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The initiation and progression of Alzheimer disease (AD) is a complex process not yet fully understood. While many
hypotheses have been provided as to the cause of the disease, the exact mechanisms remain elusive and difficult to
verify. Proteomic applications in disease models of AD have provided valuable insights into the molecular basis of
this disorder, demonstrating that on a protein level, disease progression impacts numerous cellular processes such
as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle pro-
gression, and proteasome function. Each of these cellular functions contributes to the overall health of the cell, and the
dysregulation of one ormore could contribute to the pathology and clinical presentation in AD. In this review, foci re-
side primarily on the amyloidβ-peptide (Aβ) inducedoxidative stress hypothesis and theproteomic studies that have
been conducted by our laboratory and others that contribute to the overall understanding of this devastating neuro-
degenerative disease. This article is part of a Special Issue entitled:Misfolded Proteins,Mitochondrial Dysfunction, and
Neurodegenerative Diseases.

© 2013 Elsevier B.V. All rights reserved.
1. Background

Alzheimer disease (AD), a severe, age-associated neurodegenerative
disorder, affects many people aged from 65 years or older, with nearly
half of those of age 85 are afflicted with this disorder. As the world
population grows and life expectancies increase, the number of AD
patients is growing at an ever-increasing rate since the most important
contributing factor to AD is age. Current reports estimate that there are
about 5.1million AD patients in the United States, and may increase up
to 20million by the year 2050 [1].
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The classic histopathological hallmarks of AD can be summarized as
the accumulation of extracellular amyloid β-peptide (Aβ)-rich senile
plaques (SPs), which are generated from the cleavage of amyloid
precursor protein (APP), the accumulation of intracellular neurofibrillary
tangles (NFTs), which are largely comprised of the aggregated form
of hyperphosphorylated Tau, and synapse loss. Tau, a microtubule
stabilizing protein, is hyperphosphorylated in AD neurons and causes
microtubular abnormalities with consequent disruption of intra-
neuronal trafficking. On amolecular basis, cell cycle changes and oxida-
tive stress resulting from increases in ROS (Reactive Oxygen Species)
and RNS (Reactive Nitrogen Species) have also been shown to play a
detrimental role in AD [2,3]. Not all AD cases are sporadic, with a
small percentage being the result of hereditary on-set AD.

Classical AD progression can be categorized into four stages:
preclinical AD (PCAD), mild cognitive impairment (MCI), early-onset AD
(EAD), and late-stage AD (LAD). Many individuals with PCAD have a
high amyloid plaque burden, yet function normally. PCAD, however, is
difficult to study, as PCAD itself does not show evidence of being fatal
and brain samples are only obtained after a death by another means.
However, what research has been conducted has been helpful in under-
standing the earliest of AD progressions.

MCI has been categorized as the transition stage between normal
cognition and EAD/AD and can be further sub-divided into amnestic
MCI (aMCI) and non-amnestic MCI (naMCI). Pathologically, differences
in amyloid load and NFTs vary from patient to patient, yet recent
research has shown that a striking difference in aMCI progression to
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AD (38%) compared to naMCI (20%). naMCI patients present with
higher concentrations of cerebral spinal fluid (CSF) Aβ(1–42) as
well as less severe hippocampal atrophy that may play a role in these
findings [4].

Patients with LAD present with the highest levels of Aβ peptide and
NFTs. Applying imaging techniques such as MRI, various degrees of
degeneration are observed for all stages of clinical AD. Positron emission
tomography (PET) technology used to probe regional glucose utilization
within the brain suggests severe energy deficiency for PCAD and MCI
patients, which, considering that glucose is as themain energy resource
for brain, demonstrates that the brain is under energy deprivation,
consistent with the progression of AD.

2. ROS

The initiation and propagation of ROS and RNS generation have been
shown to play a major role in the pathogenesis of AD [5]; thus, it is
important to understand the origin of these oxidants, as well as their
modes of action. ROS and RNS include, among many others, the super-
oxide radical anion (O2

−•), hydrogen peroxide (H2O2), hydroxyl radical
(•OH), nitric oxide (•NO), and peroxynitri (ONOO−), most of which
are free radicals. ROS/RNS plays necessary and beneficial roles in
many biological processes [6]. Oxidative stress is a condition in which
there is an imbalance of these reactive species and antioxidant defenses
[6–8]. In addition to free radicals produced from environmental
exposure, excess production of free radicals or other reactive species
and a failure of antioxidant defense systems to adequately handle the
ROS/RNS load result in damage to biomolecules including proteins,
lipids, and genetic material [3,9–13].
Fig. 1. ROS formation involving mitochondria-derived superoxide free radicals and subsequent
via i-NOS and reaction of NO with superoxide free radicals. See text for further details.
Humanmitochondria process oxygen at great potential self-risk due
to production and leakage of damaging O2

−• (Fig. 1), which is elevated
due to an age-related decrease in the efficiency of electron transport
chain reactions, primarily from Complex I [6,14–17]. Reactive O2

−• has
been shown to oxidize biomolecules directly through lipid peroxidation
and protein oxidation [18–20] and indirectly inducing oxidative/
nitrosative stress in the brain through production of other reactive spe-
cies, as well as through cellular signaling routes such as that of inflam-
matory cytokine tumor necrosis factor alpha (TNF-α) [20–24]. The
mitochondrial resident superoxide scavenger, manganese superoxide
dismutase (MnSOD) in the matrix, and Cu/ZnSOD in the inter-
membrane space, reacts with O2

−• producing H2O2. H2O2, though
only a weak oxidant, becomes much more damaging in the presence
of free copper(I) or iron(II) ions through Fenton chemistry by which
H2O2 is reduced to the extremely reactive •OH radical [9,20]. The •OH
radical is responsible for much of the downstream indirect damage
from superoxide. Hard nucleophiles such as the hydroxyl radical
may attack biomolecules at carbonyl moieties resulting in structural
and functional changes.

Free radicals in close proximity to allylic hydrogen atoms on biomol-
ecules abstract such hydrogens leaving a carbon centered radical. When
this process affects poly-unsaturated fatty acids (PUFAs) in the lipid
bilayer, which are particularly rich in neurons, a subsequent reaction
of this radical with molecular oxygen forms a peroxyl radical leading
to further abstraction of other allylic hydrogens from nearby biomole-
cules and consequent chain reaction propagation. Once initiated, lipid
peroxidation can lead to increased production of reactive alkenals in
the bilayer, loss of lipid asymmetry, and apoptosis [25–28]. A major
reactive alkenal produced is 4-hydroxynonenal (HNE). HNE is primarily
processing by MnSOD and Fenton chemistry and RNS formation following NO production
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produced in the brain via lipid peroxidation of arachidonic acid,
an abundant omega-6 PUFA found in the lipid bilayer in brain [27].
Arachidonic acid is released through cleavage of a phospholipid by
phospholipase A2 (PLA2) and serves as a second messenger involved
in cellular signaling and the regulation of signaling enzymes [29–31].
HNE binds proteins byMichael addition to certain amino acids resulting
in protein dysfunction [2]. Aβ itself has been shown to be a source
of ROS and an initiator of free radical damage to biomolecules in brain
including lipid peroxidation [32–39].

A free radical in its natural form, •NO is synthesized from L-arginine
by endothelial, neuronal, or inducible nitric oxide synthases (NOS). •NO
has beneficial effects such as a biological mediator in several processes
including neurotransmission, vascular smooth muscle relaxation as
well as having antitumor, and antimicrobial activities [40,41] but
becomes toxic at high concentrations [42]. •NO and O2

−• exert more
damaging effects when they react to form ONOO−• [13]. Although the
reaction of •NO and molecular oxygen or O2

−• may proceed relatively
slow in the cytoplasm, the ability of these radical molecules to diffuse
through lipid membranes, such as the mitochondrial membranes
where large amounts of oxygen reside, has been shown to accelerate
the rates •NO autoxidation many times over [43,44]. This increase in
autoxidation may be attributed to the ‘lens effect’ that focuses •NO
and O2

−• within hydrophobic compartments, not only decreasing the
distance they must travel to react with each other and their target
proteins, but also increasing the rate of autoxidation [43].

Nitration of tyrosine occurs from the reaction •NO with O2
−• in

the presence of CO2 by radical–radical recombination producing the
reactive intermediate peroxynitrite, leading to tyrosine phosphoryla-
tion site at the 4-position thereby altering regulation of protein activity
by tyrosine kinases and leading to changes in protein function [45–49].
In addition to •NO2, •OH is another potential breakdown product of
ONOO− [49].

MnSOD itself has been shown to be susceptible to tyrosine nitration
in the active site of the enzyme [22,46,50], potentially altering the
affinity of MnSOD for the O2

−• substrate by changing the redox potential
of the active site [45]. Tyrosine nitration leads to damaged MnSOD and
subsequent mitochondrial dysfunction [22,50].

Increases in 3-nitrotyrosine (3NT) and protein-bound HNE have
been found even in the brain of early AD subjects [51,52]. The brain
is rich in PUFA and has areas rich in iron. These facts coupled with
high oxygen usage and a low antioxidant capacity make the brain
particularly susceptible to oxidative damage.

3. APP processing

Central to the Aβ-induced oxidative stress hypothesis is the genera-
tion of Aβ from its precursor protein, APP, a type I transmembrane
protein that is conserved and expressed in many tissues. The isoform
of APP preferentially expressed in the CNS is 695 amino acids in length
and is heavily concentrated at the synaptic cleft [53]. The exact physio-
logical role of APP remains undetermined, but this protein is thought to
play a role in cell growth, neurite outgrowth, cell adhesion, cell signaling
and cell survival [53–55]. The proteolytic processing of APP primarily
occurs during its anterograde transport along neuronal axons by one
of two pathways: non-amyloidogenic and amyloidogenic, the latter pro-
ducing the neurotoxic Aβ fragment implicated in AD [56]. Amyloidogenic
and non-amyloidogenic pathways are mediated by the actions of β- and
γ- and α-secretases, respectively (Fig. 2).

Proteolytic cleavage of APP at position 17 byα-secretase initiates the
non-amyloidogenic pathway, producing amembrane-bound C-terminal
fragment (CTFα) and the large, soluble fragment, APPsα, from the
N-terminal domain of APP [57]. APPSα has been demonstrated to
have neurotropic and neuroprotective effects [58,59]. The primary
α-secretase in the CNS is a disintegrin and metalloproteinase 10
(ADAM10), a membrane anchored and zinc dependent protease
that has been revealed to be regulated by synaptic activity [60].
Further, synapse-associated protein-97 (SAP97) is a necessary
protein mediating the trafficking of ADAM10, thereby promoting
the non-amyloidogenic pathway by binding to α-secretase and
directing it to the post-synaptic membrane where it cleaves APP
inside the Aβ domain of APP. This process negates the amyloidogenic
pathway [61]. Moreover, SAP97 expression and activity have been
shown to be altered in AD [62,63]. Additionally, clathrin-mediated
endocytosis (CME) of ADAM10 is a regulatory process that has
been shown to diminish the non-amyloidogenic processing of APP by
removing it from its cellular proximity — the plasma membrane [60].

The amyloidogenic pathway is initiated by the proteolytic action of
β-secretase at position 671, thereby producing, the large, soluble
APPsβ (β-secretase-cleaved soluble APP) and the C-terminal fragment
(CTFβ), C99 [64]. The APPsβ fragment may have multiple detrimental
effects, such as impairing anterograde axonal transport leading to
axonal dystrophy and neuronal cell death, as well as binding to death
receptor 6 to recruit caspase 6 to initiate the extrinsic pathway of
apoptosis [65,66]. The predominant neuronal β-secretase is β-site
APP cleaving enzyme (BACE1), a type I transmembrane aspartyl
protease — an enzyme that has been shown to be elevated in AD
[67,68]. Further, hydrogen peroxide stimulated oxidative stress increases
the activity of the enzyme; and, the presence of 4-hydroxynonenal has
been reported to increase the expression of BACE1 [64]. BACE1 has
been associatedwith lipid rafts.Moreover, an increase ofmembrane cho-
lesterol reportedly recruits APP to lipid rafts, which increases APP-BACE1
proximity, promoting the amyloidogenic processing of APP [69]. In
contrast, non-amyloidogenic proteolysis occurs outside of lipid rafts.

The next step involved in both the non-amyloidogenic pathway and
amyloidogenic pathway in the proteolytic processing of APP is the cleav-
age of the CTFα and CTFβ, fragments, respectively, by γ-secretase.
Gamma secretase is an intra-membrane protease complex consisting of
a quartet of proteins: presenilin, nicastrin, anterior pharynx-defective 1
(APH1) and presenilin enhancer 2 (PEN2) [70]. Further, γ-secretase is
hypothesized to proteolytically cleave the remaining APP fragment at
multiple sites in a step-wise manner within the transmembrane domain
(TMD) of CTFα and CTFβ, thereby releasing p3 (non-amyloidogenic
pathway), Aβ (amyloidogenic pathway) and APP intracellular domain
(AICD) fragments [71]. In the amyloidogenic pathway in particular, this
begins with the cleavage at the ε-site at either position 48 or 49 on C99,
which releases the AICD fragment while the Aβ remains membrane-
bound [70]. Next, it is thought that γ-secretase further cleaves the Aβ
fragment every other 3 or 4 amino acids from the ζ-site to the γ-site
until the Aβ fragment is freed from the membrane [70]. This leads to
the production of Aβ fragments of varying sizes, from 37 to 46 amino
acids in length (with heterogeneous C-termini), including neurotoxic
Aβ(1–42), which can easily oligomerize and become more prone to
aggregation [72]. Furthermore, mutations in APP and the PS1 protein in
γ-secretase can lead to changes in this cleavage pattern [71].

4. Aβ-induced oxidative stress model

It has long been established that the role of oxidative stress in AD is a
critical one that leads to the damage of vital cellular components such as
proteins, lipids, and nucleic acids [20,27,73,74]. This damage if left
unchecked is a primary reason for the eventual degeneration of
neurons, possibly through apoptotic means [75]. The Aβ-induced
oxidative stress hypothesis proposed by our laboratory and others
[76,77], states that Aβ and the damage it initiates are the principal
means underlying this injurious increase in oxidative stress observed
in AD brain.

As discussed above, APP may be processed into two major isoforms
of Aβ by way of β- and γ-secretases; Aβ(1–40) and Aβ(1–42). Studies
have demonstrated that as AD progresses, the levels of Aβ(1–40) in
CSF remains relatively constant, while in contrast, levels of Aβ(1–42)
in CSF decrease but levels of Aβ(1–42) increase in senile plaques [78].
This distribution has been attributed to the possibility of an efflux



Fig. 2. Proteolytic processing of APP via the non-amyloidogenic and amyloidogenic pathways. The latter produces neurotoxic and oxidative stress-producing Aβ-peptide. See text for fur-
ther details.
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deficiency for Aβ(1–42)whichmay play a role in plaque formation [79].
Previously, plaques were perceived to be the primary pathogenic ele-
ment of AD, yet more recently evidence provided insights into the no-
tion that plaques may be an extra-cellular storage site for cells to
deposit excess Aβ, suggesting that the real damaging agent, may be a
much smaller aggregate form of Aβ(1–42) oligomers [80,81]. Research
has shown that while plaques do not correlate with cognitive dys-
function in AD, soluble oligomers do [82]. More recently, re-
searchers have discovered in AD that distinct assemblies of Aβ
oligomers impair cholinergic neurotransmission [83].

The Aβ-induced oxidative stress hypothesis places the majority
of the causative effect of increased cellular oxidative stress upon
oligomeric Aβ(1–42), as it is believed that only the oligomers are
viable to insert into the lipid bilayer wherein they may form
alpha-helices to begin the proposed catalytic ROS production that
may lead to the lipid peroxidation and protein oxidation found in
AD [84].

4.1. Met-35 and Aβ-induced oxidative stress

While studies have found that oligomeric Aβ(1–42) correlates with
increased oxidative stress, the exact method by which this occurs is
still under debate [82]. Strong evidence has been put forth by our lab
and others that implicates the metionine-35 (Met-35) residue of
Aβ(1–42) in the process of ROS generation. Since Aβ(1–42) is cleaved
from APP, a transmembrane protein, our lab proposes that Aβ(1–42)
oligomers are capable of re-entering the lipid bilayer where they may
adopt an alpha-helical structure. In doing so, Met-35 would interact
with the carbonyl of Ile-31 according to the i + 4 rule of alpha-
helices [85]. It is hypothesized that because the oxygen of the
carbonyl group is more electronegative than the sulfur of Met-35,
the electron lone pairs on Met-35 are primed for oxidation by an
extrinsic factor.

Once the Aβ oligomers insert into the bilayer, the hydrophobic
environment lends itself towards the stabilization of a one-electron
oxidation of an already primed Met to the sulfuranyl free radical
[MetS+] [86]. It is this sulfuranyl free radical that is hypothesized as
being the initiator in a series of free radical chain reactions that take
place within the lipid bilayer that generates lipid peroxidation products
and oxidatively modified membrane proteins [86,87] (Fig. 3). Substitu-
tion of amino acids in critical positions within the Aβ(1–42) peptide
negate the injurious effects of Aβ(1–42). For example, the substitution
of Gly with Asp at residue 37 of Aβ(1–42) imparts a negative charge
to the Aβ(1–42) peptide that excludes the peptide from the lipid bilayer
[88]. Another substitution that replaces Ile-31 with the known α-
helix breaker, proline, and again the oxidative stress of the peptide
is prevented, consistent with our hypothesis that theα-helical struc-
ture of Aβ(1–42) in the lipid bilayer is important for the production
of oxidative stress [85].

Transgenic Caenorhabditis elegans that express human Aβ(1–42)
demonstrated increased oxidative stress that was nullified by the
substitution of Met-35 with another sulfur containing amino acid, Cys,
in an attempt to demonstrate the differences in chemistry of the two
sulfur atoms and their associated residencies (thioether vs. thiol) [89].
In an in vitro study, Met-35 in Aβ(1–42) was substituted by norleucine,
i.e., a methylene moiety for the S-atom of Met, to produce [Aβ(1–42)
M35NLE]. This substitution produced a mutant peptide with an amino
acid of similar length and hydrophobicity as the original Met-35.
Aβ(1–42)M35NLE was unable to induce toxicity through oxidative
stress by way of free radical generation [89–92].

image of Fig.�2


Fig. 3. Insertion of oligomeric Aβ(1–42), a peptide rich in hydrophobic amino acids, into lipid bilayers leads to lipid peroxidation reactionswith subsequent proteinmodification from lipid
peroxidation products. See text for further details.
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The J20 mouse, which is a transgenic mouse with human APP
containing Swedish (KM670/671NL) and Indiana (V717F) mutations,
showed elevated Aβ(1-40/42) deposition and increased oxidative stress
in the brain [93]. Introduction of a third mutation to APP, Met631Leu,
corresponding to theMet-35 residue of Aβ(1–42), resulted in no oxida-
tive stress in brain of these mice at 9 months of age [94]. This results
demonstrated in vivo in a mammalian model what had been
seen earlier in a worm model: Met-35 of Aβ(1–42) is essential for
oxidative stress in vivo in AD models, and presumably in AD brain
as well.

Important to note are other findings that provide evidence contrary
to the Met-35 centric hypothesis such as research conducted that used
Aβ(25–35) instead of Aβ(1–42) with a substitution of Met-35 with
norleucine at the c-terminal position that did not abrogate the oxidative
induced by the peptide [95]. These data, however, should be read with
the understanding that a C-terminal Met displays altered chemistry
from a Met within the α-helix [96].
5. Proteomics applications in AD and models thereof

Proteomics is the study of the proteome, meaning that proteomics
studies view the entirety of all proteins present in a given system at
any given point in time. Proteomics is far more complex than genomics
as it includes all isoforms of a protein, their structure and post-
translational modifications as well as protein–protein interactions [97].
In addition, the proteome is not static; it is subject to change during
development and in response to various events such as oxidative stress,
disease or drug administration. Therefore, proteomics can be applied to
compare the proteome of control vs. treated samples or healthy controls
vs. a disease state. Knowledge of the affected proteins can help in
gathering insights into pathways and cellular mechanisms of a disease
and also can help in developing interventions or therapeutic strategies.
In addition to providing information on up- or down-regulated proteins
(expression proteomics), proteomics techniques can be applied to look
at changes in post-translational modifications (e.g., phosphopro-
teomics). Furthermore, our laboratory pioneered a proteomics
technique, redox proteomics (Fig. 4), that can specifically identify
differentially oxidized proteins in a given sample [98–100].

Gel-based proteomic studies generally consist of two main steps:
In the first step, the sample is separated, e.g., by two-dimensional gel
electrophoresis by which the proteins are separated based on their net
charge, or isoelectric point, and subsequently by their migration rate
in a polyacrylamide gel. The second step consists of identifying the
proteins identified by mass spectrometry and data base inquiry. For
redox proteomics, an additional step is used in which gel
electrophoresis is followed by Western blot analysis with oxidation
marker-specific antibodies (for comprehensive reviews see [98,100]).

Proteomics has been used extensively by our laboratory and
others in the field to analyze the effects of Aβ-mediated oxidative
stress in AD models as well as brains from subjects of different
stages of AD. Some of these studies and their findings are summa-
rized below.
5.1. Aβ in cell culture

Early studies have shown that Aβ(25–35) can produce free
radicals in solution [101] or synaptic membranes [102] and that
the addition of (pre-incubated/aggregated) Aβ(1–40) to neurons
increases intracellular ROS formation and increases the levels of
protein carbonyls [33,37,89]. Many proteomic studies have used
this approach, the addition of Aβ-peptides to a system, to identify
proteins that are affected by Aβ-induced oxidative stress. These
studies have shown that Aβ-peptides change protein levels and
lead to the oxidation of specific enzymes.

Treatment of neurons with oligomeric Aβ(1–42) decreased the
levels metabolic enzymes involved in energy production (e.g., citrate
synthase) and increased molecular chaperones such as Hsp70 [103].
In primary neurons Aβ(1–42) treatment also lead to the oxidation
(measured as protein carbonyls) of proteins associated with energy
metabolism (e.g., GAPDH) as well as regulatory and structural proteins
[104–106]. Interestingly, increasing the cells' antioxidant defense
systems by pre-incubation of cells with a glutathione precursor or
mimetic significantly reduced overall Aβ-induced protein oxidation
(measured as protein carbonyls) as well as specifically inhibited the
oxidation of four enzymes: GAPDH, 14-3-3 zeta, malate dehydrogenase
and pyruvate kinase [104,105]. In a different study, pretreatment with
Vitamin E, a lipid-soluble free radical scavenger also inhibited protein
oxidation and lipid peroxidation caused by Aβ(1–42) incubation
[33,107].

Since inflammation is observed in AD brain, a recent study analyzed
the effects of Aβ(25–35) on microglia and found that Aβ(25–35) acti-
vated immortalized microglia and induced down-regulation of meta-
bolic enzymes, redox proteins (e.g., peroxiredoxin 3 and 4) and
chaperones [108]. A caveat of these and other studies that used
Aβ(25–35) is that the C-terminal Met-35 of Ab(25–35) has a different
chemistry than intrachain Met-35 in AD-relevant Aβ(1–42) [96]. It is
our view that only the AD-relevant peptides should be used in studies
of importance to AD, since (a) such peptides are known in AD brain,
but (b) Aβ(25–35) has not been detected in AD and is not relevant to
the disease per se but only of academic interest [96].

image of Fig.�3


Fig. 4. Schematic illustration of the principal steps involved in redox proteomics used to identify oxidatively modified proteins. See text for further details.
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5.2. C. elegans AD model

Transgenic C. elegans expressing human Aβ(1–42) have been
previously shown to present with increased oxidative stress prior
to Aβ fibrillar deposition [109]. Using this information, another
study of transgenic C. elegans with the application of redox proteo-
mics was successful in identifying a number of specifically oxidized
proteins [110]. Of the oxidized proteins found, many are important
in energetic metabolism (i.e., malate dehydrogenase and Acyl-CoA
dehydrogenase), antioxidant defense (i.e., glutathione S-transferase),
and proteasome function (i.e., proteasome beta subunit).

5.3. AD mouse models

Since the discovery of mutations causing familial AD, different
transgenic mouse models have been established to study cellular
mechanisms relevant to AD. The human double-mutant APP/PS-1
knock-in mice carry a PS-1 mutation found in familial AD as well as a
mutation in the APP gene to humanize the mouse Aβ sequence. Gene
expression is controlled by the endogenous mouse promoters for APP
and PS-1 [111]. These mice show increased levels of protein oxidation
and lipid peroxidation [112] as well as changes in protein expression
when compared to wild-type mice. In particular, proteins involved in
energy metabolism such as GAPDH and enolase had decreased levels
in APP/PS-1 mice [112–114]. Additional redox proteomics studies
comparing APP/PS-1 to wild-type mice showed an age-related signifi-
cant oxidation of enolase and other proteins (e.g., 14-3-3, actin and
Pin-1) [115]. Oral administration of the glutathione precursor N-acetyl
cysteine decreased brain protein oxidation and lead to increased levels
of enolase indicating that antioxidants, as shown in cell culture studies,
could ameliorate the deleterious effects of Aβ-induced oxidation in the
brain in vivo [113–115].

The SAMP8 mouse, or senescence-accelerated prone mouse, is a
mouse model of AD used that shows age-dependent learning and
memory deficits and Aβ accumulation [116], aswell as increased oxida-
tive stress [117]. Redox proteomics of 12 month old SAMP8 mice has
been used to identify many proteins that are specifically carbonylated
in this mouse model for oxidation which include: α-enolase, collapsin
response mediator protein-2 (CRMP-2/DRP-2), lactate dehydrogenase
(LDH-2), α-spectrin, and creatine kinase (CK). Expression proteomics
was also used to determine a decreased expression of critical proteins
such as LDH-2, triosphosphate isomerase (TPI), α-spectrin, and neuro-
filament (NF-L) [118]. Many of these proteins affected are vital to both
the production of energy as well as the structural organization of the
cell, both of which are vital to the neuron, a cell with high energy
demand that must maintain the ability to transport vesicles and
mitochondrion the length of the cell and to reorganize itself when
constructing and deconstructing synapses.

5.4. Aβ injection in animal models

Intracerebral injection of Aβ(1–40) leads to behavioral deficits in
rats and decreased levels of different proteins, among others proteins
associated with ATP production and cytoskeletal structure [119].
Another study used Aβ(1–42) injections into the nucleus basalis
magnocellularis (NBM) of rats followed by a proteomic analysis.
The cortex, NBM, and hippocampus were all shown to exhibit
significant protein oxidation, affecting proteins such as glutamine

image of Fig.�4
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synthetase, 14-3-3 zeta, beta-synuclein, pyruvate dehydrogenase,
phosphoglycerate mutase 1 and glyceraldehyde-3-phosphate
dehydrogenase [38]. While other groups have reported results
from similar experiments, such as intrahippocampal injections of
Aβ [120], the results of Boyd–Kimball et al. are significant on their
own as they highlight that injection of Aβ(1–42) into one brain
region has consequences for other regions of the brain [38].

5.5. Human studies

While animal models are adequate and convenient substitutions for
human disease, the results have to be interpreted with respect to the
facts that the cell biology of humans and the majority of laboratory
animal specimens have differences that can make a direct comparison
difficult. This inherent difficulty is what makes human proteomic
studies so valuable. Proteomic studies in brains of subjects with various
stages of AD have identified proteins involved in a variety of cellular
pathways to be expressed at differential levels in AD brain when com-
pared to controls. At the University of Kentucky, we are fortunate to
have autopsy-derived specimens obtained at a short post-mortem
interval (PMI), typically 2–4 h, making comparison to living brain as
feasible as possible. In contrast, long PMIs have for some time been
reported in the literature, and one wonders what can be realistically
and meaningfully determined with such samples?

Proteomics studies from our laboratory have shown that some
proteins, like Pin-1 and β-tubulin, were significantly decreased while
others, like enolase and heat shock protein 70, were significantly
increased in AD [121]. A proteomics study focusing only the detergent-
insoluble proteins also found significant changes in samples from AD
subjects when compared to controls. Among others, protein levels of
14-3-3 and GAPDH were altered in the detergent-insoluble fractions
[122]. Supporting the notion that oxidation of proteins may render
them less soluble and thus more prone to aggregation, GAPDH (among
others) was shown to be oxidized in AD [123]. A number of redox prote-
omics studies from our laboratory and collaborators have identified a
variety of proteins that are extensively oxidized in AD brain, including,
among others, carbonylation of ubiquitin carboxy-terminal hydrolase
L-1 (UCHL-1) [124], nitration of enolase [123] and carbonylation and
loss of CRMP-2 [125], a protein found to be intricately involved in axonal
growth and plasticity, a process heavily impaired in AD, while also being
associated with neurofibrillary tangles [126]. In a similar fashion to
protein Tau in AD brain, CRMP-2 has been shown to not only be
phosphorylated by GSK3β and CDK5 [127], but is also localized to
NFTs [126,128]. A systematic depletion of CRMP-2 via insoluble tangle
formation would likely have detrimental effects on the ability of an AD
affected neuron to maintain or repair the synaptic connections lost
during the disease progression.

5.6. Summary of proteomic data

In summary, proteomic results from cell culture to animalmodels to
human studies identified a number of proteins to be affected by the
presence of Aβ, supporting the notion that Aβ-mediated oxidative stress
contributes to theperturbations seen in a variety of cellularmechanisms
in AD. Since some proteomics studies identified a number of afflicted
proteins, rather than discussing an exhaustive list of proteins, only a
few commonly recurring ones have been mentioned in this review.
Throughout the studies of the various animal models and AD brain, a
common theme emerges in the form of affected cellular functions. The
proteins that show either altered levels or oxidation or both can be
summarized into the following functional groups:

• Energy metabolism (i.e., GAPDH, enolase, ATP synthase)
• Signal transduction (i.e., 14-3-3)
• Synaptic function (i.e., SNAPs)
• Structural proteins (i.e., actin, tubulin, DRP2/CRMP2)
• Proteasome function and protein clearance (i.e., UCHL-1)
• Stress response/chaperones (i.e., HSPs and peroxiredoxins)
• Cell cycle, Ab production and tau hyperphosphorylation (i.e., Pin-1)
• Mitochondrial function (i.e., ATP synthase, VDAC).

This overview provides a glimpse into the AD-affected proteome,
information that if not for the use of proteomics would have been
difficult or nearly impossible to collect. Many of the proteins affected
byAβpresented herein contribute to vital cellular functions, and the dys-
function or loss of these proteins are consistent with the pathology and
clinical presentation in AD. For instance, the fact that GAPDH and eno-
lase, both glycolytic enzymes with multiple additional functions such
as cell signaling [129,130], are affected by Aβ, supports a role of Aβ in
the observed energy impairment in AD [131] while other proteins such
as CRMP2 play important roles in cellular organization and structure.
6. Dietary antioxidants and AD biomarkers

Proteomic changes due to Aβ-mediated oxidative stress can be
significantly modulated by pretreatment of cells with different antioxi-
dants. In agreementwith cell culture studies, treatmentwith antioxidants
ameliorates negative effects associated with Aβ in different animal
models of AD. Unfortunately, clinical trials and epidemiological studies
in AD have produced inconsistent results. While in the Rotterdam study
high dietary intake of Vitamins C and E was associated with a lower
risk for AD [132], a study in elderly subjects foundno association between
carotenes, vitamins C or E and a decreased risk of AD [133]. Vitamin E
supplementation in MCI patients proved to have no benefit [134].
While it has been shown that antioxidant based treatment in synapto-
somes and rodents appears to have ameliorating effects in regard to Aβ
induced oxidative stress production [33,135,136], the lack of efficacy in
human studies indicates a lack of a complete understanding in either
the mechanisms of Aβ induced oxidative stress or of the inability of
current antioxidant therapies to be effective where they are needed.
Regardless, this avenue of research must be thoroughly investigated.

As seen in animal studies (APP/PS-1 mice) [113] the starting point
of the intervention influences the outcome, and since Aβ-mediated
oxidative stress is present long before any clinical and pathological
hallmarks of AD are detectable, it may prove to be necessary to start
therapies years if not decades before symptoms are evident. The
availability of reliable AD biomarkers would improve AD diagnostics
dramatically; not only could AD be diagnosed unequivocally ante
mortem, but it may enable an earlier diagnosis and therefore allow for
earlier treatment of people at risk of developing AD. Additionally, the
effects of interventional strategies and drug efficacy could bemonitored.
Unfortunately, reliable biomarkers for AD diagnostics are yet unavail-
able. Due to its proximity to the brain, much research has focused on
cerebrospinal fluid for biomarker identification (e.g., [137]) but the
caveat with this strategy is the necessity of a lumbar puncture to obtain
the sample. An easily accessible source for potential biomarkers is blood.
Given that 80–85% of the plasma proteome consists of albumin and
IgGs, AD biomarkers in blood likely would be far less concentrated
than in cerebrospinal fluid. To overcome this challenge, a recent study
depleted plasma samples of highly abundant proteins and applied a
series of fractionation steps before proteomic identification of potential
plasma biomarkers [138].

One other approach may be to look at other blood elements. For
example, our laboratory recently demonstrated elevated oxidative
stress in mitochondria isolated from peripheral lymphocytes from
patients with AD [139] and aMCI [140]. The latter study also demon-
strated, using proteomics, differential levels of mitochondrial proteins
in both AD and aMCI that are consistent with the knownmitochondrial
alterations in these disorders. Consonant with these findings, and
noting that oxidation plays an important role AD coupled with the
need for reliable biomarkers for AD, including differentially oxidized
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proteins, redox proteomics may be a promising approach (for further
comprehensive reviews see [141,142]).

7. Conclusion

Redox proteomics has become an invaluable tool in not only the
study of AD, but in many other areas of study in which oxidative stress
is believed to be central to disease onset [98].While the ability to treat a
disease is of grave importance, the understanding of how a disease
is initiated and progresses may have implications into many different
diseases with similar pathology. Data gathered from proteomics studies
play a role in this understanding of disease pathology, providing
valuable information into the molecular basis of the cell that might
otherwise go unnoticed. In its application to AD, proteomics has
shown that energy metabolism and structural proteins, among others,
are primarily affected by the increase in oxidative stress observed in
AD. These cellular processes are important in their maintenance of
a healthy cellular environment, while their absence has been demon-
strated to be deleterious. Further proteomics studies into the efficacy
of antioxidant treatment prior to disease onset should be conducted in
order to fully test the oxidative stress hypothesis of AD. Moreover,
while biomarkers and antioxidant treatment may possibly contribute
to a better disease outcome, general awareness of preventative lifestyle
changes by the general populace may also play its role in disease
prevention, as many lifestyle factors have been implicated in cognitive
performance, which may delay or possibly prevent disease onset
[143–145].
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