukin-21: a modulator of lymphoid
proliferation, apoptosis and differentiation. Nat. Rev. Immunol. 5, 688–698.

[195] Takeshita, T., Asao, H., Ohtani, K., Ishii, N., Kumaki, S., Tanaka, N., Munakata,
H., Nakamura, M. and Sugamura, K. (1992) Cloning of the gamma chain of the
human IL-2 receptor. Science 257, 379–382.

[196] Svetic, A., Finkelman, F.D., Jian, Y.C., Dieffenbach, C.W., Scott, D.E., McCarthy,
K.F., Steinberg, A.D. and Gause, W.C. (1991) Cytokine gene expression after
in vivo primary immunization with goat antibody to mouse IgD antibody. J.
Immunol. 147, 2391–2397.

[197] Stassen, M., Arnold, M., Hultner, L., Muller, C., Neudorfl, C., Reineke, T. and
Schmitt, E. (2000) Murine bone marrow-derived mast cells as potent
producers of IL-9: costimulatory function of IL-10 and kit ligand in the
presence of IL-1. J. Immunol. 164, 5549–5555.

[198] Lauwerys, B.R., Garot, N., Renauld, J.C. and Houssiau, F.A. (2000) Cytokine
production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the
combination of IL-12 and IL-18. J. Immunol. 165, 1847–1853.

[199] Kimura, Y., Takeshita, T., Kondo, M., Ishii, N., Nakamura, M., Van Snick, J. and
Sugamura, K. (1995) Sharing of the IL-2 receptor gamma chain with the
functional IL-9 receptor complex. Int. Immunol. 7, 115–120.
[200] Druez, C., Coulie, P., Uyttenhove, C. and Van Snick, J. (1990) Functional and
biochemical characterization of mouse P40/IL-9 receptors. J. Immunol. 145,
2494–2499.

[201] Fawaz, L.M., Sharif-Askari, E., Hajoui, O., Soussi-Gounni, A., Hamid, Q. and
Mazer, B.D. (2007) Expression of IL-9 receptor alpha chain on human
germinal center B cells modulates IgE secretion. J. Allergy Clin. Immunol. 120,
1208–1215.

[202] Longphre, M., Li, D., Gallup, M., Drori, E., Ordonez, C.L., Redman, T., Wenzel, S.,
Bice, D.E., Fahy, J.V. and Basbaum, C. (1999) Allergen-induced IL-9 directly
stimulates mucin transcription in respiratory epithelial cells. J. Clin. Investig.
104, 1375–1382.

[203] Fontaine, R.H., Cases, O., Lelievre, V., Mesples, B., Renauld, J.C., Loron, G.,
Degos, V., Dournaud, P., Baud, O. and Gressens, P. (2008) IL-9/IL-9 receptor
signaling selectively protects cortical neurons against developmental
apoptosis. Cell Death Differ. 15, 1542–1552.

[204] Liang, S.C., Tan, X.Y., Luxenberg, D.P., Karim, R., Dunussi-Joannopoulos, K.,
Collins, M. and Fouser, L.A. (2006) Interleukin (IL)-22 and IL-17 are
coexpressed by Th17 cells and cooperatively enhance expression of
antimicrobial peptides. J. Exp. Med. 203, 2271–2279.

[205] Moore, K.W., de Waal Malefyt, R., Coffman, R.L. and O’Garra, A. (2001)
Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19,
683–765.

[206] Martin, B., Hirota, K., Cua, D.J., Stockinger, B. and Veldhoen, M. (2009)
Interleukin-17-producing gammadelta T cells selectively expand in response
to pathogen products and environmental signals. Immunity 31, 321–330.

[207] Goto, M., Murakawa, M., Kadoshima-Yamaoka, K., Tanaka, Y., Nagahira, K.,
Fukuda, Y. and Nishimura, T. (2009) Murine NKT cells produce Th17 cytokine
interleukin-22. Cell. Immunol. 254, 81–84.

[208] Takatori, H., Kanno, Y., Watford, W.T., Tato, C.M., Weiss, G., Ivanov, I.I.,
Littman, D.R. and O’Shea, J.J. (2009) Lymphoid tissue inducer-like cells are an
innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41.

[209] Buonocore, S., Ahern, P.P., Uhlig, H.H., Ivanov, I.I., Littman, D.R., Maloy, K.J.
and Powrie, F. (2010) Innate lymphoid cells drive interleukin-23-dependent
innate intestinal pathology. Nature 464, 1371–1375.

[210] Takeda, K., Iwamoto, S., Sugimoto, H., Takuma, T., Kawatani, N., Noda, M.,
Masaki, A., Morise, H., Arimura, H. and Konno, K. (1986) Identity of
differentiation inducing factor and tumour necrosis factor. Nature 323,
338–340.

[211] Sung, S.S., Jung, L.K., Walters, J.A., Chen, W., Wang, C.Y. and Fu, S.M. (1988)
Production of tumor necrosis factor/cachectin by human B cell lines and
tonsillar B cells. J. Exp. Med. 168, 1539–1551.

[212] Philip, R. and Epstein, L.B. (1986) Tumour necrosis factor as
immunomodulator and mediator of monocyte cytotoxicity induced by
itself, gamma-interferon and interleukin-1. Nature 323, 86–89.

[213] Larrick, J.W., Morhenn, V., Chiang, Y.L. and Shi, T. (1989) Activated
Langerhans cells release tumor necrosis factor. J. Leukoc. Biol. 45, 429–
433.

[214] Sawada, M., Kondo, N., Suzumura, A. and Marunouchi, T. (1989) Production
of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain
Res. 491, 394–397.

[215] Fiers, W. (1991) Tumor necrosis factor. Characterization at the molecular,
cellular and in vivo level. FEBS Lett. 285, 199–212.

[216] Cline, M.J. and Golde, D.W. (1974) Production of colony-stimulating activity
by human lymphocytes. Nature 248, 703–704.

[217] Thorens, B., Mermod, J.J. and Vassalli, P. (1987) Phagocytosis and
inflammatory stimuli induce GM-CSF mRNA in macrophages through
posttranscriptional regulation. Cell 48, 671–679.

[218] Wodnar-Filipowicz, A., Heusser, C.H. and Moroni, C. (1989) Production of the
haemopoietic growth factors GM-CSF and interleukin-3 by mast cells in
response to IgE receptor-mediated activation. Nature 339, 150–152.

[219] Munker, R., Gasson, J., Ogawa, M. and Koeffler, H.P. (1986) Recombinant
human TNF induces production of granulocyte-monocyte colony-stimulating
factor. Nature 323, 79–82.

[220] Baldwin, G.C. (1992) The biology of granulocyte-macrophage colony-
stimulating factor: effects on hematopoietic and nonhematopoietic cells.
Dev. Biol. 151, 352–367.

[221] Lopez, A.F., Lyons, A.B., Eglinton, J.M., Park, L.S., To, L.B., Clark, S.C. and Vadas,
M.A. (1990) Specific binding of human interleukin-3 and granulocyte-
macrophage colony-stimulating factor to human basophils. J. Allergy Clin.
Immunol. 85, 99–102.

[222] Elliott, M.J., Vadas, M.A., Eglinton, J.M., Park, L.S., To, L.B., Cleland, L.G., Clark,
S.C. and Lopez, A.F. (1989) Recombinant human interleukin-3 and
granulocyte-macrophage colony-stimulating factor show common
biological effects and binding characteristics on human monocytes. Blood
74, 2349–2359.

[223] Magnus, T., Korn, T. and Jung, S. (2004) Chronically stimulated microglial
cells do no longer alter their immune functions in response to the
phagocytosis of apoptotic cells. J. Neuroimmunol. 155, 64–72.


	Cytokines and effector T cell subsets causing autoimmune CNS disease
	1 Introduction
	2 T Helper cell subsets
	3 IFN-γ
	4 IL-17
	5 IL-21
	6 IL-9
	7 IL-22
	8 TNF
	9 GM-CSF
	10 Individual effector cytokines and T helper cell subsets are not equivalent
	11 Plasticity of T helper cells in EAE
	12 Alternative sources of T helper cell associated cytokines
	13 Concluding remarks
	Acknowledgements
	References


