
Information and Computation 207 (2009) 85–119

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Semantics and expressiveness of ordered SOS�

MohammadReza Mousavi a,b,∗, Iain Phillips c, Michel A. Reniers a,∗, Irek Ulidowski d

a Eindhoven University of Technology, Den Dolech 2, NL-5612 AZ Eindhoven, The Netherlands
b Reykjavík University, Iceland
c Imperial College London, UK
d University of Leicester, UK

A R T I C L E I N F O A B S T R A C T

Article history:

Received 26 February 2007

Revised 9 November 2007
Available online 7 November 2008

Structured Operational Semantics (SOS) is a popular method for defining semantics by

means of transition rules. An important feature of SOS rules is negative premises, which

are crucial in the definitions of such phenomena as priority mechanisms and time-outs.

However, the inclusion of negative premises in SOS rules also introduces doubts as to the

preferred meaning of SOS specifications.

Orderings on SOS rules were proposed by Phillips and Ulidowski as an alternative to neg-

ative premises. Apart from the definition of the semantics of positive GSOS rules with

orderings, the meaning of more general types of SOS rules with orderings has not been

studied hitherto. This paper presents several candidates for the meaning of general SOS

rules with orderings and discusses their conformance to our intuition for such rules.

We take two general frameworks (rule formats) for SOS with negative premises and SOS

with orderings, and present semantics-preserving translations between themwith respect

to our preferred notion of semantics. Thanks to our semantics-preserving translation, we

take existing congruence meta-results for strong bisimilarity from the setting of SOS with

negative premises into the setting of SOS with orderings. We further compare the expres-

siveness of rule formats for SOS with orderings and SOS with negative premises. The paper

contains also many examples that illustrate the benefits of SOS with orderings and the

properties of the presented definitions of meaning.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

It is well-known that negative premises in Structured Operational Semantics (SOS) [17,1] are useful and non-trivial

additions but at the same time they may lead to ambiguities and paradoxical phenomena with respect to the semantics of

SOS [10,6,9]. As an alternative to negative premises, [21,22] proposes to furnish SOS deduction rules with an ordering. But

to avoid the same pitfalls as those of negative premises, [22] restricts itself to the gsos subset of SOS, which does not allow

for look-ahead or complex terms as sources of premises.

It is also well-known from the term rewriting literature that the introduction of orderings (called priorities) to term

rewrite systems introduces challenges for the well-definedness of the semantics of term rewrite systems [14,4,18]. SOS

specifications can be seen as conditional term rewrite systems and thus one expects similar or evenmore difficult challenges

when studying the general semantics of SOS with orderings.

� A shorter version of this paper appeared as [15].
* Corresponding authors. Address: Eindhoven University of Technology, Den Dolech 2, NL-5612 AZ Eindhoven, The Netherlands. (M.A. Reniers)

E-mail addresses:m.r.mousavi@tue.nl (M. Mousavi), iccp@doc.ic.ac.uk (I. Phillips), m.a.reniers@tue.nl (M.A. Reniers), iu3@mcs.le.ac.uk (I. Ulidowski).

0890-5401/$ - see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2007.11.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82279097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic
mailto:m.r.mousavi@tue.nl
mailto:iccp@doc.ic.ac.uk
mailto:m.a.reniers@tue.nl
mailto:iu3@mcs.le.ac.uk

86 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

However, a fundamental study of the semantics of ordered SOS (in its full generality) has not been carried out to date and

evenmisconceptions exist. In [13, Theorem4], it ismentioned (without formal proof) that one can generalize a particular rule

format for ordered SOS with look-ahead while preserving the congruence property of a probabilistic notion of bisimilarity.

However, as we shall show in this paper, the introduction of either look-ahead or complex terms as sources of premises to

ordered SOS jeopardizes the well-definedness of the induced transition relation (let alone the congruence result).

The structureof thispaper is as follows. In Section2,wedefine thebasic conceptofOrderedTransitionSystemSpecification

(OTSS) which is a general framework for ordered SOS. In the same section, we give some examples, both for illustrating the

application of ordered SOS and for showing that the semantics of OTSSs is not always clear. Then, in Section 3, following [6,9],

wedefine several alternative approaches fordefining the semantics of orderedSOS. In Section4,wedefinea rule format, called

otyft (for ordered tyft), for congruence of bisimilarity. Subsequently, in Section 5,we give semantics-preserving translations

from ntyft ([10]) to otyft and vice versa. In Section 6, we compare the relative expressiveness of the existing rule format for

orderedSOSand theotyft format introduced in thispaper. Section7discusses relatedworkandSection8concludes thepaper.

2. Ordered transition system specification

2.1. Basic concepts

Definition 2.1 (Signature, Term and Substitution). Assume a countable set of variables V (with typical members x, y, x′, y′,
xi, yi, . . .). A signature � is a set of function symbols (operators, with typical members f , g, . . .) with fixed arities ar : � → IN.

Functions with zero arity are called constants and are typically denoted by a,b,c and d. Terms s,t,ti, . . . ∈ T are constructed

inductively using variables and function symbols. A list of terms is denoted by
−→
t . When we write f (

−→
t), we assume that

−→
t

has the right size, i.e., ar(f). All terms are considered open terms. Closed terms p,q, . . . ∈ C are terms that do not mention

a variable and are typically denoted by p,q,l,p′,pi, A substitution σ replaces variables in a term with terms. The set of

variables appearing in term t is denoted by vars(t). A substitution is called closed if its range consists of closed terms.

Definition 2.2 (Ordered Transition System Specification (OTSS)). Given a signature and a set of variables, a Transition System

Specification (TSS) is a set R of deduction rules.

A deduction rule r ∈ R, is defined as a tuple (H,c)whereH is a set of formulae and c is a positive formula. For all t,t′ ∈ T and

l ∈ C we define that φ = t
l→ t′ is a positive formula and φ′ = t

l�→ is a negative formula. A formula is a positive or a negative

formula. We denote the set of formulae by� and the set of positive formulae by�p. Term t is called the source of both φ and

φ′, denoted by src(φ) and src(φ′), and t′ is called the target of φ, denoted by trg(φ). The formula c is called the conclusion of r,

denoted by conc(r), and the formulae in H are called its premises and denoted by prem(r). A positive deduction rule (TSS) is a

deduction rule of which all the premises (all the deduction rules) are positive. The notions of source and target generalize to

a set of formulae, as expected. Also, the notion of “variables of” is naturally lifted to sets of terms, formulae, sets of formulae

and deduction rules.

An Ordered Transition System Specification (OTSS) is a pair (R, <) where R is a positive TSS and < ⊆ R × R is an arbitrary

relation on the deduction rules. For a rule r, higher(r) is defined as {r′ | r < r′}, i.e., the set of rules placed above r by the

ordering <. We sometimes use > to denote the inverse of <.

The intuition behind the ordering on rules is that a deduction rule r can only be applied when all deduction rules

r′ ∈ higher(r) are disabled since they do not have a “reason” (or “proof”) for their premises to hold. As we show in the

remainder, this notion of “reason” or “proof” is not trivial to define and involves the same complications as those concerning

the semantics of TSSs with negative premises [9].

2.2. Examples

Orderings on positive rules can replace negative premises in rules [22]. In the remainder of this section, we start with

two simple examples motivating and illustrating the use of ordering (as an alternative to negative premises). Then we show

that our more general definition of ordered TSS extends the applicability of the restricted ordered SOS paradigm from [22]

by specifying an example involving look-ahead. Finally, we show that this extension comes at a price, namely, the semantics

of general OTSSs (e.g., those containing look-ahead) is not always clear and should be studied more thoroughly.

Example 2.3 (Priority). The priority operator θ [3] may be used to represent such phenomena as time-outs and interrupts.

For a given partial order ≺ on actions (a set of constants, denoted by a, b, c, . . . ∈ Act), θ(p) is a restriction on the behavior of p

such that action a can happen only if no bwith a ≺ b is possible. If Ba = {b | a ≺ b}, then θ can be defined by this TSS (where

the deduction rule is actually a rule schema which should be repeated for each action a ∈ Act):

x
a→ y {x b�→ | b ∈ Ba}
θ(x)

a→ θ(y)
.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 87

Alternatively, θ can be defined by positive deduction rules ra, equipped with the ordering defined by ra < rb whenever

a ≺ b:

(ra)
x

a→ ya

θ(x)
a→ θ(ya)

where ya are distinct variables for all a ∈ Act. (Note that the naming of variables in the rules related by ordering is indeed

important; for example, it is essential to assume that ya and yb are distinct variables for each a and b such that a ≺ b. As we

show in the remainder of this paper, particularly in Section 4.2, violating this condition ruins intuitive properties such as

congruence of bisimilarity.)

Example 2.4 (Timed Parallel Composition). The following TSS defines the semantics of a subset of Hennessy and Regan’s

Process Algebra for Timed Systems (TPA) [12]. The signature consists of a constant nil, unary operators a._ and a._ (action

prefixing, for all a ∈ Act), τ._ (internal action prefixing) and σ._ (time step prefixing), and a binary operator ‖ (parallel

composition). Constants a, a, τ and σ are also introduced in the signature to model the labels. In the deduction rules below,

α represents either an a or an a. We use the convention that a and a denote the same constant.

(a)
α.x

α→ x
(τ)
τ.x

τ→ x
(σ0)

σ.x
σ→ x

(σ1)
α.x

σ→α.x
(σ2)

nil
σ→nil

(‖0) x0
α→ y0

x0 ‖ x1
α→ y0 ‖ x1

(‖1) x1
α→ y1

x0 ‖ x1
α→ x0 ‖ y1

(τ0)
x0

τ→ y0
x0 ‖ x1

τ→ y0 ‖ x1
(τ1)

x1
τ→ y1

x0 ‖ x1
τ→ x0 ‖ y1

(comm)
x0

α→ y0 x1
α→ y1

x0 ‖ x1
τ→ y0 ‖ y1

(time)
x0

σ→ y0 x1
σ→ y1 x0 ‖ x1

τ�→
x0 || x1 σ→ y0 || y1

In the semantics of the parallel composition operator, p ‖ q can pass time (denoted by label σ) if both p and q can pass

time, and if they are stable and cannot communicate (i.e. p ‖ q
τ�→).

The above semantics can be specified in ordered SOS by placing a positive version of the rule (time) below the rules (τ0),

(τ1) and (comm) as shown below. All other rules are copied to the following OTSS and are unrelated (in terms of ordering) to

the rules below.

We fix the above notation for ordering so that in each column, rules of the upper row have priority over rules of the lower

row, i.e., an instance of a rule in the lower row (under a particular substitution σ) can only be “applied” when no rule in the

upper row (of the same column and under a substitution agreeing with σ on common variables) can be “applied”. Formally,

we have the following orderings: (τ0) > (time), (τ1) > (time), and (comm) > (time).

In general, a TSS with rules with negative premises may not contain all the rules that are needed to define orderings that

replace negative premises. In such cases, we shall need to extend the TSS with auxiliary rules. If a rule r has a premise t
a�→ ,

the required auxiliary rule is t
a→ t′

t
a→ t′

and is placed above r. We shall argue later (Lemma 3.31) that extending TSSs with rules

as above is harmless: it does not change the meaning of the transition relation. More precisely, our preferred method for

assigning meaning to OTSSs is insensitive to rules of such form.

In the following example, we address the idea of extending ordered SOS [22] with look-ahead as suggested by [13,

Theorem 4] and show that it may lead to pathological specifications with an unclear meaning. (The rule format of [13]

88 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

extends traditional OTSS with probabilities but the problem we address below is orthogonal to the presence or absence of

probabilities and hence, we use the plain OTSS setting as defined above.)

Example 2.5 (Ordered SOS with Look-Ahead). Consider the OTSS with the following deduction rules.

Note that according to the notation fixed before, in the following OTSS, it holds that

x
b→ y y

d→ z

f (x)
d→ d

>
x

b→ y

f (x)
c→ c

and
x

a→ y y
c→ z

g(x)
c→ c

>
x

a→ y

g(x)
d→ d

but it does not hold that

a
a→ f (a)

>
x

b→ y y
d→ z

f (x)
d→ d

.

Atfirst sight, it is not intuitively clearwhichof the following three transition relations shouldbe considered as themeaning

of the above OTSS.

(1) {a a→ f (a),a
b→ g(a),f (a)

c→ c,g(a)
c→ c}, or

(2) {a a→ f (a),a
b→ g(a),f (a)

d→ d,g(a)
d→ d}, or

(3) {a a→ f (a),a
b→ g(a)}.

So, a convincing semantics for OTSSs should either be neutral about different possibly derivable transitions (in items 1 and

2) or reject the above OTSS altogether due to its ambiguous nature. We present solutions that cater for both possibilities in

the remainder of this paper.

Example 2.6. The situation with the following OTSS is even worse.

If one initially assumes that from rules in the first row one cannot derive any transition with f (a) as its source (which

is a legitimate assumption), then the rule below allows for deriving f (a)
b→ b. This transition, in turn, enables the premises

of the rule above it (leading to the conclusion that f (a)
b→ a should be derivable) and thus the very same rule below must

have been disabled and the chain of contradictory conclusions goes on forever. Again, any convincing semantics for OTSSs

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 89

should either find a way to deal with the contradictory conclusions (e.g., by considering all of them uncertain yet possibly

derivable transitions) or reject the above OTSS altogether due to its paradoxical nature. The notions of semantics presented

in the remainder allow for both interpretations.

The above examples make the case for a more profound study of the meaning of ordered SOS, which is the subject of the

following section.

3. Semantics of OTSS

An OTSS is supposed to induce a unique transition relation on closed terms but as Example 2.5 already suggested, for

some OTSSs the way to assign such a transition relation may not be straightforward. This phenomenon has been known in

several areas such as logic programming and term rewriting and even inside the SOSmeta-theory as the result of introducing

negative premises to SOS rules. For TSSs with negative premises, several notions of semantics have been defined and used,

of which [9] provides an overview and a comparison. Here, we take the major semantic notions of [9] and re-interpret or

re-phrase them for OTSSs. Examples similar to those of [9] are given here both to motivate the notions and to facilitate

comparing the two paradigms (i.e., negative premises vs. orderings). Our proofs in this section follow the same structure as

those of [9].

The section introduces 12 notions of semantics and assesses their suitability. Our preferred andmost general notion is the

least three-valued stable model (Semantics 7) but, for the purpose of congruence meta-results, we favor semantics defined in

terms of completeness (Semantics 11).

The semantics of an OTSS is the transition relation it defines on closed terms. Thus, in the remainder of this section, we

only have to deal with closed instantiations of deduction rules. To avoid repeating the phrase “an instance of rule r under

a closing substitution σ ”, in this section, we assume that the OTSSs only contain closed terms. To define the semantics of

an arbitrary OTSS, one may instantiate the rules and the ordering relation under all closing substitutions and then use the

notions of the semantics in the remainder of this section.

Definition 3.1 (Closing (O)TSSs). Given an arbitrary OTSS (R, <), closed(R, <)
.= (R′, <′) where R′ .= {σ(r) | σ : V → C,r ∈ R}

and <′ .= {(σ (r),σ(r′)) | σ : V → C, r,r′ ∈ R,r < r′}. Similarly, for a TSS R, closed(R)
.= R′ where R′ is defined above.

We start with the following notion of provability, which is the usual way of giving semantics to ordinary positive TSSs

(i.e., without ordering or negative premises).

Definition 3.2 (Proof). Given an OTSS (R, <), a proof p for a formula φ is a well-founded upwardly branching tree of which

(1) the nodes are formulae,

(2) the root is φ, and

(3) if a node is labelled φ′ and the nodes above it form the set K , then there is a deduction rule r ∈ R such that r = K
φ′ .

An r-proof for φ is a proof in which the last step is due to deduction rule r. We write (R, <) 	p φ when p is a proof in (R, <)

for φ. We may drop (R, <) from the notation when it is clear from the context. We denote the set of deduction rules used in

a proof p by rules(p). We write T�p for a transition relation T and a proof p to denote that for all nodes φ in p, we have φ ∈ T .

A proof p is called minimalwhen for each branch of the tree, a formula φ appears at most once.

It immediately follows from the above definition that for any two OTSSs (R, <), (R′, <′), if R ⊆ R′ then {φ | (R, <) 	p φ} ⊆
{φ | (R′, <′) 	p φ}. Moreover, for an arbitrary positive formula φ, 	p φ if and only if there exists a minimal proof q such that

	q φ.

The following notion of semantics is the obvious notion when the ordering relation is empty. It serves as a starting point,

or first approximation, for several notions of semantics in the remainder of this paper.

Semantics 1 (Provability). The semantics of an OTSS (R, <) is the set of all formulae φ such that 	p φ for some proof p.

As said before, the above definition neglects the ordering on rules and thus cannot be used for the semantics of OTSSs,

but it can be helpful in finding the right semantics in the following sense. Any proposal for the semantics of OTSSs should

coincide with the notion of provability when the ordering relation is taken to be empty. In particular, no semantics of

OTSSs should admit transitions that are not provable. Although the above criterion seems trivial, as we observe in the

remainder, some notions of semantics for TSSs when applied to the setting with orderings on rules fall short of satisfying

it.

Next, we give a few examples which illustrate in more detail our intuitive understanding of the meaning of OTSSs.

90 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Example 3.3.

In our view, a reasonable notion of semantics should define {b b→ b} as the meaning of the above OTSS. There is no reason

to believe that a
a→ a is possible and thus, the rule placed above the axiom

b
b→ b

is not applicable.

Example 3.4. Consider the following OTSS.

The meaning of the above OTSS is not intuitively clear, namely, it is not clear how to prefer one of the two transition

relations {b a→ b,a
b→ a} or {a a→ a,b

b→ b} over the other.

Example 3.5. Consider the following OTSS in which the symbol � is meant to denote that a deduction rule is placed above

itself.

The meaning of the above OTSS is unclear as any decision about applicability of the upper rule is self-contradictory.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 91

Example 3.6.

Any satisfactory semantics for OTSSs should associate the empty set with the above OTSS.

The situation with the following OTSS is more subtle.

One may expect b
b→ b to be included in the transition relation since the transition of a

a→ a is always disabled. In [22]

the authors require that for b
b→ b to be included, no higher rule should be applicable (meaning that the premises are in the

transition relation). Since
a

a→ a
can always be applied, the semantics does not allow for deriving b

b→ b. Thus, according to

[22], an axiom (even with a self-loop) disables any rule placed below it. We aim to be consistent with the same intuition

throughout this paper.

3.1. Two-valued solutions

In this subsection, we define several ways of assigning a transition relation to an OTSS. These solutions are called two-

valued because they define one transition relation (which is a set of transition formulae that, purportedly, can be certainly

derived from the OTSS) and reject the other transitions as impossible.

We start with a few model-theoretic notions of semantics. To this end, we define what it means for a rule to be correct

with respect to a transition relation, namely that the rules above it cannot find at least one of their premises in the transition

relation. Then,weproceedwith defining the notions ofmodel and supportedmodel (which actually stand for “correctmodel”

and “supported and correct model”).

Definition 3.7 (Correct). Given an OTSS (R, <) and a transition relation T , we say that a deduction rule r = H
φ

∈ R is correct

w.r.t. T when for all r′ = H′
ψ

∈ higher(r), H′�T . A proof p for a formula φ is correctw.r.t. T when for all r ∈ rules(p), r is correct

w.r.t. T .

Lemma 3.8. If r is correct w.r.t. T then it is correct w.r.t. all T ′ ⊆ T .

Proof. Trivial from Definition 3.7. �

Using the terminology of [21,22], a rule r is correct, when all rules in higher(r) are not applicable since they miss at least

one of their premises.

Definition 3.9. (Model). A transition relation T is amodel for an OTSS (R, <)when for all r = H
φ

∈ R if H ⊆ T and r is correct

w.r.t. T then φ ∈ T .

92 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Based on the above definition, one may define the following semantics for OTSSs.

Semantics 2 (Least Model). An OTSS is meaningful if it has a least model, and its semantics is its least model.

For theOTSS of Example 3.5, Semantics 2 defines the transition relation {a a→ a} as its semantics,which is counter-intuitive.

Similarly, for the following TSS, the above semantics diverges from the intuition.

Example 3.10.

The semantics of the above TSS is intuitively undefined for there is no base to initially assume a
a→ a and if we apply the

second rule and we find a reason for a
a→ a this will in turn enable the upper rule and thus disable the lower rule. However, it

has {a a→ a} as its least model (note that ∅ is not a model of this OTSS, since from the lower rule it will then follow that a
a→ a

should be in the model).

Even in caseswhere theTSShasamodel, the leastmodelneednot exist. Consider theTSS inExample3.4; both {b a→ b,a
b→ a}

and {a a→ a,b
b→ b} are minimal models of it.

The following notion of supported model makes the requirements on the semantics stricter, and thereby may be helpful

in rejecting some of the pathological models.

Definition 3.11 (Supported Model). A transition relation T is a supported model of an OTSS (R, <) when it is a model and for

all φ ∈ T , there exists r = H
φ

∈ R such that H ⊆ T and r is correct w.r.t. T .

The following two notions exploit the concept of supported model in order to define a meaning for ordered SOS.

Semantics 3 (Least Supported Model). An OTSS is meaningful when it has a least supported model and its semantics is its least

supported model.

Semantics 4 (Unique Supported Model). An OTSS is meaningful when it has a unique supported model and its semantics is its

unique supported model.

However, as the following two examples illustrate, Semantics 3 and 4 are both in some cases counter-intuitive.

Example 3.12.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 93

The least supportedmodel for the above OTSS is {a a→ a,b
b→ b}, which is counter-intuitive (i.e., there is no reason to believe

that a
a→ a or b

b→ b should be included in the transition relation). Similarly, the unique supportedmodel associates the same

semantics to the above OTSS, thus giving us a good reason to reject both notions.

Example 3.13.

The above TSS (with an empty ordering) has no unique supported model since both ∅ and {a a→ a} are supported models

of it. Therefore the notion of unique supported model does not coincide with provability for unordered TSSs, giving another

reason to reject it.

Next, we define the notion of two-valued stable model, which is proposed in [6] and is exploited to define the “most

reasonable” two-valued notion of semantics.

Definition 3.14 ((Two-Valued) Stable Model). Given an OTSS (R, <), transition relation T is (two-valued) stable when φ ∈ T if

and only if 	p φ for some proof p such that p is correct w.r.t. T .

The following notion of well-supported model, as shown by the theorem afterwards, is another way of formulating the

two-valued stable model.

Definition 3.15 (Well-Supported Model). Given an OTSS (R, <), transition relation T iswell-supportedwhen φ ∈ T if and only

if 	p φ for some proof p such that T�p and p is correct w.r.t. T .

Theorem 3.16. T is a well-supported model for (R, <) if and only if it is a stable model for it.

Proof. Well-supportedmodels are clearly stablemodels. Given a stablemodel, by an induction on the proof p, one can check

that for all nodes φ in p, it holds that T�p and thus, stable models are well-supported, as well. �

One may use the notion of well-supported (two-valued stable) model to define a semantics for ordered SOS.

Semantics 5 (Least Well-Supported Model). An OTSS is meaningful when it has a least well-supported model, and its semantics

is its least well-supported model.

Semantics 6 (UniqueWell-SupportedModel).AnOTSS ismeaningfulwhen it hasauniquewell-supportedmodel, and its semantics

is its unique well-supported model.

The following theorem implies that the above two notions of semantics actually coincide.

Theorem 3.17. For an OTSS (R, <), any least well-supported model is a unique well-supported model.

Proof. It suffices to consider stable models, due to Theorem 3.16. We prove that if a stable model T is the least, then it is the

unique stable model, i.e., if T ⊆ T ′ then T = T ′, for all stable models T ′. If T ⊆ T ′ and φ ∈ T ′, then (R, <) 	p φ for some proof p

such that p is correct w.r.t. T ′. Then, it follows from Lemma 3.8 that p is correct w.r.t. T and thus φ ∈ T . Thus, T ′ ⊆ T and by

assumption T ⊆ T ′ and hence, T = T ′. �

A unique well-supported model is trivially the least one and hence, it follows from Theorem 3.17 that Semantics 5 and 6

coincide.

Example 3.18. Thenotionof least (unique)well-supportedmodel improves the counter-intuitive consequences of Semantics

3 and 4 concerning Examples 3.12 and 3.13.

It considers the OTSS in Example 3.12 to bemeaningless: Suppose that the OTSS of Example 3.12 admits a well-supported

model T . If a
a→ a ∈ T then there should exist a proof for it and the proof should involve the axiom

a
a→ a

. But then, for the

94 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

axiom to be correct, the rule above it should not be applicable and thus a
a→ a /∈ T . Similarly, if a

a→ a /∈ T , then the axiom

a
a→ a

is correct and thus a
a→ a ∈ T .

It assigns the empty set as the least (and unique) well-supportedmodel of the OTSS in Example 3.13, which is in line with

the semantics given in [9] in the setting of general TSSs.

The notion of stratification was suggested in the context of logic programming by Przymusinski in [19] and adopted

in the context of SOS by [10]. This notion gives us a syntactic way to check whether a particular semantics is meaningful

according to Semantics 5. Note that if a TSS is stratified, it indeed has a unique well-supported model, but stratification

is not a necessary condition for the uniqueness of the well-supported model. Next, we adapt this notion to the setting of

OTSSs.

Definition 3.19 (Stratification). An OTSS (R, <) is stratified by a function S : �p → α, where α is an ordinal, when for all

r = H
φ

∈ R, for all ψ ∈ H, S(ψ) � S(φ) and for all r′ = H′
φ′ ∈ higher(r) and for all ψ ′ ∈ H′, S(ψ ′) < S(φ).

Theorem 3.20. A stratified OTSS (R, <) has a unique well-supported model.

Proof. Let OTSS (R, <) be stratified by S : �p → α. We define a transition relation → as follows:

Definition 3.21. Define → i, for each i < α as
⋃

j → ij where → ij is the largest set satisfying φ ∈ → ij , when ∃
r=H
φ

∈R such

that,

(1) S(φ) = i,

(2) H ⊆ → kl , for some k � i and l < j, and

(3) for all rules H′
φ′ ∈ higher(r), there exists ψ ′ ∈ H′ such that ψ ′ /∈ →mn, for allm < i, n < j.

Then, define → = ⋃
i<α → i.

We claim that → is a well-supported model for (R, <). The proof of this claim goes essentially along the same lines as

the proof of a similar theorem (Theorem 2.15) in [10]. We prove that φ ∈ → if and only if 	p φ for a proof p that is correct

w.r.t. → .

⇒ If φ ∈ → , then there exists an i such that φ ∈ → i and φ /∈ → k for each k < i. Furthermore, there exists a j such that

φ ∈ → ij and φ /∈ → ik for each k < j. We prove that if φ ∈ → ij (for such minimal i and j) then 	p φ for a proof p that is

correct w.r.t. → . We proceed with an induction on i and inside that, an induction on j.

If φ ∈ → ij , then there exists a rule r = H
φ

such that H ⊆ → kl for some k � i and l < j. Thus, by the induction hypothesis,

for each ψ ∈ H, 	q ψ for some proof q such that q is correct w.r.t. → . It only remains to check that r is correct w.r.t. → .

Consider a rule r′ = H′
φ′ ∈ higher(r). Since φ ∈ → ij , it follows from Definition 3.19 that for all ψ ′ ∈ H′, S(ψ ′) < i. Hence,

if r is correct w.r.t. →mn for all m � i and n < j, then r is correct w.r.t. → since ψ ′ /∈ m′n′→ for each m′ � i by item 1 of

Definition 3.21. It follows from item 3 of Definition 3.21 that there exists a ψ ′ ∈ H′ such that ψ ′ /∈ →mn for allm � i and

n < j and this concludes the proof of this item.

⇐ If	p φ and p is correctw.r.t. → , then φ ∈ → . The theorem follows by an induction onS(φ), and inside that by an induction

on the depth of the proof p for φ. It is easy to check that φ ∈ → S(φ)j where j is the depth of the proof for φ: the first item

of Definition 3.21 holds vacuously; the second item follows from the induction hypothesis and the third item holds since

p is correct with respect to → and thus with respect to all → ij .

It remains to show that this stablemodel is indeed unique. Assume that there exists another stablemodel T ′. Consider the
set D = (T \ T ′) ∪ (T ′ \ T); we show that D = ∅. Define Di = {φ | φ ∈ D ∧ S(φ) = i} and let j be the smallest j such that Dj /= ∅,
i.e., for all k < j, Dk = ∅. Hence, there exists a φ ∈ Dj and there exists a proof p such that 	p φ and p is correct with respect

to T but not correct w.r.t. T ′ or vice versa. Therefore, there exist rules r ∈ rules(p) and r′ = H′
φ′ ∈ higher(r) such that H′�T

but H′ ⊆ T ′ (or vice versa). But then there exists a ψ ∈ H′ such that ψ /∈ T but ψ ∈ T . Since r′ ∈ higher(r), j > S(ψ) and thus,

DS(ψ) /= ∅ which contradicts the minimality of j. �

The following example gives a reason why one may consider Semantics 5 (and thus, all two-valued semantics for that

matter) inappropriate.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 95

Example 3.22.

The least well-supportedmodel for the above OTSS is {a a→ a}. This is also its least model and least supportedmodel. Note

that firstly, ∅ is not supported (and thus not stable) and not a model since the absence of a
a→ a would result in enabling

the axiom
a

a→ a
in the third column. Secondly, b

b→ b cannot be included in the stable (and even supported) model since

then axiom
b

b→ b
should be enabled and thus, a

a→ a should not be in the model, which we have just shown to lead to a

contradiction.

Thus, the notion of two-valued stablemodel defines a semantics for the intuitively paradoxical OTSS in the above example

(due to its third column). Moreover, the third column in the above example, although paradoxical in nature, makes the stable

model favor one of the two, otherwise equal, possibilities of including either a
a→ a or b

b→ b.

This may be considered counter-intuitive and one may want a solution which rejects such OTSSs due to the paradoxical

nature of its third column (when there is no other reason to believe that a
a→ a certainly holds) and moreover, regardless of

the third column, treats a
a→ a and b

b→ b equally (i.e., considers both of thempossible but not certain). None of the two-valued

solutions presented so far can provide us with such a meaning, and thus we proceed with three-valued solutions in the next

section.

Fig. 1 gives a comparison of the notions of semantics presented so far. The topmost notion is the notion of semanticswhich

only assigns ameaning, namely the set of all provable formulae, to OTSSswith an empty ordering.When there is a solid arrow

between two notions of semantics it means that for all OTSSs that the source notion provides a meaning, the target notion

provides the same meaning and there are OTSSs for which the source notion does not provide a meaning while the target

notion does. The dashed arrows show that the transition relation associated by the semantics in the source of the arrow is

a subset of provable transitions, i.e., Semantics 1. All counter-examples showing the differences among unrelated notions

are given before. It only remains to prove the arrow relations. The solid arrow between the unique supported model and the

least supported model is trivial. Proofs of theorems concerning the other arrows, given below, are very easy. Examples 3.12

and 3.13 show that Semantics’ 3 and 4 are unrelated to the rest.

Theorem 3.23. For an OTSS (R, <) with the least model T , if T ′ is the set of its provable formulae, then T ⊆ T ′. Furthermore, if

< = ∅ then T = T ′.

Proof. T ′ is a model and it follows from the assumption (i.e., T is the least model) that T ⊆ T ′.
If < = ∅, the set of provable formulae is indeed a model and no proper subset of it constitutes a model (by a proof by

contradiction, considering the least proof depth of the element excluded from the subset). �

Theorem 3.24. For an OTSS (R, <) with a least well-supported model T , if T ′ is the set of its provable formulae, then T ⊆ T ′.
Furthermore, if < = ∅ then T = T ′.

Proof. Any formula φ ∈ T has a proof and thus φ ∈ T ′.
When < = ∅, all r ∈ R are correct w.r.t. any transition relation and thus Semantics 1 and 5 coincide and hence

T = T ′. �

96 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Fig. 1. A comparison of the two-valued notions of semantics.

3.2. Three-valued solutions

Three-valued solutions assign three transition relations to each OTSS: the set of transitions that are certainly derivable,

denoted by C; transitions that are possibly derivable, denoted by P (thus C ⊆ P); and the set of transitions that are impossible,

denoted by I. Possibly derivable formulae and impossible ones partition the set of formulae. Hence, three-valued solutions

may be written as pairs of these sets, i.e., (C,P) or (C,I), with the third component determined easily from the given ones. On

such pairs of sets of formulae, the following ordering is used frequently in the remainder:

(C,P) � (C ′,P′) .= C ⊆ C ′ ∧ P′ ⊆ P

The first three-valued solution is based on the following notion of three-valued stable model.

Definition 3.25 (Three-Valued Stable Model). Given an OTSS (R, <), a pair of transition relations (C,P) is a three-valued stable

model when C ⊆ P and

(1) φ ∈ C ⇔ 	p φ for some proof p such that p is correct w.r.t. P and

(2) φ ∈ P ⇔ 	p φ for some proof p such that p is correct w.r.t. C.

The third value of the stable model I, for impossible, is the set of transitions that are not included in P.

Semantics 7 (Least Three-Valued StableModel). Any OTSS ismeaningful, and its meaning is the least (w.r.t.�) three-valued stable

model (C,P).

The following reduction technique [6] is a method to calculate the least three-valued model (thus it shows that such a

minimal model indeed exists).

Definition 3.26 (Reduction Technique). For an ordinal α, define:

Cα
.= {φ | ∃p(R, <) 	p φ ∧ ∃β<αp is correct w.r.t. Pβ }

Pα
.= {φ | ∃p(R, <) 	p φ ∧ ∀β<αp is correct w.r.t. Cβ }

Note that it immediately follows from the above definition that C0 = ∅ and P0 is the set of all provable formulae.

Lemma 3.27. Given an OTSS (R, <), for all ordinals α and β such that α � β, the following statements hold:
(1) Cα ⊆ Cβ ;
(2) Pβ ⊆ Pα;
(3) Cα ⊆ Pα.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 97

Proof.

(1) φ ∈ Cα ⇒ 	p φ ∧ ∃α′<α p is correct w.r.t. Pα′ ⇒ 	p φ ∧ ∃α′<βp is correct w.r.t. Pα′ ⇒ φ ∈ Cβ ;

(2) φ ∈ Pβ ⇒ 	p φ ∧ ∀α′<β p is correct w.r.t. Cα′ ⇒ 	p φ ∧ ∀α′<α p is correct w.r.t. Cα′ ⇒ φ ∈ Pα;

(3) By a transfinite induction on α.

Let φ ∈ Cα . Then, (R, <) 	p φ ∧ ∃α′<α p is correct w.r.t. Pα′ ; we need to prove that for all γ < α, p is correct w.r.t. Cγ . We

distinguish the following two cases for γ :

(a) α′ < γ < α: then, it follows from item 2 that p is correct w.r.t. Pγ . It then follows from the induction hypothesis that p

is correct w.r.t. Cγ .

(b) γ � α′: then, it follows from the induction hypothesis that p is correct w.r.t. Cα′ and from item 1 that p is correct w.r.t.

Cγ . �

It follows from items 1 and 2 of the above lemma (and Tarski’s fixed point theorem) that (Cα ,Pα)will reach the least fixed

point, which we denote by (C,P). From item 3 and Definition 3.26, it follows that (C,P) is a three-valued stable model of the

OTSS under consideration. Furthermore, any three-valued stable model is a fixed point for the equations in Definition 3.26

and hence (C,P) is the least three-valued stable model of the OTSS.

Example 3.28. Example 3.22 gave us a reason to reject all (two-valued) notions of semantics. Semantics 7 does not suffer

from such problems. Semantics 7 assigns (∅,{a a→ a,b
b→ b}) to the OTSS of Example 3.22, which is sensible because firstly it

does not favor either of the two transitions a
a→ a or b

b→ b over the other, and secondly it does not consider either of the two

transitions certain.

Theproof-theoretic counterpart to the three-valuedstablemodel is thenotionofwell-supportedproofwhich is introduced

later in this section. However, before we go to proof-theoretic solutions, we re-phrase another three-valuedmodel-theoretic

notion from [9] called the three-valued supported model.

Definition 3.29 (Three-Valued Supported Model). Given an OTSS (R, <), a pair of transition relations (C,P) is a three-valued

supported model when

(1) φ ∈ C if and only if there exists a deduction rule r = H
φ

∈ R such that H ⊆ C and r is correct w.r.t. P;

(2) φ ∈ P if and only if there exists a deduction rule r = H
φ

∈ R such that H ⊆ P and r is correct w.r.t. C.

As before, the third value of the model, i.e., the set I of impossible transitions, contains precisely those transitions that

are not included in P.

Semantics 8 (Least Three-Valued Supported Model). Any OTSS is meaningful and its meaning is the least (w.r.t. �) three-valued

supported model (C,P).

The following example illustrates the difference between the three-valued stable model semantics and its supported

counterpart, and motivates why we chose the three-valued stable model as our preferred notion of semantics.

Example 3.30. Consider the OTSS of Example 3.13. The least three-valued stable model of this OTSS is C = ∅ and P = ∅.
However, its least three-valued supported model is C = ∅ and P = {a a→ a}.

The OTSS of Example 3.3 gives us another reason to chose the three-valued stable model over its supported counterpart.

The least three-valued stable model of this OTSS is C = {b b→ b} and P = {b b→ b}, which we have already considered intuitive.

However, the least three-valued supported model of this OTSS is C = ∅, P = {a a→ a,b
b→ b}, which is rather counter-intuitive.

To summarize the above examples, the notion of least three-valued supported model is sensitive to deduction rules with

their conclusion included among their premises, which we do not consider intuitive. The following lemma states that the

least three-valued stable model does not suffer from this shortcoming.

Lemma 3.31. Consider two disjoint sets R and R′ of deduction rules and two orderings< ⊆ R × R and<′ ⊆ R′ × R′. If for all r′ ∈ R′,
conc(r′) ∈ prem(r′), then the least three-valued stable models of two OTSSs (R, <) and (R ∪ R′, < ∪ <′) coincide.

Proof. For an arbitrary ordinal α, let (Cα ,Pα) and (C
′
α ,P

′
α) be the results of the reduction technique of Definition 3.26 for (R, <)

and (R ∪ R′, < ∪ <′), respectively. It is easy to see, by considering all minimal proofs, that rules in R′ cannot contribute any

new provable transition formulae to those of R. Hence, by a transfinite induction on α, Cα = C ′
α and Pα = P′

α . �

98 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

For OTSSs placing a rule above itself we have the following general result, which states that adding a set of rules which are

placed above themselves to an OTSS can only make the set of certain transitions smaller and the set of possible transitions

larger. Later (in Section 3.3), we give a sufficient condition, called completeness, under which adding rules with self-loops

(i.e., placed above themselves by the ordering) does not change the least three-valued stable model of a TSS.

Lemma 3.32. Consider two disjoint sets R and R′ of deduction rules and two orderings< ⊆ R × R and<′ ⊆ R′ × R′. If<′ is reflexive
and (C,P) and (C ′,P′) are the least three-valued stable models for (R, <) and (R ∪ R′, < ∪ <′), respectively, then (C ′,P′) � (C,P).

Proof. See the first part of the proof of Lemma 3.40. �

The following notion of well-supported proof provides a proof-theoretic parallel to the three-valued stable model.

Definition 3.33 (Well-Supported Proof). Given an OTSS (R, <), a well-supported r-proof (or just a well-supported proof) for φ

is a well-founded upwardly branching tree of which

(1) the nodes are formulae,

(2) the root is φ,

(3) if a node is labelled φ′ and the nodes above it form the set K , then there is a deduction rule r′ ∈ R such that r′ = K ′
φ′ for

some K ′ ⊆ K (for the root node, r′ = r), and for all r′′ = H′
ψ

∈ higher(r′), there exists a set Dψ ′ ⊆ K denying some ψ ′ ∈ H′

by a well-supported proof.

A set Dφ denies a formula φ by a well-supported proof if for all proofs p such that (R, <) 	p φ, there exists a rule r ∈ rules(p)

and there exists a rule r′ = H′
φ′ ∈ higher(r) such that H′ ⊆ Dφ . The structure providing a well-supported proof for all ψ ∈ Dφ

is called a well-supported denial for φ.

We write (R, <) 	ws φ ((R, <) 	ws ¬φ) when there is a well-supported proof (denial) for φ. We may drop (R, <) in the

above two notations when it is clear from the context.

One can use the above notion of well-supported proof to give ordered SOS a semantics as follows.

Semantics 9 (Well-Supported Provability). Any OTSS is meaningful, and its meaning is the pair (C,P) where C is the set of all

formulae that have a well-supported proof and P is the set of all formulae that do not have a well-supported denial.

The following is an auxiliary lemma that allows us to strip down well-supported proofs to proofs.

Lemma 3.34. For all φ ∈ �p, if	ws φ then there exists a proof p such that	p φ and furthermore, for all r ∈ rules(p) and for all r′ =
H′
φ′ ∈ higher(r) there exists a ψ ∈ H′ such that 	ws ¬ψ with a well-supported denial that is a sub-structure of the well-supported

proof of φ.

Proof. In the above definition of well-supported proof, it suffices to inductively keep K ′ ⊆ K for the nodes above each node

φ′ such that K ′
φ′ ∈ R and remove K \ K ′. The resulting tree is a proof tree. The rest of the corollary follows from the definition

of well-supported proof. �

The following lemma states that the notion of well-supported proof is consistent, i.e., no formula can be both proven and

denied.

Lemma 3.35. The notion of well-supported proof is consistent, i.e., no formula φ has both a well-supported proof and a well-

supported denial.

Proof. Assume that φ is a formula with the minimal proof and denial structures (i.e., there is no formula ψ that has proof

and denial structures that are both parts of the proof and denial structures of φ). We show that such a minimal structure

does not exist and thus the notion of well-supported proof is consistent.

Since φ has a well-supported denial, for all proofs p such that 	p φ there exists a rule r ∈ rules(p) and there exists a rule

r′ = H′
φ′ ∈ higher(r) such that allψ ∈ H′ have awell-supported proof. However, since φ has awell-supported proof, by Lemma

3.34 it has a proof p such that for all rules r ∈ rules(p) and for all r′ = H′
φ′ ∈ higher(r) there exists a ψ ∈ H′ such that 	ws ¬ψ

with a well-supported denial that is a sub-structure of the well-supported proof of φ. Thus, there exists ψ that has both a

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 99

well-supported denial and a well-supported proof, both of which are sub-structures of the well-supported proof and denial

for φ, respectively (Contradiction). �

The following theorem states that the model-theoretic and the proof-theoretic views of the least well-supported seman-

tics, i.e., Semantics 7 and 9, indeed match.

Theorem 3.36. Given an OTSS (R, <), let (C,P) be the least three-valued stable model of (R, <), C ′ be the set of all formulae that

have a well-supported proof, and I′ the set of all formulae that have a well-supported denial. Then, (C,P) = (C ′,�p \ I′).

Proof. To show simultaneously that C ′ ⊆ C and P ⊆ �p \ I′, we prove, by an induction on the structure of thewell-supported

proof (denial) for φ, that if 	ws φ (ws ¬φ) then ∃α>0φ ∈ Cα (∃α>0φ /∈ Pα).

(1) If 	ws φ then there exists a proof p such that 	p φ and ∀r∈rules(p) ∀
r′=H′
φ′ ∈higher(r)

, there exists a ψr′ ∈ H′ such that with a

smallerwell-supported denial structure (than the proof structure ofφ) it holds that	ws ¬ψr′ . It follows from the induction

hypothesis that there exists some αr′ such that ψr′ /∈ Pαr′ . For each r, let αr be the maximum of all such αr′ ’s and it follows

that r is correct w.r.t. αr . For all r ∈ rules(p) take α to be the maximum of all αr ’s and φ ∈ Cα ⊆ C.

(2) If 	ws ¬φ, then if there is no proof for φ or for all proofs p such that 	p φ, ∃r∈rules(p) ∃αr>0 r is not correct w.r.t. Cαr then

∃αφ /∈ Pα (by taking α to be the maximum of such αr).

Assume that the above is not the case, i.e., assume that there exists a proof p such that	p φ, ∀r∈rules(p) ∀α>0 r is correctw.r.t.

Cα . From 	ws ¬φ, it follows that ∃r∈rules(p) and ∃
r′=H′
φ′ ∈higher(r)

such that all ψ ∈ H′ have a well-supported proof smaller

than that of φ. Thus, it follows from the induction hypothesis that H′ ⊆ Cα for some α. Hence r is not correct w.r.t. Cα
(Contradiction).

For the proof in the other direction, i.e., C ⊆ C ′ and�p \ I′ ⊆ P, we use an induction on α and show (again simultaneously)

that if φ ∈ Cα then 	ws φ and if φ /∈ Pα then 	ws ¬φ.
(1) If φ ∈ Cα then 	p φ for some p and ∃β<α ∀r∈rules(p) such that r is correct w.r.t. Pβ . In other words, ∀

s=H′
φ′ ∈higher(r)

∃ψs∈H′ such

that ψs /∈ Pβ . It follows then from the induction hypothesis that 	ws ¬ψs. Extending the premises of each rule r in the

proof structure pwith all such ψs (and their well-supported denials) gives rise to a well-supported proof for φ.

(2) If φ /∈ Pα then either there is no proof p such that 	p φ or for all proofs p such that 	p φ, ∃r∈rules(p) ∃
s=H′

s
φ′
s

∈higher(r)
∃β<α

H′
s ⊆ Cβ . In the former case, the empty set denies φ and thus we have a well-supported denial for φ. In the latter case,

following the induction hypothesis, all ψ ∈ H′
s have a well-supported proof and the union of all H′

s for all proofs p of φ

(together with their well-supported proofs) constitutes a well-supported denial for φ. �

Finally and for sake of completeness, we give a proof-theoretic interpretation of three-valued supported models

below.

Definition 3.37 (Supported Proof). Given an OTSS (R, <), a supported proof for φ is a well-founded upwardly branching tree

of which

(1) the nodes are formulae,

(2) the root is φ,

(3) if a node is labelled φ′ and the nodes above it form the set K , then there is a deduction rule r ∈ R such that r = K ′
φ′ for

some K ′ ⊆ K and for all r′′ = K ′′
φ′′ ∈ higher(r), there exists a Dψ ′′ ⊆ K denying a formula ψ ′′ ∈ K ′′ by a supported proof.

A set of formulae Dφ denies a formula φ by a supported proof when for all deduction rules r = H
φ
, there exists a deduction

rule r′ = H′
φ′ > r such that H′ ⊆ Dφ .

A formula φ is denied by a supported proof when there exists a set Dφ which denies φ and all φ′ ∈ Dφ have a supported

proof.

As before, the above notion of supported proof can be used to give ordered SOS a semantics.

Semantics 10 (Supported Provability). Any OTSS is meaningful, and its meaning is the pair (C,P)where C is the set of all formulae

that have a supported proof and P is the set of all formulae that do not have a supported denial.

The next theorem shows that Semantics 8 and 10 coincide.

100 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Theorem 3.38. Given an OTSS (R, <), let C ′ be the set of all formulae that have a supported proof and I′ the set of all formulae

that are denied by a supported proof. Let (C,P) be the least three-valued supported model of (R, <). Then, (C ′,�p \ I′) = (C,P).

Proof. Similar to the proof of Theorem 3.36. �

3.3. Complete OTSS

An important class of OTSSs are the complete OTSSs. They enjoy the property that they can be given a straightforward

two-valued semantics.

Definition 3.39 (Completeness). An OTSS is called complete when for its least three-valued stable model (C,P) it holds that

C = P.

For complete OTSSs placing a rule above itself makes the rule inapplicable and does not influence the least three-valued

stable model. This is important because it allows us to encode conveniently the full power of negative premises (see an

alternative translation from ntyft to otyft at the end of Section 5.1).

Lemma 3.40. Consider two disjoint sets R and R′ of deduction rules and two orderings< ⊆ R × R and<′ ⊆ R′ × R′. If<′ is reflexive
and (R, <) is complete, then the least three-valued stable models of the two OTSSs (R, <) and (R ∪ R′, < ∪ <′) coincide.

Proof. Let (Cα ,Pα) be the result of the reduction technique of Definition 3.26 for (R, <) and (C ′
α ,P

′
α) that for (R ∪ R′, < ∪ <′).

We prove by an induction on α that the following two statements hold (in fact, this part of the proof does not rely on the

completeness of (R, <)):

(1) C ′
α ⊆ Cα;

(2) Pα ⊆ P′
α .

(1) Take an arbitrary φ ∈ C ′
α . Then (R ∪ R′, < ∪ <′) 	p φ and ∃β<α p is correct w.r.t. P′

β and hence, by Lemma 3.8 and by the

induction hypothesis (Pβ ⊆ P′
β), p is correct w.r.t. Pβ . If there is a deduction rule r′ ∈ R′ in the proof structure p, then for

all φ′ ∈ prem(r′), φ′ ∈ C ′
α and it follows from items 2 and 3 of Lemma 3.27 that φ′ ∈ P′

β . Hence, r
′ is not correct w.r.t. P′

β ,

and thus a contradiction follows. We can thus assume that all rules in the proof structure p are in R.

We proceed by an induction on the proof structure p. Consider the last deduction rule r ∈ R applied in the proof structure

p. Then by the induction hypothesis, for all φ′ ∈ prem(r), φ′ ∈ Cα and hence, (R, <) 	pφ′ φ′ for some proof pφ′ which is

correct w.r.t. P′
β (and thus, Pβ). Hence, by applying the same deduction rule, we get a proof for φ for which is correct w.r.t.

Pβ and thus, φ ∈ Cα .

(2) Similarly, take a φ ∈ Pα . Then (R, <) 	p φ and ∀β<α p is correct w.r.t. Cβ and hence, by the induction hypothesis, p is correct

w.r.t. C ′
β . Proof p is also a proof w.r.t. (R ∪ R′, < ∪ <′) and hence, the thesis follows.

Let (C,P) and (C ′,P′) be the least three-valued stable models of (R, <) and (R ∪ R′, < ∪ <′), respectively. We first prove the

following two statements.

(1) φ ∈ P′ \ C ⇒ for all proofs p such that p is correct w.r.t. C and (R ∪ R′, < ∪ <′) 	p φ, there exists a node φ′ in p labelled by

a formula φ′ ∈ P \ C;
(2) φ ∈ C \ C ′ ⇒ for all proofs p if p is correct w.r.t. C and (R, <) 	p φ, there exists a deduction rule r ∈ p such that for some

r′ ∈ higher(r) and a φ′ ∈ prem(r′), φ′ ∈ P′ \ C.
(1) We proceed by an induction on the proof p. If the latest deduction rule in p is r ∈ R; if all premises of r are in C then

since p is correct w.r.t. C, φ should also be in C which is a contradiction. Thus, there exists a formula φ′ ∈ prem(r) such

that φ ∈ P′ \ C. If r ∈ R′ and all the premises of R are in C, then r is not correct w.r.t. C; hence, there exists a formula such

that φ′ ∈ prem(r) such that φ′ ∈ P′ \ C and by induction hypothesis, there is a formula in the sub-proof of p for φ′ that is
in P \ C.

(2) Suppose that there exists aproofp such that (R, <) 	p φ and for all r ∈ rules(p), for all r′ ∈ higher(r), and for allφ′ ∈ prem(r′),
φ′ /∈ P′ \ C. Then, it follows from the correctness of p w.r.t. C that for all such r′, there exists at least one formula φ′′ such
that φ′′ /∈ C and since φ′′ /∈ P′ \ C, φ′′ /∈ P′. Thus, p is also correct w.r.t. P′ and thus, φ ∈ C ′ which is a contradiction.

It follows from the completeness of (R, <) that C = P. Towards a contradiction, assume that P′ \ P /= ∅; then there exists

a φ ∈ P′ \ P. It then follows from item 1 above, that for all proofs p such that (R ∪ R′, < ∪ <′) 	p φ, there exists a formulae

φ′ ∈ p such that φ′ ∈ P \ C. But since C = P, φ′ ∈ P \ P, and hence, φ′ ∈ ∅ which is a contradiction. It also follows, by the same

line of reasoning, from item 2 and the fact that P′ \ C = P′ \ P = ∅, that C \ C ′ = ∅. Hence, we conclude that C ⊆ C ′ and P′ ⊆ P.

From the first part of the proof, we have that C ′ ⊆ C and P ⊆ P′ and thus, we conclude that C = C ′ = P = P′, which was to be

proven. �

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 101

It follows from the above lemma that the original OTSS is complete if the extendedOTSS (with rules containing self-loops)

is complete. Lemma 3.40 does not hold if the extended OTSS is not complete. In other words, adding rules with self-loops to

an incomplete OTSS may influence its three-valued stable models. The following example illustrates this fact.

Example 3.41. Consider the following (incomplete) OTSS.

Its least three valued stable model is ({a a→ a}, {a a→ a,c
c→ c,d

d→ d}). Suppose that we add the following OTSS to the one

specified above.

Then, the least three-valued stable model of the extended OTSS is (∅, {b b→ b,c
c→ c,d

d→ d}).

An intuitive way of exploiting the minimum three-valued stable models to give a two-valued semantics to OTSSs is to

rule out OTSSs in which the C (certain) part is different from the P (probable) part on the basis that the OTSS does not say

anything useful about the formulae in P \ C, i.e., it neither rejects them nor considers them certain. The following notion of

complete OTSSs captures this intuition.

Semantics 11 (Complete). An OTSS is meaningful when it is complete, i.e., for its least three-valued stable model (C,P) it holds

that C = P, and its meaning is the least three-valued stable model.

Example 3.42. Semantics 11 rejects the OTSS of Example 3.22 since the first two components of the least three-valued

stable model differ, namely, they are C = ∅ and P = {a a→ a,b
b→ b} and thus the OTSS cannot unequivocally define a transition

relation.

The least three-valued stable model is our preferred notion of semantics, and in order to obtain congruence meta-results

(discussed in Section 4) we restrict our attention to complete OTSSs. (Note that stratification, as defined in Definition 3.19,

gives us a syntactic criterion to prove completeness.) In our view, for all practical applications the OTSS under consideration

should be complete or should be rejected, since the most basic properties such as congruence of bisimilarity cannot be

guaranteed. However, one might want to generalize Semantics 11 to the following notion of irrefutability which assigns a

two-valued transition relation to all OTSSs.

Semantics 12 (Irrefutable).All OTSS aremeaningful and theirmeaning is the P component of their least three-valued stablemodel.

Example 3.43. Semantics 12 assigns {a a→ a,b
b→ b} as the meaning to the OTSS of Example 3.22.

4. Congruence Rule Formats

A major type of meta-result obtained in the field of rule formats is to guarantee the congruence property, as defined

below, for different notions of behavioral equality.

102 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Definition 4.1 (Congruence). An equivalence relation ∼ is a congruencew.r.t. a function symbol f (with an arbitrary arity n),

when for all p0,q0, . . . ,pn−1,qn−1, if p0 ∼ q0, . . ., pn−1 ∼ qn−1 then f (p0, . . . ,pn−1) ∼ f (q0, . . . ,qn−1). The equivalence relation ∼
is a congruence w.r.t. a signature � when it is a congruence for all function symbols f ∈ �.

When the signature is clear from the context, we shall just write that R is a congruence.

The notion of behavioral equivalence that is used most throughout the rest of this paper is the following notion of strong

bisimilarity.

Definition 4.2 (Strong Bisimilarity). A symmetric relation R ⊆ C × C is a strong bisimulation relation when for all (p,q) ∈ R,

l ∈ C, and p′ ∈ C, if p l→ p′ then there exists a q′, q l→ q′ and (p′,q′) ∈ R. Two closed terms p and q are strongly bisimilar (or just

bisimilar), denoted by p↔q, when there exists a strong bisimulation relation R such that (p,q) ∈ R.

In the remainder of this section, we shall first quote two general congruence rule formats for strong bisimilarity in the

setting with negative premises and then present their counterparts in the setting with ordering. A study of their relative

expressiveness will follow afterwards.

4.1. Congruence formats for SOS

In [20], De Simone started a line of research which aims at defining syntactic schema for TSSs which guarantee certain

properties such as congruence of strong bisimilarity. Two distinguished examples of such formats are the gsos [5] and

the ntyft [10] formats, both of which allow for specifying negative transition formulae among premises. Moreover, ntyft

accommodates the challenging feature of look-ahead which, as we shall also observe, leads to more expressive power. Next,

we define the gsos and the ntyft formats.

Definition 4.3 (gsos). A deduction rule is in the gsos format if and only if it has the following form:

{xi
lij→ yij | i ∈ I,1 � j � mi} ∪ {xj

l′
jk�→ | j ∈ J,1 � k � nj}

f (−→x) l→ t

where f is a function symbol, xi’s (1 � i � ar(f)) and yij ’s (i ∈ I and 1 � j � mi) are all distinct variables, I and J are subsets

of {1, . . . ,ar(f)},mi and nj are natural numbers (to set an upper bound on the number of premises), and t is an arbitrary term

such that vars(t) ⊆ {xi | 1 � i � ar(f)} ∪ {yij | i ∈ I,1 � j � mi}. A TSS is in the gsos format when it has a finite signature, a

finite set of labels, a finite set of deduction rules and all its deduction rules are in the gsos format.

Definition 4.4 (ntyft). A deduction rule is in the ntyft format if and only if it has the following form:

{ti li→ yi | i ∈ I} ∪ {t′
j

l′
j�→ | j ∈ J}

f (−→x) l→ t

where f is a function symbol, xi (1 � i � ar(f)) and yi’s (i ∈ I) are all distinct variables, I and J are (possibly infinite) sets of

indices, and t, ti’s and t′
j
’s are arbitrary terms. A TSS is in the ntyft format when all its deduction rules are. A deduction rule

(TSS) is in the tyft format when it is positive and is in the ntyft format.

Clearly any deduction rule (TSS) in the gsos format is also in the ntyft format. A deduction rule (TSS) is in the positive

gsos format when it is both in the tyft and the gsos formats.

Astraightforwardextensionof thentyft formatallows forvariables in thesourcesof conclusions, leading to thentyft/ntyxt

format, which does not bring about extra expressive power since rules in the extended format can be coded in the ntyft

format [10]. The following theorem is from [6].

Theorem 4.5 (Congruence for ntyft). For a complete TSS in the ntyft format, bisimilarity is a congruence.

The following example is also taken from [6] and illustrates that completeness of the TSS is essential in obtaining the

congruence result.

Example 4.6. Consider the following TSS:

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 103

a
a→ a b

a→ b

x
a→ y f (x)

c�→ f (a)
d�→

f (x)
d→ b

x
a→ y f (x)

d�→ f (b)
c�→

f (x)
c→ a

The above TSS is in the ntyft format and has a unique two-valued stable model, namely {a a→ a, b
a→ b, f (a)

c→ a, f (b)
d→ b}.

However, it is not complete; its least three-valued stable model is ({a a→ a,b
a→ b}, {a a→ a,b

a→ b,f (a)
d→ b,f (b)

d→ b,f (a)
c→ a,

f (b)
c→ a}). For the unique two-valued stable model of the above transition relation, it holds that a↔b but it does not hold

that f (a)↔f (b) (thus bisimilarity is not a congruence).

4.2. Congruence formats for ordered SOS

Our goal is to show that orderings on rules are at least as expressive (and of course complicated in nature) as negative

premises. This has already been demonstrated in the case of the gsos format by the osos format of [22] which is defined

below. In [22], Ulidowski and Phillips show that there exists a semantics-preserving translation from the gsos format to the

osos format and vice versa.

Definition 4.7 (osos). An OTSS (R, <) is in the osos format when

(1) all deduction rules in R are in the positive gsos format,

(2) for all deduction rules r,r′ ∈ R if r ∈ higher(r′) then r and r′ have the same main operator, and

(3) for all distinct deduction rules r,r′ ∈ R, if r ∈ higher(r′) then vars(trg(prem(r))) ∩ vars(r′) = ∅ and vars(src(prem(r))) ⊆
vars(src(conc(r′))).

Item3 isnot explicitlypresent in theoriginal definitionof [22], but it is implicitly assumed.Asweshow in the remainderof this

paper and illustrate with the examples in this section, the first statement in this item 3, i.e., vars(trg(prem(r))) ∩ vars(r′) = ∅,
is essential in obtaining the congruence result. The second statement, i.e., vars(src(prem(r))) ⊆ vars(src(conc(r′))), is used for

obtaining a translation between the gsos and the osos formats and vice versa. Item 2 permits cyclic rules (namely rules that

are placed above themselves) in the osos format. Cyclic rules are also part of the original osos format [22]. However, several

examples in [22] show that the subset of the osos format without cyclic rules, called partial osos, is as expressive as the osos

format. We decided to include cyclic rules in the definition of the osos format in order to be compatible with the original

presentation. As we show in the remainder of this paper, introducing cyclic rules to more general rule formats may cause

some complications with respect to their semantics.

In this paper, we introduce the following otyft format which will be proved equal in expressiveness to the ntyft format

(in Section 5) and thus, strictly more expressive than the osos and the gsos formats, as we shall demonstrate shortly.

Definition 4.8 (otyft). An OTSS (R, <) is in the otyft format it satisfies the following two conditions.

(1) For all deduction rules r ∈ R, either r is in the tyft format or conc(r) ∈ prem(r), in the latter case the targets of all premises

should be distinct variables.

(2) For all distinct deduction rules r,r′ ∈ R, if r ∈ higher(r′) then vars(trg(prem(r))) ∩ vars(r′) = ∅ and vars(src(prem(r))) ⊆
vars(r′).

An OTSS is in the acyclic otyft format if it is in the otyft format and furthermore, for all (possibly identical) deduction rules

r,r′ ∈ R, item 2 holds.

Note that the otyft format (syntactically) generalizes the osos format in that any OTSS in the osos format is in the otyft

format but not vice versa. Later, in Section 5, we show that this strict generalization indeed holds in the semantic sense, as

well; namely, there are transition systems that can be specified by the otyft format but not by the osos format.

In the definition of the otyft format, we allowed for deduction rules that are not in the tyft format but have their

conclusions among their premises. These rules may seem useless as they cannot lead to a proof for any new transition.

However, thanks to the notion of ordering among rules, they can be indeed useful for modeling impossibility of certain

transitions (i.e., the idea of negative premises) by placing them above other rules. In other words, although these rules by

themselves may not enable the derivation of new transitions, once ordered above other rules, they may indeed disable

some. Item 2 of the otyft format permits also cyclic rules by the distinctness of r and r′ condition. This is in line with the

definition of the osos format. Note that in rules placed above others (thus not cyclic rules) lookahead is prohibited by the

second statement of item 2. Lookahead is freely allowed, however, for deduction rules which are minimal with respect to

the ordering.

104 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Weconjecture that the second statement in item2, i.e., vars(src(prem(r))) ⊆ vars(r′), can be droppedwithout jeopardizing

the congruence result. However, our translation to the ntyft format (in Section 5.2) requires this condition. The following

example illustrates that by dropping this statement one can specify transition systems that cannot be specified by the ntyft

format.

Example 4.9.

The above OTSS is complete and its three-valued stable model is the pair (C,P) where C = P = {a a→ d,b
a→ d,b

a→ c, c
b→ d,

f (a)
c→ d}. We claim that there is no TSS in the ntyft format that defines the above three-valued stable model. Assuming that

such a TSS does exist (without loss of generality, we can assume that the TSS is pure), consider a minimal well-supported

proof for	ws f (a)
c→ d; using the samededuction rule leading to this proof and a new substitution,we prove that	ws f (b)

c→ d

(contradiction).

Assume that the proof for f (a)
c→ d is due to a rule of the following form:

(r)
{ti li→ yi | i ∈ I} {t′

j

l′
j�→ | j ∈ J}

f (x)
c→ t

and there exists a substitution σ such that σ(x) = a and σ(t) = d. The premises of such a rule may be of one of the following

shapes:

(1) x
a→ yi or a

a→ yi, for some i ∈ I,

(2) b
a→ yi, for some i ∈ I,

(3) ti
b→ yi or c

b→ yi, where σ(ti) = c and i ∈ I,

(4) t′
j

a�→ where t′
j
can be any term such that σ(t′

j
) /= a and σ(t′

j
) /= b , and j ∈ J,

(5) t′
j

b�→ where t′
j
can be any term such that σ(t′

j
) /= c, and j ∈ J,

(6) t′
j

c�→ where t′
j
can be any term but f (a) or f (x) and j ∈ J (these two cases are excluded since otherwise, there should exist

a well-supported denial for f (a)
a→ and then f (a)

c→ d cannot be included in the C component of the three-valued stable

model).

Note that f (x) or f (a) cannot be in the source of a positive premise because the label of such a premise should be a c and

then the well-supported proof of f (a)
c→ d due to (r) is not minimal and there is a smaller proof which is the proof of such a

premise. Also, given the above forms, the target of the conclusion, i.e. t, should either be d or some yl such that σ(yl) = d.

Define σ ′ as follows: σ ′(x) .= b, σ ′(y) .= σ(y), for all variables y /= x. Then, all positive premises (items 1–3 above)must have

a well-supported proof (for they are all included in the C component of the least well-supported model). For the negative

premises, there is no case where substituting a b for an a may enable a- or b-transitions. Similarly, substituting a b for an a

may disable c-transitions but may not enable them. Hence, we obtain a well-supported proof for σ ′(f (x) c→ t), i.e. f (b)
c→ d.

Note that the presence of lookahead in the upper rule of the first column plays an essential rôle in establishing this

expressiveness result. In essence, the first column states that f (x) can make a c transition to d when x can make an a

transition and furthermore, for all possible a transitions of x to any y, y cannot make a b transition. The implicit universal

quantification in the generalization of the otyft format makes it more expressive than the ntyft format.

Since our translation to the ntyft format (in Section 5.2) provably preserves the three-valued stable model, we can recast

Theorem 4.5 in the setting of ordered SOS, as follows.

Theorem 4.10 (Congruence for otyft). For a complete OTSS in the otyft format, bisimilarity is a congruence.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 105

Proof. For a complete OTSS (R, <), R′ = ntyft(R, <) is a TSS in the ntyft format which induces the same least three-valued

stable model and thus is complete. Thus, bisimilarity for the induced transition relation of R′ is a congruence and it coincides

with bisimilarity for the transition relation induced by (R, <). �

Note that our essential addition to the constraints of the tyft format is the first constraint in item 2 of Definition 4.8.

The following counter-example shows that this constraint on the otyft format is indeed useful for obtaining a congruence

result, and cannot be dropped.

Example 4.11. The following OTSS is complete and its stable model is {a a→ b, b
a→ a, f (a)

a→ a}. Hence, for the above OTSS a

and b are bisimilar while f (a) and f (b) are not.

The following two counter-examples show that the same condition cannot be dropped for non-tyft rules, which have their

conclusion among their premises, either.

Example 4.12.

The above OTSS is complete and its stablemodel is {a a→ a,b
a→ a,f (b)

a→ a}. Hence, for the above OTSS, a and b are bisimilar

while f (a) and f (b) are not.

Example 4.13.

The above OTSS is complete and its stablemodel is {a a→ b,b
a→ a,f (a)

a→ a}. Hence, for the above OTSS, a and b are bisimilar

while f (a) and f (b) are not.

106 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

In item 1 of Definition 4.8, we require that the targets of premises of rules that are not in the tyft format should still

contain distinct variables. The following counter-example shows why this requirement cannot be dropped.

Example 4.14.

The above OTSS is complete and its stable model is {a a→ a,b
a→ b,f (b)

a→ }. Hence, for the above OTSS, a and b are bisimilar

while f (a) and f (b) are not.

SOS rules in the osos format are assumed (implicitly) to have different variables [22]. The last example shows that in

general if rules in the osos format share variables, then bisimulation is not a congruence.

Example 4.15.

The above OTSS is complete and its stable model is {a b→ b,b
b→ a,b

b→ b,f (a)
a→ a, f (a)

a→ c, f (a)
a→ f (a), f (b)

a→ c, f (b)
a→ f (a), . . .}. For the above OTSS a and b are clearly bisimilar. However, f (a) and f (b) are not bisimilar since f (a) can

make a transition to a while f (b) is not capable of making any a-transition to a term that can make a further b-

transition.

5. Comparison of expressiveness of ntyft and otyft formats

In this section, we present, in both directions, translations between TSSs in the ntyft format and OTSSs in the otyft

format that preserve the least three-valued stable models.

5.1. From ntyft to otyft

We assume in the remainder that TSSs in the ntyft format are pure, i.e., all variables appearing in a rule must be drawn

from among those used in the source of the conclusion or the targets of the premises. This restriction by no means reduces

the expressiveness of the source format; impure TSSs can be transformed to pure ones (while keeping the TSS in the ntyft

format and preserving the least three-valued stable model) by making many copies of rules each instantiating the other

variables by a closed term [10].

Definition 5.1 (Pure ntyft to otyft: Translation Scheme). Given a TSS R in the pure ntyft format, its translation to the otyft

format, denoted by otyft(R), is an OTSS (R′, <)where R′ .= {r+,sr,j | r ∈ R,j ∈ Jr} and< .= {(r+,sr,j) | r ∈ R,j ∈ Jr} and for each r ∈ R

of the form

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 107

Fig. 2. Soundness of the translation from the pure ntyft format to the otyft format.

(r)
{ti li→ yi|i ∈ Ir} ∪ {t′

j

l′
j�→ |j ∈ Jr}

f (−→x) l→ t
,

r+ and sr,j (for each j ∈ Jr) are defined as follows:

(r+)
{ti li→ yi|i ∈ Ir}
f (−→x) l→ t

, (sr,j)
{t′
j

l′
j→ y′

j
}

t′
j

l′
j→ y′

j

.

In rule sr,j , y
′
j
is a fresh variable not appearing in r+.

The next theorem states that the diagram in Fig. 2 commutes.

Theorem 5.2 (Pure ntyft to otyft: Correctness). For an arbitrary TSS R in the pure ntyft format, the least three-valued stable

models of R and otyft(R) coincide.

Proof. Let R be an arbitrary TSS in the pure ntyft format and otyft(R) be its translation in the otyft format. Let S and (S′, <)
be the closed instantiations of R and otyft(R), respectively.

Next, we quote the least three-valued stable model semantics of TSSs from [6,9] (with a slight change in notation) and

prove it equal to our definition of three-valued stable model semantics for the corresponding OTSS. To this end, we first

define the following notion of negation (called denial in the literature). �

Definition 5.3 (Negation). A positive formula p
l→ p′ negates p

l�→ . A set of positive formulae T does not negate a set of

negative formulae N, denoted by T�N when there is no φ ∈ T and ψ ∈ N such that φ negates ψ .

The following reduction procedure is taken from [6].

Definition 5.4 (Reduction Technique for SOS with Negative Premises). For an ordinal α, define:

C ′
α

.= {φ | ∃p S 	p
N
φ

∧ ∃β<αP′
β�N}

P′
α

.= {φ | ∃p S 	p
N
φ

∧ ∀β<αC ′
β�N}

where (by abusing the notation), S 	p
N
φ

refers to the notion of provability as defined below.

A deduction rule H
φ

is provable from a TSS S by means of proof p, denoted by S 	p
H
φ
, when there exists a well-founded

upwardly branching tree with formulae as nodes and of which

• the root is labelled by φ;

• if a node is labelled by ψ and the nodes above it form the set K then one of the following two cases hold:

− ψ ∈ H and K = ∅;
− ψ is a positive transition formula and s = K

ψ
∈ S.

108 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

To disambiguate the notation, in the remainder, we use (S′, <) 	p φ to denote that φ is provable from OTSS (S′, <) and
S 	p

H
φ

to denote that H
φ

is provable from TSS S.

Lemma 5.5. If S 	p
N
φ

for some set N of negative formulae then there exists a proof q such that (S′, <) 	q φ; furthermore, both

proofs have the same depth and rules(q) = {r+ | r ∈ rules(p)}.

Proof. By an induction on the structure of proof p. Suppose p is an r-proof for some r ∈ S. Then r+ ∈ S′ and for positive

premises r and r+ coincide. Thus, all subproofs concerning positive premises of r can be replaced by a proof from S′ (of the
same depth) using the induction hypothesis, and this way we have a proof q in (S′, <) for φ which has the same depth as p

and comprises positive versions of the rules in q. �

Returning to the proof of Theorem 5.2, we show, by an induction on α, that Cα = C ′
α and Pα = P′

α for all ordinals α. Inside

the induction on α, we use an induction on the depth of the proof for φ (i.e., depth of p such that S 	p
N
φ

or depth of q such

that (S′, <) 	q φ).

Cα ⊆ C ′
α If φ ∈ Cα then there exists a minimal proof p such that (S′, <) 	p φ and there exists a β < α such that for all rules

r ∈ rules(p), r is correct w.r.t. Pβ . The last step of the proof should be due to a rule r+ ∈ S′ such that r ∈ S (rules sr,j ∈ S′,
for some r ∈ S and j ∈ Jr , if at all applicable, cannot be part of a minimal proof). Suppose that deduction rule r ∈ S

(giving rise to r+ ∈ S′) has the following shape:

(r)
{pi li→ p′

i
|i ∈ Ir} ∪ {pj

lj�→ |j ∈ Jr}
f (−→p) l→ p′

,

It follows then from the induction hypothesis (of the induction on α) that Pβ = P′
β and Cβ = C ′

β . Since sr,j > r+ for all

j ∈ Jr , it follows that P′
β�{pj

lj�→ | j ∈ Jr} (otherwise, r is not correct w.r.t. Pβ). Let N
′ be {pj

lj�→ | j ∈ Jr}.
It also follows from the induction hypothesis (on the depth of the proofs) that for all i ∈ I, 	qi

Ni

pi
li→ p′

i

and P′
β�Ni and

by using the deduction rule r, we can derive a proof for
N′ ∪ ⋃

i∈Ir Ni

φ
and P′

β � N′ ∪ ⋃
i∈Ir Ni. Hence, φ ∈ C ′

α .

C ′
α ⊆ Cα If φ ∈ C ′

α then there exists a proof p such that S 	p
N
φ

and P′
β�N for some β < α. Following Lemma 5.5, there exists a

proof q such that (S′, <) 	q φ. Consider the rules r+ ∈ rules(q); each of them is a positive instance of some rule r ∈ S

(see proof of Lemma 5.5). Suppose that some r ∈ rules(p) is not correct with respect to Pβ ; assuming that the original

rule r has the following shape:

(r)
{pi li→ p′

i
|i ∈ Ir} ∪ {p′′

j

l′′
j�→ |j ∈ Jr}

f (−→p) l→ p′
,

then there exists a rule sr,j , for some j ∈ J such that prem(sr,j) ⊆ Pβ . Thus, in particular, p′′
j

l′′
j→ qj ∈ Pβ for some qj and

since following the induction hypothesis (on α), Cβ = C ′
β and Pβ = P′

β , it does not hold that P′
β�p′′

j

l′′
j�→ and thus it

does not hold that P′
β�N (Contradiction). Thus, we conclude that all rules r ∈ rules(p) are correct w.r.t. Pβ and this

concludes the proof for φ ∈ Cα .

Pα = P′
α Similar to above.

The following translation scheme is an alternative which preserves the least three-valued supported models. It uses

auxiliary rules s′
r,j

to encode negative premises. These rules are placed above themselves in order to disable them. Also, see

Lemma 3.32.

Given a TSS R in the pure ntyft format, its translation to the otyft format, denoted by otyft′(R), is an OTSS (R′, <)where

R′ .= {r+,s′
r,j

| r ∈ R,j ∈ Jr} and < .= {(r+,s′
r,j
),(s′

r,j
,s′
r,j
) | r ∈ R,j ∈ Jr} and for each r ∈ R of the form

(r)
{ti li→ yi|i ∈ Ir} ∪ {t′

j

l′
j�→ |j ∈ Jr}

f (−→x) l→ t
,

and for each j ∈ Jr , s
′
r,j

is defined as the following rule

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 109

(s′
r,j
)

{t′
j

l′
j→ y′

j
}

f (−→x) l→ t
,

where y′
j
is a fresh variable not appearing in r+, and r+ is defined as before.

Theorem 5.6 (Purentyft tootyft: Correctness). For an arbitrary TSS R in the purentyft format, the least three-valued supported

models of R and otyft′(R) coincide.

Proof. Similar to that of Theorem 5.2. �

5.2. From otyft to ntyft

In this section, we complete the picture by translating OTSSs in the otyft format to TSSs in the ntyft format. In common

with the translation from the ntyft to the otyft format, the translation in this section also preserves the least three-valued

stable model.

Definition 5.7 (otyft to ntyft: Translation Scheme). Given an OTSS (R, <) in the otyft format, function S : R → I, where

I .= ⋃
r∈R Ir , is a selection function for r ∈ R when for all s ∈ higher(r) of the form

{t′
i

l′
i→ y′

i
|i ∈ Is}

ts
ls→ t′s

,

it holds that S(s) ∈ Is. (Thus, if Is = ∅ for some s ∈ higher(r), then the set of selection functions for r is empty.)

Given an OTSS (R, <) in the otyft format, its translation to the ntyft format, denoted by ntyft(R, <), is defined as {rS | r ∈
tyft(R), S is a selection function for r}. Here tyft(R) is the subset of R that conforms to the tyft format, and for each r ∈ tyft(R)

of the form
{ti

li→ yi|i∈Ir }
f (
−→x)

l→ t
, rS is defined as follows:

(rS)
{ti li→ yi|i ∈ Ir} ∪ {t′

S(s)

l′
S(s)�→ |s ∈ higher(r)}

f (−→x) l→ t
.

The idea of the above translation is that for each rule r in R, for all rules placed above r, we negate an arbitrary premise

and add the chain of premises up to the negated premise to the premises of r. This way, we can make sure that r is

applied precisely when all rules above it are for some reason disabled. The following examples illustrate the idea of this

translation.

Example 5.8. Consider the following OTSS in the (acyclic) otyft format.

110 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

Fig. 3. Soundness of the translation from the otyft format to the ntyft format.

Applying the translation scheme of Definition 5.7 results in the following TSS. Note that the topmost rule is not included

since it is not in the tyft format.

x
a→ y x

b�→
f (x)

a→ y a
a→ a b

a→ b b
b→ b

It is then easy to check that the least three-valued stable model of both the OTSS and the translated TSS is

({a a→ a,b
a→ b,b

b→ b,f (a)
a→ a}, {a a→ a,b

a→ b,b
b→ b,f (a)

a→ a}).

Our next milestone is to show that our translation indeed preserves the least three-valued stable models. There is a

subtlety concerning cyclic rules. Consider the rule on the left below which is placed above itself. It is translated into the

ntyft rule on the right

{ti li→ yi | i ∈ I}
f (x)

l→ t
(r)

{ti li→ yi | i ∈ I} ∪ {tj
lj�→ }

f (x)
l→ t

for some j ∈ I. Thus, r contains contradictory premises of the form tj
lj→ yj and tj

lj�→ . Such rules may influence the semantics

in different ways when the OTSS is not complete. To avoid such complications, we first prove, in the absence of cyclic rules,

that our translation preserves the least three-valued stable model even for incomplete OTSSs. Then, we show that including

cyclic rules does not endanger the correctness of our translation for complete OTSSs (see Fig. 3). Theorem 5.9 proves that the

translation presented in Definition 5.7 preserves the least three-valued stable model for the acyclic otyft format (presented

by dotted lines in the diagram)while Theorem 5.12 proves that the same translation preserves the three-valued stablemodel

for complete OTSSs in the otyft format (presented by solid lines).

Theorem 5.9 (Acyclic otyft to ntyft: Correctness). For an OTSS (R, <) in the acyclic otyft format, the least three-valued stable

models of (R, <) and ntyft(R, <) coincide.

Proof. The proof is very similar in nature to the proof of Theorem 5.2. Take (R, <) and R′ to be the closed instantiations

of an arbitrary OTSS in the otyft format and its translation to the ntyft format. Also let Cα and Pα be certain and possible

transition relations resulting from applying the reduction technique of Definition 3.26 to (R, <), and let C ′
α and P′

α be the

result of applying the reduction technique of [6] (see the proof of Theorem 5.2) to R′. Again similarly to the proof of Theorem

5.2, we prove the following auxiliary lemma:

Lemma 5.10. If R′ 	p
N
φ

for some set N of negative formulae then there is a proof q such that (tyft(R), <) 	q φ; furthermore, both

proofs have the same depth.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 111

Proof. By an induction on the structure of proof p. Suppose p is an s-proof for some s ∈ R′. Then s is introduced in R′ due to

the presence of some rule r ∈ tyft(R). All positive premises of s are (the same as positive premises of r and are) by induction

hypothesis provable from (tyft(R), <). This way, we have a proof q for φ in (tytf (R), <). �

Returning to the proof of Theorem 5.9, we show, by an induction on α, that for all ordinals α, we have Cα = C ′
α and Pα = P′

α .

Inside the induction on α, we use an induction on the depth of the proofs for φ in each of the above-mentioned transition

relations.

Cα ⊆ C ′
α Take φ ∈ Cα . Let p be an r-proof for φ in (R, <) such that p is correctw.r.t. Pβ for some β < α (without loss of generality,

we can assume that p is minimal and hence r ∈ tyft(R)). If there is no r′ > r then r ∈ R′. All the premises φi of r have

a smaller proof depth and it follows from the induction hypothesis (on the depth of the proof) that φi ∈ C ′
α , that is,

R′ 	qi
Ni
φi

for someNi such that P′
βi
�Ni for some βi < α. Thus using the same deduction rule r ∈ R′, we obtain R′ 	q

N
φ

where N
.= ⋃

i∈Ir Ni and hence, P′
β ′�N where β ′ is the maximum of all βi for all i ∈ Ir .

Otherwise, r should be correct w.r.t. P′
β (since Cβ = C ′

β and Pβ = P′
β and β < α) and hence, for all rules s ∈ higher(r),

thereexists at least onepremiseφS(s) = pS(s)
l′
S(s)→ p′′

S(s)
such that for allq′′,pS(s)

l′
S(s)→ q′′ /∈P′

β . Otherwise, collect all premises

of s that can find a target q′′
i
such that pi

l′
i→ q′′

i
∈ P′

β (one premise for each i ∈ Is) and by induction hypothesis pi
l′
i→ q′′

i

∈ Pβ . Thus, there is a rule s′ > r such that it has the set of premises {pi
l′
i→ q′′

i
| i ∈ Is} ⊆ Pβ and thus r is not correct

w.r.t. Pβ (Contradiction). Hence, we conclude that there exists a selection function S for r such that P′
β � {pS(s)

l′
S(s)�→ |

s ∈ higher(r) }.
Take the rule rS of the following shape:

(rS)
{pi li→ p′

i
|i ∈ Ir} ∪ {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)}

f (−→p) l→ p′

For all its positive premises φi, i ∈ Ir , we have φi ∈ C ′
α and hence R′ 	qi

Ni
φi

for some Ni such that P′
βi
�Ni for some

βi < α. Also, it follows from the above reasoning that for the negative premises, it holds that P′
β � p′′

S(s)

l′′
S(s)�→ and hence,

using the above deduction rule, we have a proof q for R′ 	q
N
φ

where N
.= {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)} ∪ (

⋃
i∈Ir Ni) and

P′
β ′�N where β ′ is the maximum of β and βi for all i ∈ Ir .

C ′
α ⊆ Cα If φ ∈ C ′

α then there exists a proof q such that R′ 	q
N
φ

and there exists β < α such that P′
β�N. Following Lemma 5.10,

there exists a proof p such that (R, <) 	p φ. Consider the rules r ∈ rules(p) (it follows from the same lemma that

r ∈ tyft(R)); each such rule r corresponds to a rule rS ∈ R′ which has the shape

(rS)
{pi

l′
i→ p′

i
|i ∈ Ir} ∪ {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)}

f (−→p) l→ p′
.

Since φi = pi
l′
i→ p′

i
∈ C ′

α for all i ∈ Ir , there exist proofs qi such that R′ 	qi
Ni
φi

for some Ni such that P′
βi
�Ni, for some

βi < α. It follows then from the induction hypothesis (on the depth of the proof) that there exist proofs pi such

that (R, <) 	pi φi. Furthermore, for all rules s ∈ higher(r), there exists a premise φS(s) = p′′
S(s)

l′′
S(s)�→ such that P ′

β�φS(s) or

p′′
S(s)

l′′
S(s)→ q′′ /∈ Pβ for all q′′ (following the induction hypothesis on α). Thus, each r ∈ rules(p) is correct for Pβ and this

way, we have a proof p for (R, <) 	p φ. Hence, φ ∈ Cα .

Pα = P′
α Similar to above. �

The translation from otyft to ntyft does not generalize trivially to the setting with cyclic rules. The following example

illustrates this fact.

Example 5.11. Consider the following OTSS which is in the otyft (but not in the acyclic otyft) format. Note that all the

deduction rules used in this OTSS are in the tyft format.

112 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

The least three-valued stable model of the above OTSS is ({a a→ a},{a a→ a, b
b→ b, a

a→ b, f (a)
a→ b}). Using the translation

scheme of Definition 5.7, the above OTSS is translated into the following TSS.

b
b→ y

b
b→ y

b
b�→

b
b→ b

b
b→ y

a
a→ b a

a→ a

x
a→ y x

a�→
f (x)

a→ y

The least three-valued stable model of the above TSS is ({a a→ a},{a a→ a,b
b→ b,a

b→ b}) which is different from the least

three-valued stable model of the corresponding OTSS.

The problem displayed in Example 5.11 can be remedied by only considering complete OTSSs, which are the only inter-

esting OTSSs as far as a congruence rule format is concerned. The following theorem shows that including cyclic rules does

not endanger the correctness of our translation once the source OTSS is complete.

Theorem 5.12 (Complete otyft to ntyft: Correctness). For a complete OTSS (R, <) in the otyft format, the least three-valued

stable models of (R, <) and ntyft(R, <) coincide.

Proof. Take (R, <) and R′ to be the closed instantiations of a complete OTSS in the otyft format and its translation to the

ntyft format. Also let Cα and Pα be certain and possible transition relations resulting from applying the reduction technique

of Definition 3.26 to (R, <), and let C ′
α and P′

α be the result of applying the reduction technique of [6] to R′. Furthermore,

let (Cλ,Pλ) and (C
′
λ,P

′
λ) be the least three-valued stable models of (R, <) and R′, respectively. (Ordinal λ is the least ordinal

for which the construction of both (Cα ,Pα) and (C
′
α ,P

′
α) reaches a fixed point.) It follows from the completeness of (R, <) that

Cλ = Pλ. By an induction on the ordinal α, we simultaneously prove the following statements.

(1) Cα ⊆ C ′
λ,

(2) C ′
α ⊆ Cλ,

(3) Pλ ⊆ P′
α , and

(4) P′
λ ⊆ Pα .

Once we prove the above statements, it follows from items 1 and 2 that Cλ = C ′
λ and from items 3 and 4 that Pλ = P′

λ.

Note that Lemma 5.10 holds in our setting with cyclic rules following the same proof.

Inside the induction on α, we use an induction on the depth of the proofs in each of the mentioned above transition

relations.

Cα ⊆ C ′
λ Take φ ∈ Cα . Let p be an r-proof for φ in (R, <) such that p is correctw.r.t. Pβ for some β < α (without loss of generality,

we can assume that p is minimal and hence r ∈ tyft(R)).

Note that r cannot be cyclic, i.e., it cannot be the case that r > r; because otherwise, there exists a premise of r of

the form pi
li→ p′

i
which is in Cα (since φ is provable) but not in Pβ (since p is correct); but we know that Cα ⊆ Pα ⊆ Pβ .

(Contradiction) Hence, r is not cyclic.

If there is no r′ > r then r ∈ R′. All the premises φi of r have a smaller proof depth and it follows from the induction

hypothesis (on the depth of the proof) that φ ∈ C ′
λ, that is, R

′ 	qi
Ni
φi

for some Ni such that P′
λ�Ni. Thus using the

same deduction rule r ∈ R′, we obtain R′ 	q
N
φ

where N
.= ⋃

i∈Ir Ni and hence, P′
λ�N.

Otherwise, r should be correct w.r.t. P′
λ (since r is correct w.r.t. Pβ and P′

λ ⊆ Pβ by the induction hypothesis of the

induction on α) and hence, for all rules s ∈ higher(r), there exists at least one premise φS(s) = pS(s)
l′
S(s)→ p′′

S(s)
such that

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 113

for all q′′, pS(s)
l′
S(s)→ q′′ /∈ P′

λ. Otherwise, there is a rule s′ > r such that it has the set of premises {pi
l′
i→ q′′

i
| i ∈ Is} ⊆

P′
λ ⊆ Pβ , and thus r is not correct w.r.t. Pβ (Contradiction). Hence, we conclude that there exists a selection function

S for r such that P′
λ � {pS(s)

l′
S(s)�→ | s ∈ higher(r) }.

Take the rule rS of the following shape:

(rS)
{pi li→ p′

i
|i ∈ Ir} ∪ {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)}

f (−→p) l→ p′

For all its positive premises φi, i ∈ Ir , we have φi ∈ C ′
λ and hence R′ 	qi

Ni
φi

for some Ni such that P′
λ�Ni. Also, it

follows from the above reasoning that for the negative premises, it holds that P′
λ � p′′

S(s)

l′′
S(s)�→ and hence, using the

above deduction rule, we have a proof q for R′ 	q
N
φ

where N
.= {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)} ∪ (⋃i∈Ir Ni) and P ′

λ�N. Hence,

φ ∈ C ′
λ.

C ′
α ⊆ Cλ If φ ∈ C ′

α then there exists a proof q such that R′ 	q
N
φ

and there exists β < α such that P′
β�N. Following Lemma 5.10,

there exists a proof p such that (R, <) 	p φ. Consider the rules r ∈ rules(p) (it follows from the same lemma that

r ∈ tyft(R)); each such rule r corresponds to a rule rS ∈ R′ which has the shape

(rS)
{pi

l′
i→ p′

i
|i ∈ Ir} ∪ {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)}

f (−→p) l→ p′
.

Note that r cannot be cyclic. Otherwise, r ∈ higher(r) and thus rS would contain a premise pi
l′
i→ p′

i
, for some i ∈ Ir

such that i = S(r). Thus, p′
i

l′
i�→ would also be a premise of rS . We have that pi

l′
i→ p′

i
∈ C ′

α , and thus, pi
l′
i→ p′

i
∈ P′

α . On the

other hand, we have that P′
β�pi

l′
i�→ . It follows from the latter statement and P′

α ⊆ P′
β that for no p′

i
(including the one

mentioned above) pi
l′
i→ p′

i
∈ P′

α , which contradicts pi
l′
i→ p′

i
∈ P′

α . Thus, we conclude that r cannot be cyclic.

Since φi = pi
l′
i→ p′

i
∈ C ′

α for all i ∈ Ir , there exist proofs qi such that R′ 	qi
Ni
φi

for some Ni such that P′
βi
�Ni, for some

βi < α. It follows then from the induction hypothesis (on the depth of the proof) that there exist proofs pri such

that (R, <) 	pri φi, where all pri are correct w.r.t. Pλ. Furthermore, for all rules s ∈ higher(r), there exists a premise

φS(s) = p′′
S(s)

l′′
S(s)�→ such that P′

β�φS(s) or p′′
S(s)

l′′
S(s)→ q′′ /∈ Pλ for all q

′′ (following the induction hypothesis on α). Thus, each

r ∈ rules(p) is correct for Pλ and this way, we obtain a proof p for (R, <) 	p φ which is correct w.r.t. Pλ. Hence, φ ∈ Cλ.

Pλ ⊆ P′
α Assume that φ ∈ Pλ. Let p be an r-proof for φ in (R, <) such that p is correct w.r.t. Cλ (without loss of generality, we

can assume that p is minimal and hence r ∈ tyft(R)).

Note that r cannot be cyclic; because otherwise, there exists a premise of r of the form pi
li→ p′

i
which is inCλ (sinceφ is

provable) but not in Pλ (since p is correct); butwe know from the completeness of (R, <) that Cλ = Pλ (Contradiction).

Hence, r is not cyclic.

If there is no r′ > r then r ∈ R′. All the premises φi of r have a smaller proof depth and it follows from the induction

hypothesis (on the depth of the proof) that φ ∈ C ′
α , that is, R

′ 	qi
Ni
φi

for some Ni such that P′
βi
�Ni, for some βi < α.

Thus using the same deduction rule r ∈ R′, we obtain R′ 	q
N
φ

where N
.= ⋃

i∈Ir Ni and hence, P′
β�N, where β < α is

the maximum of all such βi.

Otherwise, r is correct w.r.t. Cλ and hence, for all rules s ∈ higher(r), there exists at least one premise φS(s) =
pS(s)

l′
S(s)→ p′′

S(s)
such that for all q′′, pS(s)

l′
S(s)→ q′′ /∈ Cλ. Otherwise, collect all premises of s that can find a target q′′

i
such that

pi
l′
i→ q′′

i
∈Cλ (one premise for each i ∈ Is). Thus, there is a rule s

′ > r such that it has the set of premises {pi
l′
i→ q′′

i
| i ∈ Is}

⊆ Cλ and thus r is not correct w.r.t. Pβ (Contradiction). Hence, there exists a selection function S for r such that Cλ �

{pS(s)
l′
S(s)�→ | s ∈ higher(r)}; it then follows from the induction hypothesis on α that C ′

β � {pS(s)
l′
S(s)�→ | s ∈ higher(r)}, for

each β < α.

Take the rule rS of the following shape:

(rS)
{pi li→ p′

i
|i ∈ Ir} ∪ {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)}

f (−→p) l→ p′

114 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

For all its positive premises φi, i ∈ Ir , we have φi ∈ P′
α and hence R′ 	qi

Ni
φi

for someNi such that C ′
β�Ni, for each β < α.

Also, it follows from the above reasoning that for the negative premises, it holds that P′
β � p′′

S(s)

l′′
S(s)�→ and hence, using

the above deduction rule, we have a proof q for R′ 	q
N
φ

where N
.= {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)} ∪ (

⋃
i∈Ir Ni) and C ′

β�N,

for each β < α. Thus, φ ∈ P′
α .

P′
λ ⊆ Pα Assume that φ ∈ P′

λ. If φ ∈ P′
λ then there exists a proof q such that R′ 	q

N
φ

and C ′
λ�N. Following Lemma 5.10, there

exists a proof p such that (R, <) 	p φ. Consider the rules r ∈ rules(p) (it follows from the same lemma that r ∈ tyft(R));

each such rule r corresponds to a rule rS ∈ R′ which has the shape

(rS)
{pi

l′
i→ p′

i
|i ∈ Ir} ∪ {p′′

S(s)

l′′
S(s)�→ |s ∈ higher(r)}

f (−→p) l→ p′
.

Sinceφi = pi
l′
i→ p′

i
∈ P′

λ for all i ∈ Ir , there exist proofsqi such thatR′ 	qi
Ni
φi

for someNi such thatC ′
λ�Ni. It follows then

from the induction hypothesis (on the depth of the proof) that there exist proofs pri such that (R, <) 	pri φi, where

each pri is correct w.r.t. Cβ for all β < α. Furthermore, for all rules s ∈ higher(r), there exists a premise φS(s) = p′′
S(s)

l′′
S(s)�→

such that C ′
λ�φS(s) or p′′

S(s)

l′′
S(s)→ q′′ /∈ C ′

λ for all q
′′. It then follows from the induction hypothesis on α (contraposition of

item 1) that p′′
S(s)

l′′
S(s)→ q′′ /∈ Cβ for all q′′ and for all β < α. Thus, each r ∈ rules(p) is correct w.r.t. Cβ , for all β < α, and

this way, we get a proof p for (R, <) 	p φ which is correct w.r.t. Cβ for all β < α. Hence, φ ∈ Pα . �

6. Relative expressiveness of rule formats

In [11,5,10], the expressiveness of the gsos and the ntyft formats are studied. The common approach is to characterize

the finest trace congruence [5] for image-finite processes induced by operators definable in the respective rule format. Next,

we formalize the concepts of trace congruence and image-finiteness.

Definition 6.1 (Trace Congruence). Given a signature, a context C[] is a term with one or more appearance of a hole []. C[p]
is then a closed term resulting from replacing all holes in C[] by p.

Two closed terms p and q are (completed) trace equivalent, denoted by p ≈ q, when the sets of completed traces originating

from p and q coincide. Two closed terms p and q are trace congruent, denoted by p ≈c q, when C[p] ≈ C[q] for all contexts C.

Definition 6.2 (Image-Finite Transition System). A transition system is called image-finite, when for all closed terms p, the

set Il = {q | p l→ q} is finite for each label l.

One of the consequences of the definition of the gsos format [5] is that TSSs in the gsos format are image-finite. The finest

trace congruence induced by gsos-definable operators is ready simulation equivalence as defined below. The same result

holds for the osos format because [22] provides straightforward translations between gsos and osos specifications.

Definition 6.3 (Ready Simulation Equivalence). A symmetric relation R ⊆ C × C is called a ready simulation relation, when for

all (p,q) ∈ R and l ∈ C:

(1) for all p′ ∈ C, if p l→ p′ then there exists a q′ such that q
l→ q′ and (p′,q′) ∈ R;

(2) if p
l�→ then q

l�→ .

Two terms p and q are ready simulation equivalent if there is some ready simulation relation R such that (p,q) ∈ R.

Next, we show that for image-finite processes, the finest trace congruence induced by the operators definable in the otyft

format is strong bisimilarity. But before proving this result, we formalize a few notions that are used next.

Definition 6.4 (n-nested Bisimilarity). A symmetric relation Rn ⊆ C × C is an n-nested bisimulation relationwhen for n = 0 it

is the full relation, i.e., C × C, and for n > 0, for all (p,q) ∈ Rn and l ∈ C, for all p′ ∈ C, if p l→ p′ then there exists a q′ such that

q
l→ q′ and (p′,q′) ∈ Rn−1. Two closed terms are n-nested bisimilarwhen there exists an n-nested bisimulation relation relating

them.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 115

It is well-known that for image-finite processes p and q, i.e., processes from which an image-finite transition system

originates, p and q are strongly bisimilar if and only if they are n-nested bisimilar for each n ∈ IN [8].

Next, we define a bisimulation-checker operator B(_,_) (for an arbitrary set of operators and an arbitrary image finite

transition relation) in the otyft format. This precisely characterizes the finest trace congruence definable by operators in the

otyft format since firstly, it shows that if two processes are non-bisimilar then there is a context (namely our bisimulation-

checkeroperator) that candistinguish themupto traceequivalence (thus, tracecongruence impliesbisimilarity) andsecondly,

by Theorem 4.10, if they are bisimilar, then they are bisimilar under all contexts and hence, they are trace congruent.

Example 6.5 (A Bisimulation Checker in otyft). The following OTSS defines a class of binary operators Bn(_,_) and Qn
a (_,_)

(for all n ∈ IN and a ∈ Act) where Bn checks whether its two arguments are n-nested bisimilar and Qn
a is an auxiliary operator

(for defining Bn) which checks whether the second argument can make an a-step to something (n − 1)-nested bisimilar to

the first argument.

The above rules are obtained by applying the translation frompure ntyft to otyft fromDefinition 5.1 to the bisimulation-

checker from [10] (which is in the pure ntyft format).

The rules are self-explanatory. The auxiliary operatorQn
a assumes that the first argument has alreadymade an a-transition

and checks whether the second argument can make an a-transition such that the target is (n − 1)-bisimilar to the first

argument. If such a transition is possible, it will make a transitionwith label yes. The n-nested bisimulation-checker operator

checks whether one argument canmake a transition that cannot be mimicked by the other argument (to something (n − 1)-

nested bisimilar) and if it finds such a transition the bisimulation checker makes a no transition. Otherwise, if making a

transition with label no is not possible, then it makes a yes-transition.

Using the definition of n-nested bisimulation checker, one can define the bisimulation-checker operator B(_,_) as follows

(other rules presented before with their ordering should be added to the following OTSS; the two partitions of rules remain

unrelated as far as ordering is concerned).

Following [8], for image-finite processes, two processes are bisimilar, when they are n-nested bisimilar for all n ∈ IN. The

above rules thus define a bisimulation checker for image-finite processes.

By adding the above specification to any OTSS, one can check bisimilarity of two processes p and p′ only by checking the

yes/no trace (of length one) generated by the process B(p,p′). Hence, bisimilarity can be traced using the operators definable

in the otyft format, while it cannot be traced by the operators definable in the osos format of [22].

The above example is indicative of the extra expressive power gained by the extension from osos to otyft which is

demonstrated by the extra distinguishing power of definable operators. In other words, the operators definable in the otyft

format can distinguish processes up to strong bisimilarity while those definable in the osos format do not go further than

ready simulation equivalence.

116 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

7. Related work

In this section we discuss the related notions of semantics for SOS, the expressive power of rule formats, and the rôle of

orderings in some other fields of computer science.

In thepaperwehave commentedon and adapted to our setting several notions of semantics proposedby vanGlabbeek [9].

These include both themodel-theoretic and proof-theoretic notions in the settings of two-valued and three-valued solutions,

respectively. We have strived to give the same names to our notions as those of the corresponding notions in [9] in order

to ease comparison. Fig. 4 lists the main solutions that we discussed against the original solutions given by van Glabbeek.

Additionally, we considered the notion of stratification as suggested in the context of logic programming by Przymusinski

Fig. 4. Comparison of our semantics with van Glabbeek’s solutions in [9].

in [19] and used for TSSs in the ntyft format by Groote [10]. This corresponds to Solution 10 in [9]. Our favorite notion of

semantics is the least three-valued stable model but, in order to guarantee congruence meta-results, we restrict ourselves

to OTSSs with complete semantics.

TSSs in the gsos format employ unique supportedmodels as semantics [5] (our Semantics 4). This solution coincideswith

all acceptable notions of semantics that we have discussed here for TSSs in the gsos format (and indeed in the osos format,

since there are semantics-preserving translations in each direction) and in simpler formats including the De Simone format

[20].

The expressive power of rule formats increases with the generality of rules and with additions such as orderings on rules.

A good analysis of the expressive power of other formats can be found in [1]. Here we only recall the main results in an

informal manner. We have recalled in Section 6 that completed trace congruence can be used to distinguish processes up to

ready simulation for TSSs in the gsos format or the osos format. If one disallows negative information in rules, either in the

form of negative premises or rule orderings, but permits arbitrary literals in the premises and conclusions of rules, as in the

tyft/tyxt format, then completed trace congruence can distinguish processes up to 2-nested simulation. It requires rules

with both complex literals and negative information to be able to test bisimilarity with completed trace congruence as, for

example, in the ntyft format and otyft format (see Section 6). An interesting question arises: to what extent can otyft be

simplified and still retain enough distinguishing power to test bisimulation? It is known that the ntree format should suffice

[7], where ntree rules are tree rules with addition of arbitrary negative literals. Our initial investigation indicates that the

tree format [7] equipped with orderings and extended with a single additional xyxt rule might do the job.

The orderings on SOS rules are an instance of a more general phenomenon of “priorities” in computer science. Priority,

according to the Oxford Paperback Dictionary, means “being earlier or more important” and indicates that an object has

“precedence in rank”when comparedwith other objects. In the context of thiswork, priorities specify the order of application

of operational rules. In term rewriting, priorities are used to fix the order of application of ambiguous rewrite rules; and in

operating systems, priorities, as a part of the preemption mechanism, set the order of execution of scheduled tasks.

In the remainder of this section we consider more carefully priorities in term rewriting. A Priority Rewrite System, PRS for

short, is a term rewriting system where rewrite rules are equipped with a priority ordering [4,14]. Consider a PRS inspired

by Example 4 in [4]. The signature � contains booleans t and f, a constant b, and a binary operator eq that tests equality. The

rewrite rules with a priority ordering are given below.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 117

The rewrite eq(t,t) → f by the lower rewrite rule for eq is disabled because the higher rule is enabled; hence eq(t,t) → t.
Also, the application of the lower rule to get eq(eq(b,t),t) → f is disallowed because, although eq(b,t) and t are not syntactically
equal, eq(b,t) can be rewritten eventually to t: eq(b,t) → eq(t,t) → t. Hence, eq(eq(b,t),t) → t by the higher rule for eq. In general,

a rewrite rule r′ with a lower priority than r can be applied to rewrite term t in favor of r, if no internal reduction (reduction

sequence leaving the head operator unaffected) of t can produce an r-redex.

An operational semantics of PRSs in terms of TSSs is given by van de Pol in [18]. He translates a PRS to a TSS and

shows that the sound and complete (as in term rewriting) rewrite set for the PRS coincides with the least well-supported

model of the TSS as in [9]. However, crucial SOS rules used in the translation do not fit into the ntyft/ntyxt format:

some rules use universal quantification in the premises, while others may rely on the syntactic equality of arguments

in the source of the conclusion. It would be interesting to investigate if such a translation can be expressed in terms of

general ordered SOS rules. In the meanwhile we give a TSS for the above PRS which satisfies the property that s → a iff

s
a→0 for all closed terms s over � where a is either t or f. The TSS has an additional constant 0 and the following ordered

rules:

Note that eq(eq(b,t),t)→ eq(eq(t,t),t) since eq(b,t)→ eq(t,t), and then eq(eq(t,t),t)
t→0 by the higher rule for eq. Hence,

eq(eq(b,t),t)
t→0 by the xyxt rule directly above.

Consider eq(eq(b,f),t). We get eq(b,f)→ eq(t,f). Since f �→ and f
t�→ , we deduce eq(b,f)

f→ by the lower rule. Also, s
t�→ for

all s such that eq(b,f)→ *s. So, eq(b,f) cannot do a t transition immediately, nor after any number of unlabelled transitions.

Therefore eq(b,f)
t�→ , which implies eq(eq(b,f),t)

f→0.

8. Conclusions and future work

In this paper, we presented several ways of giving a meaning to ordered SOS specifications. Furthermore, we gave

semantics-preserving translations (w.r.t. our chosen notion of semantics) between general ordered SOS and (unordered)

SOS rule formats, namely the otyft and the ntyft formats respectively. The paper is concluded by studying the relative

118 M. Mousavi et al. / Information and Computation 207 (2009) 85–119

expressive power of the existing osos and our novel otyft formats for ordered SOS. Our results show that the otyft format

is strictly more expressive than the osos format. This means that there exist transition systems that can be specified by the

otyft format but not by the osos format.

As pointed out throughout the paper, there are several issues concerning ordered SOS which remain to be studied in the

future. The following is a inconclusive list of some ongoing and future research directions.

(1) Universal Quantification in SOS: Both in practical applications [2,18] and in our translation from otyft to ntyft (if one

drops the second condition in item 2 of Definition 4.8), one notices the possibility of universally quantifying variables

appearing in the target of premises. Inspired by this, in [16], we defined a a generalization of the ntyft format, called the

universal ntyft format, which allows for such quantifications while preserving the congruence property.

Recently, in [23], an extension of SOS, called FOL-SOS, is defined that allows for premises containing a first-order logic

formula. A congruence format for strong bisimilarity, called fol-tyft/tyxt, has been proposed that is a generalization of

the ntyft/ntyxt format. The link between the universal ntyft format and the fol-tyft/tyxt format on the one hand

and (the generalization of) the otyft format on the other hand needs to be studied further.

(2) Semantics of PRS vs. SOS: As alreadymentioned in Section 7 further investigation is needed as to the relationship between

the meaning of PRSs and TSSs. Resolving the above-mentioned item (i.e., universal quantification in SOS) can help us

relate the notions of semantics in [18] and the notions studied in this paper.

(3) Ordered Tree Rules: The issue of expressive power of ordered Tree rules versus rules in the otyft format is another subject

for our future research.

Acknowledgments

We wish to thank the FSTTCS 2006 referees for helpful comments and suggestions. Anonymous referees of the SOS

special issue of Information and Computation provided insightful and useful comments which are gratefully acknowledged.

The work of the first author has been partially supported by the projects “Unifying Framework for Operational Semantics”

(nr. 070030041) and “The Equational Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund. The last

author would like to thank the University of Leicester for granting study leave, and acknowledge gratefully support from

EPSRC, Grant EP/D001307/1 entitled “Priorities in Operational Semantics and Term Rewriting”, and from Nagoya University

during a research visit.

References

[1] Luca Aceto, Wan J. Fokkink, Chris Verhoef, Structured operational semantics, in: Jan A. Bergstra, Alban Ponse, Scott A. Smolka (Eds.), Handbook of
Process Algebra, Elsevier Science, 2001, pp. 197–292.

[2] Luca Aceto, Matthew Hennessy, Termination, deadlock, and divergence, Journal of the ACM 39 (1) (1992) 147–187.
[3] J.C.M. (Jos) Baeten, Jan A. Bergstra, Jan Willem Klop, Syntax and defining equations for an interrupt mechanism in process algebra, Fundamenta

Informaticae XI (2) (1986) 127–168.
[4] J.C.M. (Jos) Baeten, Jan A. Bergstra, JanWillem Klop, W. Peter Weijland, Term-rewriting systems with rule priorities, Theoretical Computer Science 67

(2 and 3) (1989) 283–301.
[5] Bard Bloom, Sorin Istrail, Albert R. Meyer, Bisimulation can’t be traced, Journal of the ACM 42 (1) (1995) 232–268.
[6] Roland Bol, Jan Friso Groote, The meaning of negative premises in transition system specifications, Journal of the ACM 43 (5) (1996) 863–914.
[7] Wan J. Fokkink, Rob J. van Glabbeek, Ntyft/ntyxt rules reduce to ntree rules, Information and Computation 126 (1) (1996) 1–10.
[8] Rob J. van Glabbeek, Bounded nondeterminism and the approximation induction principle in process algebra, in: Franz-Josef Brandenburg, Guy

Vidal-Naquet, MartinWirsing (Eds.), Proceedings of the 4th Annual Symposium on Theoretical Aspects of Computer Science (STACS’87), Lecture Notes
in Computer Science, vol. 247, Springer-Verlag, Berlin, Germany, 1987, pp. 336–347.

[9] Rob J. van Glabbeek, Themeaning of negative premises in transition system specifications II, Journal of Logic and Algebraic Programming 60–61 (2004)
229–258.

[10] Jan Friso Groote, Transition system specifications with negative premises, Theoretical Computer Science 118 (2) (1993) 263–299.
[11] Jan Friso Groote, Frits W. Vaandrager, Structured operational semantics and bisimulation as a congruence, Information and Computation 100 (2)

(1992) 202–260.
[12] Matthew C.B. Hennessy, Tim Regan, A process algebra for timed systems, Information and Computation 117 (2) (1995) 221–239.
[13] Ruggero Lanotte, Simone Tini, Probabilistic congruence for semistochastic generative processes, in: Vladimiro Sassone (Ed.), Proceedings of the 8th

International Conference on Foundations of Software Science and Computational Structures (FOSSACS’05), Lecture Notes in Computer Science, vol.
3441, Springer-Verlag, Berlin, Germany, 2005, pp. 63–78.

[14] Chilukuri K. Mohan, Priority rewriting: semantics, confluence, and conditionals, in: Nachum Dershowitz (Ed.), Proceedings of the 3rd International
Conference on Rewriting Techniques and Applications (RTA’89), Lecture Notes in Computer Science, vol. 355, Springer-Verlag, Berlin, Germany, 1989,
pp. 278–291.

[15] MohammadReza Mousavi, Iain C.C. Phillips, Michel A. Reniers, The meaning of ordered SOS, in: S. Arun-Kumar, Naveen Garg (Eds.), Proceedings of
the 26th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’06), Lecture Notes in Computer Science, vol.
4337, Springer-Verlag, Berlin, Germany, 2006, pp. 334–345.

[16] MohammadReza Mousavi, Michel Reniers, A congruence rule format with universal quantification, Electronic Notes in Theoretical Computer Science
192 (1) (2007) 109–124.

[17] G.D. Plotkin, A structural approach to operational semantics, Journal of Logic and Algebraic Programming 60–61 (2004) 17–139.
[18] Jaco van de Pol, Operational semantics of rewriting with priorities, Theoretical Computer Science 200 (1–2) (1998) 289–312.
[19] Teodor C. Przymusinski, The well-founded semantics coincides with the three-valued stable semantics, Fundamenta Informaticae 13 (4) (1990)

445–463.
[20] Robert de Simone, Higher-level synchronizing devices in MEIJE-SCCS, Theoretical Computer Science 37 (1985) 245–267.

M. Mousavi et al. / Information and Computation 207 (2009) 85–119 119

[21] Irek Ulidowski, Iain C.C. Phillips, Formats of ordered SOS ruleswith silent actions, in:Michel Bidoit, MaxDauchet (Eds.), Proceedings of the 7th Interna-
tional Joint Conference on Theory and Practice of Software Development (TAPSOFT’97), Lecture Notes in Computer Science, vol. 1214, Springer-Verlag,
Berlin, Germany, 1997, pp. 297–308.

[22] Irek Ulidowski, Iain C.C. Phillips, Ordered SOS rules and process languages for branching and eager bisimulations, Information and Computation 178
(1) (2002) 180–213.

[23] Muck vanWeerdenburg,Michel A. Reniers, Structural operational semanticswith first-order logic, in:MatthewHennessy, Bartek Klin (Eds.), Structural
Operational Semantics (SOS’08), Preliminary Proceedings, Reykjavik, Iceland, 2008, pp. 48–62.

	Introduction
	Ordered transition system specification
	Basic concepts
	Examples

	Semantics of OTSS
	Two-valued solutions
	Three-valued solutions
	Complete OTSS

	Congruence Rule Formats
	Congruence formats for SOS
	Congruence formats for ordered SOS

	Comparison of expressiveness of ntyft and otyft formats
	From ntyft to otyft
	From otyft to ntyft

	Relative expressiveness of rule formats
	Related work
	Conclusions and future work
	References

