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SUMMARY

The transcriptional coactivator PGC-1a induces
multiple effects onmuscle, including increasedmito-
chondrial mass and activity. Amyotrophic lateral
sclerosis (ALS) is a progressive, fatal, adult-onset
neurodegenerative disorder characterized by selec-
tive loss of motor neurons and skeletal muscle
degeneration. An early event is thought to be dener-
vation-induced muscle atrophy accompanied by
alterations in mitochondrial activity and morphology
within muscle. We now report that elevation of
PGC-1a levels in muscles of mice that develop fatal
paralysis from an ALS-causing SOD1 mutant
elevates PGC-1a-dependent pathways throughout
disease course. Mitochondrial biogenesis and
activity are maintained through end-stage disease,
accompanied by retention of muscle function, de-
layed muscle atrophy, and significantly improved
muscle endurance even at late disease stages. How-
ever, survival was not extended. Therefore, muscle is
not a primary target of mutant SOD1-mediated
toxicity, but drugs increasing PGC-1a activity in
muscle represent an attractive therapy for maintain-
ing muscle function during progression of ALS.

INTRODUCTION

Peroxisome proliferator-activated receptor gamma (PPARg) co-

activator-1a (PGC-1a) is a transcriptional coactivator of nuclear

receptors and other transcriptional factors that can enhance

multiple aspects of cellular energy metabolism, including mito-

chondrial biogenesis and angiogenesis (Handschin, 2010).
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Forced expression of PGC-1a in cultured mammalian cells or

specific tissues of transgenic mice increases number and

mass of mitochondria together with a strong enhancement of

cellular respiratory capacity (Lin et al., 2005). Skeletal muscle-

restricted expression of PGC-1a in mice induces a shift from

fast glycolytic type IIB muscle fibers toward slow oxidative

type I and IIA fibers (Lin et al., 2002), accompanied by altered

composition of the presynaptic terminals of neuromuscular

junctions (Chakkalakal et al., 2010). PGC-1a in skeletal muscles

reduces muscle degeneration following acute denervation

(Sandri et al., 2006), regulates expression of components of

neuromuscular junctions (Handschin et al., 2007), and induces

angiogenesis (Arany et al., 2008).

Amyotrophic lateral sclerosis (ALS) is a progressive adult-

onset neurodegenerative disorder that leads to fatal paralysis.

Disease in humans and rodent models initiates with muscle

denervation and muscle atrophy following denervation, each

arising from degeneration and selective loss of motor neurons

in the brain and spinal cord. Approximately 10% of human ALS

is dominantly inherited, with one-fifth of the familial cases

caused bymutations in the ubiquitously expressed Cu,Zn super-

oxide dismutase (SOD1). In mice, degeneration and death of

neurons from the ubiquitously expressed ALS-linked SOD1

mutants arise from acquired toxicity (or toxicities) of the SOD1

mutant proteins and not from loss of enzymatic activity (Bruijn

et al., 1998). Extensive work with such mice has supported

multiple mutant SOD1-dependent toxicities, as well as the now

generally accepted view that motor neuron death may derive

from SOD1-mediated toxicities acting within different cell types

in the central nervous system, resulting in non-cell-autonomous

disease (Ilieva et al., 2009).

Mitochondria have been implicated as a target for toxicity in

ALS by several studies reporting decreased mitochondrial

Ca2+ capacity (Damiano et al., 2006), altered distribution of

axonal mitochondria (Vande Velde et al., 2011), abnormal mito-

chondrial morphology, elevated levels of mitochondrial reactive
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oxygen species (ROS) production, and deficits in mitochondrial

respiration and ATP production in the central nervous system

andmuscles of ALS patients and mutant SOD1mice (see Kawa-

mata and Manfredi, 2010 for review). Lending further support

to a role for the mitochondria as a target of SOD1 toxicity are

findings that mutant SOD1 is enriched in spinal cord mitochon-

dria in ALS mice (see Kawamata and Manfredi, 2010 for review),

and it has been proposed to inhibit the activity of multiple mito-

chondrial components (Israelson et al., 2010; Kawamata et al.,

2008; Li et al., 2010; Pedrini et al., 2010).

However, the reports of mitochondrial dysfunctions are incon-

sistent, and most proposed alterations are not shared among

different ALS models. Moreover, while endogenous SOD1 is

ubiquitously expressed, muscle-restricted expression of mutant

SOD1 in mice has been reported to damage muscle (Dobro-

wolny et al., 2008; Wong and Martin, 2010) and/or to induce

some denervation (Wong and Martin, 2010), albeit without

causing ALS-like disease. This has led to the controversial

conclusion that muscle is a primary target for SOD1 mutant

toxicity (Dobrowolny et al., 2008). Three key questions remain

unresolved: (1) is mutant SOD1-dependent damage within the

muscle a key contributor to disease, (2) does mitochondrial

dysfunction within muscle contribute to muscle and motor

neuron degeneration, and (3) can enhanced muscle function

and endurance throughout disease slow ALS pathogenesis?

We have now tested these questions utilizing mice with elevated

PGC-1a expressed selectively in skeletal muscle.

RESULTS

Increased PGC-1a Expression in Mutant SOD1G37R

Skeletal Muscles Increases PGC-1a Activity and
Mitochondrial Biogenesis/Mass throughout Disease
To determine whether improving muscle function by elevating

PGC-1a in skeletal muscles alters SOD1 mutant-mediated ALS

disease course and pathogenesis, a SOD1G37R mutant ALS

mouse model (Boillée et al., 2006) that develops fatal paralysis

by 13–14 months of age was bred with MCK-PGC-1a mice

carrying a transgene expressing PGC-1a under the control of

the muscle creatine kinase promoter (Lin et al., 2002). PGC-1a

mRNA (Figure S1A) and protein (Figure S1B) levels were signifi-

cantly elevated (e.g., mRNAs were increased 8-fold prior to

disease onset and remained 5-fold higher through all symptom-

atic stages) in the muscles of SOD1G37R/MCK-PGC-1a mice

compared to those in SOD1G37R mice.

Increased PGC-1a levels resulted in enhanced PGC-1a

activity in SOD1G37R/MCK-PGC-1a mice, as indicated by

elevation of RNA transcripts from genes known to be targets of

PGC-1a. These genes included those coding for (1) mitochon-

drial proteins (COX4, cytochrome c oxidase subunit IV; Cytc,

cytochrome c; and UCP2, uncoupling protein 2), (2) the angio-

genic vascular endothelial growth factor (VEGF), (3) the hydrogen

peroxide detoxifying enzyme catalase, and (4) the mitochondrial

superoxide dismutase (SOD2) (Figures 1A, S1C, and S1D). Of

note, elevated expression of PGC-1a in skeletal muscle of

SOD1G37R mice did not alter the level of SOD1 (Figure S1E).

Elevated PGC-1a activity drove an increase in acetylcholine

receptor (AChR) clustering in the gastrocnemius of SOD1G37R/

MCK-PGC-1a mice (measured by counting AChR clusters per
C

muscle section at 4 and 13–14 months of age, with SOD1G37R/

MCK-PGC-1a: 91.8 ± SEM 5.8 and 89.9 ± SEM 8.2 AChR clus-

ters, respectively, and SOD1G37R: 69 ± SEM 5.5 and 61.9 ± SEM

1.6) (Figure 1B). Importantly, the effects of increased PGC-1a

activity were sustained throughout disease (Figures 1 and S1).

Quantification of electron microscopic images of tibialis ante-

rior muscles revealed a combined increase in mitochondrial

number and area per mitochondrion that yielded a 3- to 4-fold

elevation of the total area of mitochondria per myofiber in

SOD1G37R/MCK-PGC-1a mice (Figures 1C, 1D, and S1F) prior

to disease onset and that was sustained through end-stage

disease (Figure 1D). Cristae of the larger mitochondria in

SOD1G37R/MCK-PGC-1a mice appeared morphologically

normal. Notably, despite decline in total levels of PGC-1a at

disease end-stage in SOD1G37R/MCK-PGC-1amuscles to levels

near those from age-matched nontransgenic animals (Fig-

ure S1B), a 3-fold increase in mitochondrial mass and elevation

of RNA transcripts from genes known to be targets of PGC-1a

(including catalase, SOD2, and UCP2) (Figures 1 and S1) was

continued to end-stage disease.

Selective Expression of PGC-1a in Mutant SOD1G37R

Skeletal Muscles Improves Muscle Endurance and
Performance
Known activities of PGC-1a in muscle include converting

muscle fibers to a slow phenotype (Lin et al., 2002) that is

known to undergo denervation later in SOD1-mediated disease

(Frey et al., 2000) and inducing retrograde changes at the

neuromuscular junctions (Chakkalakal et al., 2010). To deter-

mine whether increased PGC-1a activity and enhanced mito-

chondrial biogenesis/mass altered muscle function of

SOD1G37R/MCK-PGC-1a transgenic mice, resistance to fatigue

was assessed throughout disease by electrical stimulation of

hindlimb muscles to mimic repeated contractions occurring

during exercise. Endurance of the muscle was expressed as

a fatigue index corresponding to the time (seconds) required

for the muscle contraction amplitude to fall below 50% of the

starting level (Lin et al., 2002). Muscle-specific increased

expression of PGC-1a in SOD1G37R mice produced a sustained

increase in resistance to fatigue of hindlimb muscles in asymp-

tomatic and symptomatic SOD1G37R/MCK-PGC-1a mice

(reflected in a significantly higher fatigue index; Figures 2A,

S2A, and S2B) that remained 3-fold higher than in SOD1G37R

animals even at end-stage disease (303 ± SEM 34 s versus

92 ± SEM 17 s, respectively).

Overall locomotor performance of symptomatic SOD1G37R/

MCK-PGC-1a versus SOD1G37R mice was also tested on an

inclined treadmill by progressively increasing running speeds

until exhaustion. Here again, SOD1G37R/MCK-PGC-1a mice

consistently displayed a significant increase in performance, as

shown by almost two times longer distances covered per run

compared with SOD1G37R animals (Figures 2B and S2C;

SOD1G37R/MCK-PGC-1a: 48 ± SEM 4.4 min, 792 ± SEM 99 m

and SOD1G37R: 31 ± SEM 3 min, 442 ± SEM 57 m).

To further determine whether the increased muscle function

improved locomotor activity in performing voluntary tasks,

symptomatic animals were tested on a running wheel and in an

open field test. For the first test, mice were placed in a closed

running wheel and their performance (without further stimulation)
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Figure 1. Elevating PGC-1a Expression Activates Known PGC-1a Responsive Pathways, Including Mitochondrial Biogenesis in Skeletal

Muscles of SOD1G37R Mutant Mice throughout Disease

(A) RelativemRNA expression levels were determined by quantitative real-time PCR for VEGF, catalase, and SOD2 in gastrocnemius isolated fromSOD1G37R and

SOD1G37R/MCK-PGC-1a animals throughout disease. Data are presented as mean ± SEM. See also Figure S1.

(B) Relative numbers of acetylcholine receptor (AChR) clusters per section of gastrocnemius were determined by staining with a-bungarotoxin. Data are

presented as mean ± SEM.

(C) Electron micrographs from cross-sections taken from tibialis anterior muscle of SOD1G37R and SOD1G37R/MCK-PGC-1a animals at asymptomatic (4 months)

and end-stage of disease (13–14 months). Scale bar = 0.5 mm.

(D) Total area of mitochondria per 20 mm2 of myofiber from tibialis anterior muscle of SOD1G37R and SOD1G37R/MCK-PGC-1a animals at asymptomatic

(4 months), symptomatic (12 months), and end-stage of disease (13–14 months). Data are presented as mean ± SEM.
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was monitored over 5 min. SOD1G37R/MCK-PGC-1a mice ran

significantly (almost three times) longer (2.8 ± SEM 0.3 min

versus 1.0 ± SEM 0.2 min) and covered more than three times
780 Cell Metabolism 15, 778–786, May 2, 2012 ª2012 Elsevier Inc.
longer distances (24 ± SEM 3.7 m versus 6.9 ± SEM 2.0 m,

respectively) compared with symptomatic SOD1G37R animals

(Figure 2C). Finally, to assess spontaneous and voluntary
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Figure 2. Elevating PGC-1a Expression Improves Muscle Activity and Locomotive Activity in Mutant SOD1G37R Mice

(A) Fatigue index of hindlimb muscles from SOD1G37R and SOD1G37R/MCK-PGC-1a animals throughout disease. Fatigue index was quantified as the period

(in seconds) of high-frequencyelectrical stimulation required toobtain a 50%decrease inmuscle contraction.Data arepresentedasmean±SEM.SeealsoFigureS2.

(B) Treadmill performance (total distance and run time on the treadmill determined until exhaustion) of SOD1G37R and SOD1G37R/MCK-PGC-1a animals at the

symptomatic stage of disease. Data are presented as mean ± SEM.

(C) Running wheel performance of SOD1G37R and SOD1G37R/MCK-PGC-1a animals at the symptomatic stage of disease. Total distance and run time on the

wheel were determined during a 5 min testing period. Average speed corresponds to the mean speed of running during the mobile period. Data are presented as

mean ± SEM.

(D) Open field performance of SOD1G37R and SOD1G37R/MCK-PGC-1a animals at the symptomatic stage of disease. Total distance covered and the time mobile

were determined during a 60min of tracking period. Average speed corresponds to themean speed ofmovement during themobile period. Data are presented as

mean ± SEM.
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locomotor activity, open field movement was recorded for

60 min. SOD1G37R/MCK-PGC-1a animals were mobile longer

than SOD1G37R mice (19 ± SEM 1.4 min versus 12.5 ± SEM

1.8 min) and covered a larger distance (66 ± SEM 6 m versus

42 ± SEM 7.1 m) (Figure 2D). The average speed of both sets

of animals was not significantly different in either running wheel

or open field tests.

Overall, we conclude that increasing PGC-1a activity and

enhancing mitochondrial biogenesis/mass in skeletal muscles
C

of SOD1G37R mice leads to a significant increase in muscle

endurance, resulting in markedly improved locomotor activity

at symptomatic stages of ALS disease.

Increased Expression of PGC-1a in Mutant SOD1G37R

Skeletal Muscles Reduces Muscle Degeneration and
Increases Mitochondrial ATP Producing Capacity
A classical hallmark of ALS pathogenesis is grouped muscle

atrophy and degeneration. At asymptomatic stages (4 months),
ell Metabolism 15, 778–786, May 2, 2012 ª2012 Elsevier Inc. 781
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Figure 3. Elevating PGC-1a Expression Reduces Muscle Atrophy and Expression of Muscle Degeneration Genes and Increases Overall

Muscle Mitochondrial ADP Phosphorylation Capacity in Mutant SOD1G37R Mice throughout Disease

(A) Representative hematoxylin and eosin stainings of the gastrocnemius muscle in asymptomatic and symptomatic SOD1G37R and SOD1G37R/MCK-PGC-1a

animals. The inset indicates clusters of small angular degenerating fibers.

(B) Quantification of average fiber area from hematoxylin and eosin-stained gastrocnemius muscle from SOD1G37R and SOD1G37R/MCK-PGC-1a animals

throughout disease. Data are presented as mean ± SEM. See also Figure S3.

(C) Relative mRNA expression levels of muscular degeneration markers MuRF-1 and cathepsin L in gastrocnemius muscle isolated from asymptomatic and

symptomatic mutant SOD1G37R and SOD1G37R/MCK-PGC-1a animals. mRNA expression was evaluated by quantitative real-time PCR. Data are presented as

mean ± SEM.

(D) Levels of ADP-stimulatedmitochondrial oxygen consumption in mitochondria isolated from the gastrocnemius muscle of symptomatic mutant SOD1G37R and

SOD1G37R/MCK-PGC-1a and age-matched nontransgenic and MCK-PGC-1a animals oxidizing pyruvate and malate. In coupled mitochondrial respiration,

oxygen consumption is directly proportional to the amount of ATP synthesized. Data are presented as mean ± SEM.
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no significant differences were found in muscle structure or

fiber cross-sectional area of muscle in SOD1G37R or SOD1G37R/

MCK-PGC-1a animals (Figures 3A, 3B, S3D, and S3E). At symp-

tomatic ages, while average muscle fiber size and distribution

in the gastrocnemius decreased sharply in SOD1G37R mice,

expression of PGC-1a prevented muscle atrophy in SOD1G37R/

MCK-PGC-1a animals (894 ± SEM 27 mm2 versus 1393 ± SEM

100 mm2, respectively; Figures 3A, 3B, and S3A). Even at end-
782 Cell Metabolism 15, 778–786, May 2, 2012 ª2012 Elsevier Inc.
stage, muscle atrophy in SOD1G37R/MCK-PGC-1a was still

significantly reduced compared with SOD1G37R animals

(1141 ± SEM 66 mm2 versus 878 ± SEM 63 mm2 in the gastrocne-

mius [Figure 3B], with similar results in the plantaris [Figures S3B

and S3C]).

PGC-1a was previously shown (Sandri et al., 2006) to

inhibit expression of genes involved in muscle degeneration

(including those encoding the ubiquitin ligase MuRF-1 and
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the lysosomal hydrolase cathepsin L) following nerve crush-

induced denervation. To determine whether PGC-1a prevented

muscle atrophy through a similar mechanism during SOD1

mutant-derived disease, we determined mRNA levels for

MuRF-1 and cathepsin L. Levels of both degeneration markers

significantly increased (Figures 3C and S3F) at the symptomatic

stage of disease in SOD1G37R animals (MuRF-1: 0.38 ± SEM

0.04 and cathepsin L: 0.24 ± SEM 0.04 n = 3 at 4 months

compared with 0.73 ± SEM 0.07 and 0.48 ± SEM 0.01, respec-

tively, at 12 months). However, this disease-dependent

increase in both MuRF-1 and cathepsin L mRNAs was signifi-

cantly reduced in the gastrocnemius of disease-matched

SOD1G37R/MCK-PGC-1a mice (MuRF-1: 0.33 ± SEM 0.07

and cathepsin L: 0.21 ± SEM 0.002 n = 3 at 4 months com-

pared with 0.42 ± SEM 0.01 and 0.36 ± SEM 0.03, respectively,

at 12 months).

Since mitochondrial biogenesis and mass were significantly

increased throughout disease in muscle of the SOD1G37R/

MCK-PGC-1a mice (Figure 1), we tested if increased PGC-1a

expression improved muscle function by increasing mitochon-

drial energy-producing capacity, thereby making more ATP

available for sustained muscle activity. Measurement of mito-

chondrial ADP phosphorylation capacity per milligram of muscle

(measured by determining the rate of mitochondrial oxygen

consumption while ADP is being phosphorylated to ATP) re-

vealed a 2.5-fold higher capacity in SOD1G37R/MCK-PGC-1a

mice compared with SOD1G37R animals (Figure 3D).

Altogether, our findings indicate that improved muscle func-

tion and endurance that is sustained throughout disease in

SOD1G37R/MCK-PGC-1a mice results from a combination of

PGC-1a-dependent reduction in muscle atrophy (Figures 3A–

3C), increased VEGF levels (Figure 1A), and increased energy

supply from the mitochondria (Figures 1C, 1D, and 3D).

Improving Muscle Function by Elevating Levels
of PGC-1a in SOD1G37R Animals Does Not Delay
Neurodegeneration
We determined whether the sustained improvement in muscle

function during disease by increasing PGC-1a in the muscles

of SOD1G37R animals altered disease course by following

disease in cohorts of SOD1G37R and SOD1G37R/MCK-PGC-1a

animals (nR 30). No changeswere found in age of disease onset

(244 ± SEM 4 versus 242 ± SEM 4 days, respectively), age of

reaching the symptomatic stage (366 ± SEM 4 versus 359 ±

SEM 5 days), and survival (395 ± SEM 5 versus 388 ± SEM

4 days) (Figure 4A). Additional hallmarks of ALS pathogenesis

were also unaffected by sustained PGC-1a-driven improve-

ment in muscle function, including the percentages of inner-

vated neuromuscular junctions at all disease stages (Figure 4B)

(with 47% and 53%, respectively, of junctions in the gastrocne-

mius muscle denervated at onset in SOD1G37R and SOD1G37R/

MCK-PGC-1a mice, 72% and 75% denervation at symptom-

atic stage, and 81% and 85% denervation at end-stage

disease).

Similarly, there were no significant differences in a-motor axon

loss at onset or during disease course (Figure 4C) or cholinergic

ventral horn motor neuron death (Figures 4D and S4). Nor were

there differences in the increased level of astroglial and micro-

glial activation markers (GFAP and Iba1, respectively; Figure 4E)
C

in the spinal cord ventral horns of SOD1G37R and SOD1G37R/

MCK-PGC-1a animals. Altogether, while muscle function was

enhanced early in disease and remained so throughout disease

in SOD1G37R mice by elevating expression of PGC-1a in muscle,

initiation and continuance of neurodegeneration, including loss

of motor axons and death of motor neurons, was completely

unaffected.

DISCUSSION

Understanding the contribution of muscle in ALS has important

practical implications in treating disease. Reports of mitochon-

drial dysfunction in muscles of ALS mouse models and in

patients (see Dupuis, 2009 for review) have suggested that

mitochondria within the muscle may play a critical role in ALS

pathogenesis. Muscle-restricted expression of mutant SOD1

(as opposed to the ubiquitous expression of endogenous

SOD1 that causes paralytic disease) has been reported to induce

muscle atrophy, muscle mitochondrial dysfunction, reduced

muscle strength, and muscle damage (Dobrowolny et al.,

2008; Wong and Martin, 2010) and/or to induce some denerva-

tion (Wong and Martin, 2010). There are major discrepancies

between these two reports. One study (Dobrowolny et al.,

2008) reported that damage to the muscle is mutant SOD1

specific and is not accompanied by evident signs of motor

neuron degeneration, while another (Wong and Martin, 2010)

reported that both wild-type and mutant SOD1 expression in

muscle leads to muscle damage as well as neuronal degenera-

tion. In neither report did muscle-restricted mutant SOD1 cause

ALS-like disease in mice; nevertheless, both studies concluded

that skeletal muscle is a primary target of SOD1-mediated

toxicity.

Our evidence refutes such a conclusion, demonstrating to

the contrary that sustained improvement in muscle activity,

including a doubling in endurance, increased energy supply

from the mitochondria in muscles, and reducing muscle atrophy

throughout ALS-like disease, does not prevent or delay retrac-

tion of the axons from neuromuscular junctions, loss of motor

axons, or death of motor neurons. If muscle atrophy/dysfunction

in ALS induced a toxic signal(s) to motor neurons, preventing

muscle degeneration through enhanced expression of PGC-1a

should have reduced such a toxic signal leading to delay in

disease onset/progression. This was not the case. Moreover,

earlier evidence had shown that selectively lowering synthesis

in muscle (either by viral-delivered siRNA or by selective deletion

of a mutant SOD1 transgene solely in muscle) of ubiquitously

expressedmutant SOD1 did not alter any aspect of neurodegen-

eration in animals that do develop fatal paralytic disease (Miller

et al., 2006). Similarly, increasing muscle mass and strength

prior to disease onset and through the early disease phase (by

injection of myostatin antibodies into SOD1 mutant mice [Holz-

baur et al., 2006]) or through to end stage disease (by viral

delivery of the myostatin-inhibitor follistatin [Miller et al., 2006])

did not affect disease course. When combined with our

evidence, it is now clear that SOD1 mutant damage within

muscle is not an important contributor to the pathogenic process

through which ubiquitously expressed ALS-linked SOD1

mutants provoke age-dependent degeneration and death of

motor neurons and the subsequent fatal paralysis.
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Figure 4. Elevating PGC-1a Expression in Skeletal Muscle of SOD1G37R Mutant Mice Does Not Alter ALS Disease Course or Pathogenesis
(A) Plot of ages (in days) at which disease onset (as determined by the weight peak; at onset, animals do not display any obvious motor phenotype), symptomatic

stage (as determined by 10% weight loss from onset, a stage characterized by clear gait abnormalities and tremor) and end-stage (as determined by hindlimb

paralysis and inability to right itself) were reached for SOD1G37R (red) and SOD1G37R/MCK-PGC-1a (blue) animals.

(B–D) Quantification of innervation at the neuromuscular junction of the gastrocnemiusmuscle (B), total number of a-motor axons in the lumbar L5motor root (C), and

quantification at disease end-stage of the average number of large cholinergic ventral horn motor neurons per section of lumbar spinal cord from SOD1G37R and

SOD1G37R/MCK-PGC-1a animals (D). Data are presented asmean ± SEM. See also Figure S4 for representative sections of the spinal cords used for quantification.

(E) Representative micrographs of lumbar spinal cord sections from SOD1G37R and SOD1G37R/MCK-PGC-1a animals at disease end-stage processed for immuno-

fluorescence using antibodies detecting activated astrocytes (GFAP) or microglia (IbaI). Dashed outlines correspond to the boundary between gray andwhite matter.
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Muscleweakness is, nevertheless, a characteristic symptom in

ALS patients and leads to reduced physical activity, which prog-

resses into muscle disuse-induced atrophy and cardiovascular

deconditioning. Here we have demonstrated that increasing

PGC-1a activity in the muscles of SOD1 mutant-expressing

mice produces significantly increased muscle endurance,

reduced atrophy, and improved locomotor activity, even at late

stages of disease, without extending survival. To earlier evidence

that elevated PGC-1a can protect skeletal muscles from atrophy

following acute denervation by directly interfering with a FoxO3-

dependent pathway (Sandri et al., 2006), here we add that PGC-

1a significantly reduces muscle atrophy throughout SOD1

mutant-dependent disease, concomitant with decreased induc-

tion of FoxO3 target genes (cathepsin L and MuRF1) and

increased muscle ATP output, expression of VEGF, and acetyl-

choline receptor clustering. We conclude that the improved

muscle activity in mutant SOD1mice expressing PGC-1a results

from modulation of multiple PGC-1a responsive pathways,

including an enhancement in mitochondrial biogenesis and an

inhibition of the FoxO3-dependent protein degradation pathway.

Therefore, improving muscle activity and reducing atrophy

may be effective to improve or preserve daily functioning and

quality of life for ALS patients. We propose that compounds

inducing PGC-1a expression, delivered systemically or applied

specifically to themuscle, could be used as a palliative treatment

in ALS patients to increase muscle function, reduce atrophy, and

improve daily physical activity, thus resulting in a better quality of

life for patients.

EXPERIMENTAL PROCEDURES

Animals

MCK-PGC-1a mice are mice heterozygous for PGC-1a cDNA under the

control of muscle creatine kinase promoter (Lin et al., 2002). LoxSOD1G37R

ALSmice are mice heterozygous for a 12 kb genomic DNA fragment encoding

the human SOD1G37R transgene, under its endogenous promoter, flanked by

loxP sequences (Boillée et al., 2006). All transgenic mouse lines were on

a pure C57BL/6 background.

Quantitative Real-Time PCR

mRNA levels were determined by quantitative real-time PCR using the iQSYBR

Green supermix (Bio-Rad, Hercules, CA).

Immunoblotting

PGC-1a was immunoprecipitated using a rabbit anti-PGC-1a antibody

(Santa Cruz; H300) from the gastrocnemius muscle of nontransgenic and

MCK-PGC-1a mice. The immunoprecipitated proteins were separated on

SDS-PAGE, transferred to nitrocellulose membranes, and probed with

PGC-1a antibody (Calbiochem; 4C1.3).

Immunofluorescence

Cryosections from paraformaldehyde-fixed tissues were stained with the indi-

cated antibodies. Neuromuscular junctions were considered denervatedwhen

synaptophysin staining covered less than 50% of the area of a-bungarotoxin

staining. A total of approximately 1,000 neuromuscular junctions were counted

from at least ten sections of muscle per animal. ChAT-positive ventral horn

motor neurons were counted from 25–35 lumbar spinal cord cryosections

(per animal) spaced 360 mm apart and expressed as the average motor

neurons per section of spinal cord.

Electron Microscopy

Ultrathin sections (70 nm) from the center of EPON-embedded tibialis anterior

were stained with 1% uranyl acetate. Images were taken from the center of
C

15–25 randomly chosen myofibers, and the area of all the mitochondria in

each image was determined using ImageJ software. On average, 200–300

mitochondria were analyzed per muscle.

Muscle Histology

Ten micron cryosections of hindlimb muscle (composed of gastrocnemius,

soleus, and plantaris) were stained with hematoxylin and eosin, and muscle

fiber area in the gastrocnemius or plantaris was determined using ImageJ

software on three randomly chosen fields for each muscle.

Morphometric Analysis of Axons

Thin sections (0.75 mm) from EPON-embedded L5 lumbar roots were stained

with toluidine blue. The number of large-caliber axons with diameters over

3.5 mm (considered to be a-motor axons) was determined using the Bioquant

Software.

Muscle Endurance Measurement

In anesthetized animals, the tibialis anterior muscle was electrically stimulated,

and themovement of the hindpaw followingmuscle contraction wasmeasured

by a force transducer. Muscle endurance was expressed as a fatigue index

corresponding to the time (in seconds) required for the amplitude of muscle

contraction upon 2 Hz electrical stimulation to fall below 50% of the starting

level.

Testing of Locomotor Activity

All testing of locomotor activity was carried out during the animal’s dark cycle

under red light. Naive mice were run on an enclosed-chamber modular tread-

mill (Columbus Instruments) with a 5� incline at an initial velocity of 8 m/min.

Velocity was increased by 2 m/min every 5 min until exhaustion. Exhaustion

was determined to be the point at which the animal would not resume running

when provoked through two consecutive 5 s stimulation on a low-voltage

power grid. The spontaneous locomotor activity of animals was assessed in

an open field (open top plexiglass box of 123 12 inches) for 1 hr and analyzed

over the test period using the ANY-maze video tracking software. Habituated

mice were tested on an activity wheel (Lafayette Instruments) in three 5 min

sessions separated by at least 15 min. Running time and distance traveled

were determined using a cyclocomputer (Cordless 7; CAT EYE attached to

the running wheel detecting the revolution of the wheel with digital magnetic

counters) and averaged over the three 5 min test sessions. Activity of the

mice was restricted on the wheel. All behavioral studies were performed

with the genotype unknown to the examiner.

Mitochondrial Oxygen Consumption

Mitochondrial O2 consumption was measured using isolated mitochondria

from gastrocnemius at 37�C using a Clarke type electrode (Oxytherm, Hansa-

tech Inc.). The rate of pyruvate-stimulated mitochondrial O2 consumption was

multiplied by the total mass of mitochondria per muscle to obtain the rate of

oxygen consumption per milligram of muscle.

Statistical Analysis

All data are presented as mean ± SEM. The statistical difference between two

individual groups was assessed using the Student’s t test; p < 0.05 was

considered significant.
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