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Abstract

The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-

term interactions between these two systems can be highly significant and influential to their individual performance. The urban

parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network

(traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect

the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model

macroscopically such interactions and evaluate their effects on urban congestion.

The model is built on a transition matrix describing how, over time, vehicles in an urban area transition from one parking-related

state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply,

the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the

amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and

distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies,

to improve (or optimize) the performance of both systems.

A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking

supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated.

The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing

additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time,

increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should

be evaluated before selecting these policies.

Overall, this paper shows how a parking-state-based transition matrix, despite its simplicity, can be used to efficiently evaluate the

urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can

affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic

conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can

be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or

parking management and operations.
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1. Introduction

The urban parking and the urban traffic systems are essential components of the overall urban transportation struc-

ture. The interactions between these two systems, can have both, long-term effects (i.e., parking policies can affect

travel demand, and vice versa), and short-term effects (i.e., parking policies can affect traffic operations, and vice

versa). While the long-term effects have attracted lots of research attention (e.g. Feeney, 1989; Young et al., 1991),

the short-term effects have not been well researched yet. This is unfortunate, as the short-term interactions between

parking and traffic can be highly significant and influential to the performance of both systems. For example, parking

availability can affect the traffic composition on the network. Shoup (2005), based on the review of 16 studies of

mostly American and European cities, concluded that cars searching for free parking spaces contribute to over 8% of

the total traffic in a city, reaching 30% in business areas during rush hour. Although this part of traffic is caused by

inefficient parking provision, its corresponding externalities are endured by the traffic system as a whole. Such exter-

nalities have been studied from an economic point of view (e.g. Arnott and Inci (2006)) and could have a significant

influence on traffic performance, causing congested or hyper-congested traffic conditions (Geroliminis (2009)).

Studies like these, all provide some insights on how the urban parking system (both supply and policies) can

influence traffic performance. Nevertheless, although different parking policies including pricing schemes have been

analyzed, proposed and implemented; to the authors’ knowledge, no study has provided yet a generalized methodology

to macroscopically model the relation between parking demand, parking availability, and traffic conditions.

In this paper, we develop a parking-state-based transition matrix that aims to model macroscopically a dynamic

urban parking system. Basic assumptions for the matrix include a traffic demand over a period of time (e.g., a day),

the distribution of parking durations, the length and the traffic properties of the network. Within the matrix, the like-

lihood of a parking searcher to access/find parking spots in an urban network is estimated, as well as other transition

events such as starting to search for parking and departing from it. The model then provides an approximation of the

proportion of cars searching for parking, as well as the time cars spent searching for parking, or traveling through the

system. Moreover, traffic density and travel speed are also estimated over time based on different background con-

ditions. These results are useful to evaluate both, how traffic performance (e.g., speed, density, flow) affects drivers’

ability to find parking; and how parking availability affects traffic performance.

The main contributions of this paper are twofold.

1. This study looks at the relation between parking and traffic performance macroscopically. Most of the existing

research looks at the problem microscopically, modeling the parking behavior of individual agents. The agent-

based studies can require huge amounts of data, and high levels of detail both on the demand and the supply

side. In this paper we look at the problem macroscopically, and focus only on average values and probability

distributions across the whole population. This is valuable, as all data requirements correspond to aggregated

values at the network level and there is no data requirement for individual drivers or parking spots. This

macroscopic approach, compared to microscopic methods, saves not only on data collection efforts (e.g., drivers

preferences, individual driving routes, individual parking spots turnovers) but also reduces the computation

costs significantly. Such efficiencies are especially useful when the network of interest is large and/or data is

scarce.

2. This study allows us to model two dynamic systems interacting with each other. For the traffic system, the

model is able to analyze overcrowded situations, where time-varying traffic conditions are provided as traffic

performance indicators; they are also taken into consideration for the evolution of the matrix. For the parking

system, the usage and the arrival/departure rates are all dynamically updated over time. Notice that in the

existing literature, with the exception of a few studies, these elements are mostly assumed without regard for

past conditions. Here, however, these variables are dynamically estimated based on changing conditions to

better replicate reality.

The paper is organized as follows. Section 2 reviews the existing work on the interactions between parking system

and traffic performance, highlighting the differences between the work presented in this paper and the existing stud-

ies. Section 3 introduces the concept/framework of the parking-state-based transition matrix. Section 4 contains the

methodology to build up the transition matrix. Section 5 shows a numerical example to explore the use of the concept

and methodology proposed. Section 6 summarizes the findings of this paper.
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2. Literature Review

Currently, there are three general approaches that are used for understanding and estimating traffic-parking inter-

actions: empirical, analytical, and multi-agent (MA) simulations tools.

Empirical studies rely on driver surveys (e.g. Axhausen et al., 1994; IBMs global parking survey, 2011), video-

taping (e.g. King (2010)), driving test cars and searching for parking (e.g. Shoup (2006)), GPS data (e.g. van der

Waerden et al., 2014; Montini et al., 2012), and parking occupancy data (e.g. Millard-Ball et al. (2014)).

Empirical data is often collected for local projects as it is mostly specific to an area or a city. Thus, since the data

observed is based on localized conditions, it is difficult to draw generalized conclusions from it. For example, driver

surveys generally stop people at intersections to ask if they are seeking parking, or ask people emerging from their

cars about their experience finding a parking place. As one would expect, the results are then very much based on

local drivers’ preference for parking, and their value-of-time, as well as the time of day. The same is true for studies

that rely on video or other visual techniques. Methods using GPS and parking occupancy data can be used for a wider

range of cities as they can provide more generalized conclusions. However, GPS data extraction tools are still under

development, so the precision and generality of conclusions drawn with them are not yet known. As for the use of

parking occupancy data, this one typically does not include any traffic information and thus, the parking-caused traffic

still needs to be derived through other methods. Therefore, a macroscopic model that does not require any physical

devices and yet can provide both more generalized conditions and results is desirable.

Notable theoretical contributions on the interaction between parking and traffic include literature on economics

and traffic assignment. The literature on economics includes Arnott and Rowse (1999), Arnott and Inci (2006; 2010).

Based on two traffic assignment methods, user equilibrium and social optimal, the externalities of parking system on

traffic congestion are presented (Arnott (1999)). However, the model does not represent traffic performance, e.g., a

fixed value travel speed is assumed for all conditions. More connected to our study, Arnott and Inci (2006) defined

different types of vehicles (moving, cruising, and parked), then provided very useful relations between these types.

However, the model is based on stationary-state conditions, and cannot describe the dynamics of the system (i.e.,

time-varying conditions).

Gallo and D’Acierno (2011) proposed an assignment model on urban networks to simulate parking choice, and

the impact of parking search on traffic congestion. The cost function of users included driving, parking, and walking.

Then the traffic conditions induced by the parking search process could be found. However, within each interval

of the traffic assignment (1 hour), the traffic and parking conditions remained steady, limiting the application of the

model, as in reality both traffic and parking conditions can change rapidly. Bodenbender (2013) developed a model

which considered the probability of not finding a parking. The model was used to test different parking policies based

on the urban network of Zurich, Switzerland. Same as the previous study, the static traffic assignment neglected all

the time-varying conditions such as the parking usage and traffic performance. In addition, the study assumed that

travelers were fully informed about parking including the probability to find one in each link.

MA simulation tools are widely used to simulate travel behavior for a large number of users. These tools allow

inputs such as a non-homogeneous network and personal preferences. The output of the simulations can contain very

detailed results, e.g., parking search traffic and impact on traffic performance (Benenson et al., 2008; Waraich, 2012;

Horni and Montini, 2012; Geroliminis, 2009). This method, though comprehensive and powerful, relies on many

preliminary models such as car following models, route and parking choice models, etc. Therefore, the accuracy of

the final output can be affected through many aspects. In addition, agent-based simulations require a large amount of

very detailed data for the specified conditions, including the detailed network of the city and its parking system, as

well as the travel behavior and searching habits of its citizens. Hence, the transferability of the approach (and results)

across cities and/or population types is rather low.

3. Overall Methodology and Matrix Framework

3.1. Parking-state-based transition matrix

Consider a round-trip going into an urban area as a tour instead of 2 single trips. The vehicle may experience three

parking-related states separated by five parking-related transition events. The three parking-related states are:
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• Non-searching state: Vehicles in this state are not searching for parking, they either just entered the area (in-

cluding through traffic) or have departed the parking facilities (not yet left the area).

• Searching state: Vehicles in this state are searching for parking.

• Parking state: Vehicles in this state are parked (i.e., staying in parking spots).

The states are shown in Figure 1, linked by the transition events. Figure 1(a) describes the transition events based

on one single vehicle trip. Figure 1(b) describes the transition events for all vehicles (the overall traffic movements)

in an urban area; the shaded part represents the parking system in this area, and the rest represents the traffic system.

Notice that we assume the parking maneuvers (access/depart) are instantaneous although in reality they are not. More

details on the specific effects of these maneuvers can be found in Cao and Menendez (2014; 2015).

The five parking-related transition events are also shown in Figure 1. They are:

• Enter the area: These vehicles enter the “non-searching” state.

• Start to search: These vehicles transition from the “non-searching” to the “searching” state.

• Access parking: These vehicles transition from the “searching” to the “parking” state.

• Depart parking: These vehicles transition from the “parking” to the “non-searching” state.

• Leave the area: These vehicles finish the “non-searching” state as they exit the area of interest.

Consider a very small time slice, i, (e.g., 1 minute), Table 1 shows the notation for the number of vehicles in each

state at the beginning of the time slice and the number of vehicles experiencing each transition event during the time

slice.

Table 1. Key variables in a time slice.

Notation Definition

Ni
ns Number of vehicles in the state “non-searching” at the beginning of time slice i.

Ni
s Number of vehicles in the state “searching” at the beginning of time slice i.

Ni
p Number of vehicles in the state “parking” at the beginning of time slice i.

ni
/ns Number of vehicles that enter the area and transition to “non-searching” during time slice i (enter the area).

ni
ns/s Number of vehicles that transition from “non-searching” to “searching” during time slice i (start to search).

ni
s/p Number of vehicles that transition from “searching” to “parking” during time slice i (access parking).

ni
p/ns Number of vehicles that transition from “parking” to “non-searching” during time slice i (depart parking).

ni
ns/ Number of vehicles that leave the area and transition from “non-searching” during time slice i (leave the area).

Fig. 1. Parking-related states and the parking-related transition events of vehicles in an area (a) for a single traveler (b) for all vehicles in the area.
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3.2. Changes to the number of vehicles in each state

The transition of the whole system between consecutive time slices is shown in Figure 2 and formulated as Eq. 1,

2 and 3.

In Figure 2(a), the traffic composition (i.e., the number of vehicles in each parking-related state) at the beginning

of time slice i is shown, as well as the transition events during time slice i. Based on them, the traffic composition

at the beginning of the next time slice can then be obtained. When repeating the process described above, a queuing

diagram for a longer period that consists of many time slices can be found (Figure 2(b)). In Figure 2(b), at a given

time, the vertical distance between two neighboring curves indicates the number of vehicles in a state, e.g., at the

beginning of time slice i, the vertical distance between the curves “start to search” and “access parking” is the number

of vehicles in the “searching” state, Ni
s. Notice that the number of vehicles in the “non-searching” state, Ni

ns, includes

two families of vehicles: new vehicles that just entered the area (on the top of the figure) and vehicles that are about

to leave the area (on the bottom of the figure). For a given period of time, the average horizontal distance between

two neighboring curves is the average time that vehicles spend in that state.

Eq. 1 updates the number of “non-searching” vehicles. During time slice i, vehicles that enter the area (i.e., ni
/ns)

and vehicles that depart parking (i.e., ni
p/ns) join this state; vehicles that start to search (i.e., ni

ns/s) and vehicles that

leave the area (i.e., ni
ns/) quit this state.

Ni+1
ns = Ni

ns + ni
/ns + ni

p/ns − ni
ns/s − ni

ns/ (1)

Eq. 2 updates the number of “searching” vehicles. During time slice i, vehicles that start to search (i.e., ni
ns/s) join

this state; vehicles that access parking (i.e., ni
s/p) quit this state.

Ni+1
s = Ni

s + ni
ns/s − ni

s/p (2)

Eq. 3 updates the number of “parking” vehicles. During time slice i, vehicles that access parking (i.e., ni
s/p) join

this state; vehicles that depart parking (i.e., ni
p/ns) quit this state.

Ni+1
p = Ni

p + ni
s/p − ni

p/ns (3)

Fig. 2. (a) Future traffic composition based on current traffic composition and the quantification of the transition events (during one single time

slice); (b) Construction of the queuing diagram of vehicles that have experienced each parking-related transition event based on a single time slice.
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3.3. Changes to the number of vehicles going through each transition event

Time slices are sufficiently small. Hence, the trips can be generated simultaneously in each time slice. Vehicles

can have only one parking-related state during one time slice. They may or may not transition to another state at the

end of a time slice, such decision is endogenously generated within the model.

A framework showing all the interactions within urban traffic/parking systems is given in Figure 3. More important,

it also indicates, conceptually, how the number of vehicles in each parking-related state affects the transition events.

As shown in Figure 3, in general, there are three ways that vehicles within each parking-related state may affect

the transition events:

- The number of parked vehicles (i.e., within “parking” state) and the time they accessed parking, affects the number

of vehicles “accessing parking” and “departing parking”.

- The number of parking searchers (i.e., within “searching” state) and the time they started to search affects the

number of vehicles “accessing parking”.

- The number of vehicles driving (i.e., within the “non-searching” and “searching” states) and the time these

vehicles joined the state affects the travel speed and further influences all the transition events except “enter the area”.

In other words, based on the number of vehicles in each parking-related state and the time they joined that state,

each transition event is modeled.

• For the “enter the area” transition, it is assumed to be the same as the travel demand (known or assumed).

Details are explained in section 4.1.

• For the “start to search” transition, it is assumed to happen after a vehicle drives a given distance. The time

needed for this transition depends on the corresponding traffic conditions (travel speeds) during that period.

Details are explained in section 4.2.

• For the “access parking” transition, it is modeled based on the likelihood of finding an available parking spot

based on the conditions during that time slice. Details are explained in section 4.3.

• For the “depart parking” transition, it is obtained based on the arrival time of vehicles to the parking facilities

and the distribution of parking durations. Details are explained in section 4.4.

• For the “leave the area” transition, it is obtained also after a vehicle drives a given distance (two distances are

assumed respectively for through traffic to leave the area and for parked cars to leave the area). Details are

explained in section 4.5.

It should be noted that the transition matrix proposed in this paper is not a Markov Chain. In our model, the

condition in the next stage does not only rely on the current stage, but also on earlier ones. For example, the number

of vehicles that depart parking in the current time slice is not only related to the amount of currently parked vehicles,

but also their accessing time to parking. That requires knowledge of the number of vehicles access parking in each

and all previous time slices. Similarly, the modeling of start to search” and “leave the area” also need the number

Fig. 3. Interactions between the urban parking and traffic systems.
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of vehicles that enter the area and depart parking in each and all previous time slices. More details on modeling are

explained in section 4.

The transition matrix can be programmed based on the definitions/equations/models provided here. Therefore, the

system can either end when all traffic have left the area (this is the case for our numerical example), or any other time

as needed.

3.4. Basic information for analytical model

Basic model assumptions, inputs, and expected outputs are briefly described below.

Assumptions
The network is relatively small, compact, and homogenous. On average, all existing parking spaces (not only the

available ones) are uniformly distributed on the network. Moreover, they are all identical. We thus do not address

the role of parking fees or walking distance when allocating more or less desirable parking spots to users. Having no

consideration of fee, walking distance, allows us to avoid drivers preference on parking location and price, etc. This

makes the model simple enough that one can focus on the searching process of travellers in the network. The basis

for this assumption is that the network should not be too large so that the drivers can be more or less indifferent to

parking spaces at different locations and take the first one they find.

The arrival rate of traffic into the area, the size of the network, and the distribution of parking durations and the

traffic properties of the network are known. Trips are uniformly distributed along the network and the parking demand

(vehicles that are searching for parking) is homogenously distributed within the overall driving traffic.

As vehicles that use parking garages do not typically search for parking (they treat the parking garage as the tar-

get destination), it is not realistic to model them as searching traffic. Considering that, we define a portion of travel

demand as through traffic which represents trips that do not search for parking. They include users of off-street,

dedicated/private parking facilities or vehicles that are simply driving through the network. In this way, the parking

garages do not need to be modeled explicitly, but the vehicles using them are still taken into account.

Inputs
Corresponding to the assumptions described above. Table 2 shows all the model’s independent variables.

Table 2. Independent variables (inputs).

Notation Definition

ni
/ns New arrivals to the network during time slice i (i.e., travel demand).

βi Proportion of new arrivals during time slice i that corresponds to through traffic.

L Size (length) of the network.

A Total number of existing parking spots (for public use) in the area.

t Length of a time slice.

td Parking duration.

f (td) The probability density function of the parking duration.

v Free flow speed, i.e., maximum speed on the network.

Qmax Maximum traffic flow rate that can be adopted on the network.

kc Optimal/critical traffic density on the network. If the traffic density is higher than this value, then congestion occurs.

k j Jam density.

lns/s Distance that must be driven by a vehicle before it starts to search for parking.

l/ Distance that must be driven by a vehicle before it leaves the area without parking.

lp/ Distance that must be driven by a vehicle before it leaves the area after it has parked.

N0
ns The initial condition of non-searching state.

N0
s The initial condition of searching state.

N0
p The initial condition of parking state.

One can see four distinct sets of input variables.
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The first set corresponds to the travel demand and supply, including the traffic demand, the proportion of through

traffic, the distribution of the parking durations, and the parking supply in the area. These data can be assumed

based on some historical data, e.g., traffic data on main roads to enter the network; parking data from one days data

collection, etc.

The second set corresponds to the traffic network, including the total length, the traffic flow properties such as

the saturation flow, free flow speed and jam density. These data can be estimated based on real measurements, the

kinematic wave theory of traffic flow, the macroscopic fundamental diagram, and/or simulation results.

The third set corresponds to the distances one needs to drive before transitioning into the next state. These values

can be assumed based on the length of the network, and other data collected from travellers.

The four set corresponds to the initial conditions of the parking-related states. These values can be measured,

assumed or simulated.

Outputs
The model is able to provide, among others, the following outputs:

- Indicators for traffic conditions: vehicle accumulation on the network (traffic density), it includes vehicles in

both non-searching and searching states; average travel speed, obtained based on the traffic density; total and average

distance driven.

- Indicators for parking conditions: arrival to parking facilities (transition event “access parking”); departure of

parking facilities; parking occupancy; available parking supply; parking demand (i.e., parking searchers).

Besides these, indicators specific to parking searchers can also be obtained, such as the average search time and

distance; share of searching traffic and non-searching traffic, etc.

4. Analytical Formulations for Transition Events

For the modeling of the number of vehicles that go through a transition event in a time slice, we establish some

more detailed assumptions. The urban network is abstracted as one ring road with cars driving in a single direction.

The ring network represents networks which are homogenous. The assumption of a single travel direction simplifies

the model without affecting the model results: the traffic demand can be seen as homogenously distributed on the

network, whether vehicles travel in a single direction or two. We assume no overtaking takes place. This, although

seems unrealistic, does not affect the model results: for any given number of available parking spaces and searchers,

the average number of vehicles finding parking spaces in a time slice should not change even if cars can overtake each

other.

During a given time slice, vehicles drive at the same speed. The available parking spots might be visited by several

vehicles, but they only accommodate the first one that passes by. The vehicles that pass afterwards, see it full and

continue searching for the next available parking spot.

Additionally, we define some new variables, they are listed in Table 3. They are used as the foundation to quantify

the number of vehicles that experience each transition event in a time slice. Their functions are written as Eq. 4 - 10.

Table 3. Intermediate variables.

Notation Definition

Ai Number of available parking spots at the beginning of time slice i.
ki Average traffic density in time slice i.
vi Average travel speed in time slice i.
di Maximum driven distance of a vehicle in time slice i.
si Spacing between vehicles that are searching for parking at the beginning of time slice i.
mi Maximum number of vehicles that can pass by the same place on the network during time slice i.
di

r Remainder of the division di

si when di > si.

Ai is the parking capacity minus the number of parking spaces that are occupied at the beginning of a given time

slice, Ai ≤ A.
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Ai = A − Ni
p (4)

ki is the total number of vehicles on the road network at the beginning of a given time slice divided by the length

of the network.

ki =
Ni

s + Ni
ns

L
(5)

vi is formulated based on a triangular Fundamental Diagram. Hence, it assumes that vehicles travel at speed v when

traffic is not congested, and at a lower speed once the traffic density exceeds kc (i.e., traffic starts to be congested). The

form of vi can be assumed differently in other cases if necessary. For a larger network, a macroscopic fundamental

diagram (MFD) theory which takes into account aggregate conditions across the network might be more suitable. In

case another network is used instead of a simple ring road, exchanging the triangular FD with an MFD, should not

affect, however, any of the presented methodology.

vi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v , if 0 ≤ ki ≤ kc

Qmax

kc − k j
·
(
1 − k j

ki

)
, if kc < ki ≤ k j

(6)

di and si are formulated as explained by their definitions.

di = vi · t (7)

si =
L
Ni

s
(8)

Notice that, if ki exceeds or equals k j at a given time, a gridlock situation will be immediately generated. Since this

moment, vi = 0 and di = 0, i.e., no vehicle on the network is able to travel any further and no transition events can be

reached (except for ”depart parking”). Such a situation may occur when a set of unfavorable conditions are met. For

example, a combination of small parking supply, long parking durations and large parking demand, etc.

As the maximum number of vehicles that can pass by the same place on the network, mi is formulated based on

the maximum distance a vehicle can drive and the spacing between two consecutive vehicles. Note that, all locations

on the network could be potentially visited by mi − 1 cars.

mi =

⌈
di

si

⌉
(9)

di
r is formulated based on its definition.

di
r = di −

⌊
di

si

⌋
· si for di > si (10)

Assume that at the beginning of time slice i, the starting point of a car is location xc. Then the starting points of the

vehicles behind this original car are locations xc − si, xc − 2 · si, xc − 3 · si, etc. At the end of time slice i, depending

on the ratio between di and si (i.e., the amount of overlap between vehicles’ trajectories), one of those vehicles behind

the original car will not be able to drive beyond xc + di
r (the vehicle with starting point xc − � di

si � · si). All the other

vehicles with starting points between xc − � di

si � · si and xc will be able to drive further. In other words, within the

area of [xc, xc + di
r], a maximum of mi cars can pass by (i.e., this is the area of maximum overlap between vehicles’

trajectories); and within the area of [xc + di
r, xc + si], a maximum of mi − 1 cars can pass by (i.e., this is the area of

minimum overlap between vehicles’ trajectories). This will later be used to obtain ni
s/p.

Based on these values, we can now find the number of vehicles that go through each transition event during time

slice i.
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4.1. Enter the area, ni
/ns

ni
/ns is an input to the model. Within ni

/ns, a percentage βi is through traffic that will directly leave the area after

driving a distance l/, the rest will go through all transition events.

4.2. Start to search, ni
ns/s

Vehicles start to search after driving a distance of lns/s (since they enter the area). lns/s can be fixed or drawn out

of a given probability distribution function. Here, for simplicity, we assume it is fixed. The expression then for the

number of vehicles starting to search for parking during time slice i is written as Eq. 11 and explained below.

ni
ns/s =

i−1∑
i′=1

(1 − βi′ ) · ni′
/ns︸����������︷︷����������︸

term 1

· γi′
ns/s︸︷︷︸

term 2

(11)

γi′
ns/s =

⎧⎪⎪⎨⎪⎪⎩1, if lns/s ≤ ∑ j=i−1

j=i′ d j and
∑ j=i−1

j=i′ d j ≤ lns/s + di−1.

0, if otherwise.

ni
ns/s may consist of vehicles that entered the area in any time slice between 1 and i−1. Use i′ to denote such a time

slice, i′ ∈ [1, i − 1] (notice that vehicles that enter the area in time slice i are not included as they already experience

one transition event during this time slice). In time slice i′, ni′
/ns vehicles entered the area. Term 1 in Eq. 11 represents

the portion of those which need to park (i.e., all vehicles except through traffic). Term 2 is a binary variable (0 or 1)

indicating whether these vehicles start to search for parking in time slice i. For γi′
ns/s to be equal to 1, two conditions

must be satisfied: the vehicles have driven enough distance to start searching, and they have not started the search

before.

4.3. Access parking, ni
s/p

After drivers start searching, their driving time/distance is not identical anymore (during the searching state). It

depends on the current conditions (i.e., the density of available parking spaces, the density of searchers and traffic

performance) and their luck finding an available parking spot (their own location, that of the available parking spots

and the competitors). To find each vehicles’ driving time/distance, one needs to record the location of all the cars

and parking spots throughout the different time slices, this requires lots of additional details/efforts. However, we do

not address who takes which parking space, but only the average number of travellers that access parking. Therefore,

these efforts are saved. In other words, the model does not provide information about which vehicle parked, or which

parking space was taken, or how far each vehicle drove before finding parking. We do know, however, the average

number of vehicles that found parking spaces during this time slice, and the total/average searching distance driven

during this time slice.

At the beginning of each time slice, the number of available parking spots and the number of parking searchers

are found based on the matrix. These numbers are recorded over time. However, their locations are not tracked.

The following two assumptions are used in the model: First, at the beginning of each time slice, the locations of the

available parking spots are random. Second, at the beginning of each time slice, the locations of parking searchers

are uniformly distributed on the network. The first assumption represents the stochasticity of the parking availability.

The second assumption guarantees that the demand is homogeneously generated.

The second assumption is necessary, as during each time slice, the model provides an average amount of parking

spots being taken. This average value only stands for a condition where, more or less, all searchers are uniformly

distributed on the network. This, evidently, limits the model. For example, if in reality all searchers focus in one street

where parking spots are scarce while parking spots are available somewhere else, then the model would most likely

overestimate the real value of the amount of parking spots being taken. However, it does provide us an idea how the

traffic might behave under general conditions where the parking demand (vehicles that are searching for parking) is

homogenously distributed within the overall driving traffic. We are interest on whether there is on average at least one

car that is able to take an available parking spot. This, does not require us to know exactly the actual location of each

car.



159 Jin Cao and Monica Menendez  /  Transportation Research Procedia   7  ( 2015 )  149 – 169 

Notice that, at the beginning of each time slice, the locations of parking searchers and available parking spots are

reset (independently from the previous time slice). This guarantees that we obtain the average number of vehicles that

find parking, without being influenced by the randomness of vehicles’ location at that specific time.

To find then the value of ni
s/p, we define three different scenarios based on the relation between di, si and L.

Scenario 1: if di ∈ [0, si].
Under this scenario, the maximum driven distance of a vehicle is shorter than the spacing between two consecutive

vehicles. Therefore, no two vehicles’ trajectories will ever overlap during a single time slice. As a result, a parking

spot can be visited at most by one car (recall Eq. 9).

Assume a parking spot is located at x and the rest Ai − 1 parking spots are located at xr, for r ∈ {1, 2, ..., Ai − 1}.
The searching vehicles’ initial positions are xc, for c ∈ {1, 2, ...,Ni

s}. Then, there are two conditions to guarantee that

this parking spot at location x becomes occupied during time slice i.

• First, the parking spot must be within the reach of a car, i.e., x ∈ [xc, xc +di] for any c ∈ {1,Ni
s}. The probability

of that is
∑c=Ni

s
c=1

∫ xc+di

xc

1
L dx.

• Second, there is no other parking spots between the car at location xc and this parking spot at location x, i.e.,

xr � [xc, x] for r ∈ {1, Ai − 1}. The probability of that is
∏Ai−1

xr=1

(
1 − ∫ x

xc

1
L dxr

)
.

Therefore, the probability of a random parking spot been taken during time slice i is the product of these two prob-

abilities. As this is the same for all parking spots, the average number of parking spots been taken during time slice

i equals to Ai times the product of the two probabilities detailed above; it is written as Eq. 12. A simplified equation

for this scenario is written in Eq. 19.

if di ∈ [0, si], ni
s/p = Ai ·

c=Ni
s∑

c=1

∫ xc+di

xc

1

L
dx ·

Ai−1∏
xr=1

(
1 −

∫ x

xc

1

L
dxr

)
(12)

Scenario 2: if di ∈ (si, L).
Under this scenario, vehicles’ trajectories can overlap and a parking spot can be visited by more than one car

(although it only accommodates the first one).

Assume a parking spot is located at x and the rest Ai − 1 parking spots are located at xr, for r ∈ {1, 2, ..., Ai − 1}.
The searching vehicles’ initial positions are xc, for c ∈ {1, 2, ...,Ni

s}.
To formulate the probability of this parking spot at location x been taken during time slice i, we define three sub-

scenarios. They are based on the relation between Ai (i.e., the number of available parking spots) and mi (i.e., the

maximum number of searching vehicles that can pass by a spot).

- Sub-scenario 2.1: if mi > Ai

Since in this scenario di < L, then according to Eq. 8 and 9, Ni
s ≥ mi. Therefore, there is more parking demand

than supply (Ni
s > Ai). Recall also that any parking spot on the network could be potentially visited by mi − 1 cars

(mi − 1 ≥ Ai). Therefore, any available parking spot will be taken by one of these cars, as there are simply too many

cars searching and they drive a distance that is long enough to reach all available parking spots. Hence, all the parking

spots will be taken, and still some vehicles will remain searching at the end of the time slice. ni
s/p is written as Eq. 13.

if di ∈ (si, L) and mi > Ai, ni
s/p = Ai (13)

- Sub-scenario 2.2: if mi = Ai

Still, we use x as the location of the considered parking spot. As defined before,

• If x ∈ [xc, xc+di
r], a number of mi cars (Ai in this sub-scenario) could drive by that parking spot at x. If a parking

spot is located within this area, it will be taken (see theory described in scenario 1). Thus, the probability of a

parking spot located within this range and been taken is
∑c=Ni

s
c=1

∫ xc+di
r

xc

1
L dx.
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• If x ∈ [xc +di
r, xc + si], a number of mi −1 cars (Ai −1 in this sub-scenario) could drive by that parking spot at x.

Denote p f (n=mi−1) as the probability of this parking spot not being taken, i.e., the probability that all the cars that

could reach location x park before arriving at x. Thus, the probability of a parking located within this range and

been taken is
∑c=Ni

s
c=1

∫ xc+si

xc+di
r

1
L ·

(
1 − p f (n=mi−1)

)
dx.

Combining these two ranges of x, for sub-scenario 2.2, the probability of a parking spot been taken can be written

as
∑c=Ni

s
c=1

{ ∫ xc+di
r

xc

1
L dx+

∫ xc+si

xc+di
r

1
L ·

(
1 − p f (n=mi−1)

)
dx

}
. Since there are a number of Ai parking spots, ni

s/p can be written

as Eq. 14.

if di ∈ (si, L) and mi = Ai, ni
s/p = Ai ·

c=Ni
s∑

c=1

{ ∫ xc+di
r

xc

1

L
dx +

∫ xc+si

xc+di
r

1

L
·
(
1 − p f (n=mi−1)

)
dx

}
(14)

where

pf (n) =

Ai−1∑
zn=n

Czn

Ai−1
·
(∫ x

−(n−1)si

1

L
dx

)zn

·
(
1 −

∫ x

−(n−1)si

1

L
dx

)Ai−1−zn

︸�������������������������������������������������������������������︷︷�������������������������������������������������������������������︸
term 1

·
1∏

j=n−1

p f j

︸���︷︷���︸
term 2

(15)

p f j =

z j+1∑
z j= j

Cz j
z j+1
·
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ x
−( j−1)si

1
L dx∫ x

− j·si
1
L dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
z j

·
⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −

∫ x
−( j−1)si

1
L dx∫ x

− j·si
1
L dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
z j+1−z j

(16)

In Eq. 15, n stands for the number of vehicles that can potentially reach x. Within these n cars, the probability that

the furthest vehicle (to x) parks before it arrives at x is shown in term 1; the probability that the rest n − 1 vehicles all

park before they arrive at x is shown in term 2. A simplified equation of ni
s/p for this sub-scenario is written in Eq. 19.

- Sub-scenario 2.3: if mi < Ai

Similar to sub-scenario 2.2, we define two ranges of x .

• If x ∈ [xc, xc + di
r], a number of mi cars could drive by that parking spot at x. Thus, the probability of a parking

located within this range and been taken is
∑c=Ni

s
c=1

∫ xc+si

xc+di
r

1
L ·

(
1 − p f (n=mi)

)
dx.

• If x ∈ [xc + di
r, xc + si], a number of mi − 1 cars could drive by that parking spot at x. Thus, the probability

of a parking spot located within this range and been taken is the same as that defined in sub-scenario 2.2, i.e.,∑c=Ni
s

c=1

∫ xc+si

xc+di
r

1
L ·

(
1 − p f (n=mi−1)

)
dx.

Combining these two ranges of x, for sub-scenario 2.3, the probability of a parking spot been taken is written as∑c=Ni
s

c=1

{ ∫ xc+di
r

xc

1
L ·

(
1 − p f (n=mi)

)
dx +

∫ xc+si

xc+di
r

1
L ·

(
1 − p f (n=mi)

)
dx

}
. Since there are a number of Ai parking spots, ni

s/p can

be written as Eq. 17. A simplified equation of ni
s/p for this sub-scenario is written in Eq. 19.

if di ∈ (si, L) and mi < Ai, ni
s/p = Ai ·

c=Ni
s∑

c=1

{ ∫ xc+di
r

xc

1

L
·
(
1 − p f (n=mi)

)
dx +

∫ xc+si

xc+di
r

1

L
·
(
1 − p f (n=mi)

)
dx

}
(17)

Scenario 3: if di ∈ [L,∞)

Under this scenario, each car can drive around the whole network at least once, so all cars will park if there are

enough parking spots. Otherwise, all spots will be taken. The result is written as Eq. 18.

if di ∈ [L,∞), ni
s/p = min{Ai,Ni

s} (18)

The expression of ni
s/p for all scenarios described above is written as Eq. 19. For the convenience of the reader,

here some of the equations have been further simplified with respect to what has been shown before for the description

of each scenario.
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ni
s/p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni
s ·

[
1 − (1 − di

L
)Ai

]
, if di ∈

[
0, si

]
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ai , i f mi > Ai

Ai · (1 − Ni
s

LA · p2) , i f mi = Ai

Ai · (1 − Ni
s

LA · p1 − Ni
s

LAi · p2) , i f mi < Ai

, if di ∈
(
si, L

)

min{Ai,Ni
s} , if di ∈ [L,∞)

(19)

Where

p1 =
∑Ai−1

im=m ·Cim
Ai−1
·
[∏1

j=m−1

(∑i j+1

i j= j ·Ci j

i j+1

)]
· L

Ni
s

(im−i1) · ∫ vi·t−(m−1) L
Ni

s
0

[(Ni
s − m + 1) L

Ni
s
− x]Ai−1−im · xi

1
dx

p2 =
∑Ai−1

im−1=m−1 ·Cim−1

Ai−1
·
[∏1

j=m−2

(∑i j+1

i j= j ·Ci j

i j+1

)]
· L

Ni
s

(im−1−i1) · ∫ L
Ni

s

vi·t−(m−1) L
Ni

s

[(Ni
s − m + 2) L

Ni
s
− x]Ai−1−im−1 · xi

1
dx

4.4. Depart parking, ni
p/ns

As we know the number of vehicles accessing parking in all former time slices, we can find ni
p/ns based on the

distribution of parking durations (an input to the model). Eq. 20 shows the number of vehicles that depart parking in

time slice i.

ni
p/ns =

i−1∑
i′=1

ni′
s/p ·

∫ (i+1−i′)·t

(i−i′)·t
f (td) dtd (20)

ni
p/ns may consist of vehicles that accessed parking in any time slice between 1 and i−1. Use i′ to denote such time

slice, i′ ∈ [1, i − 1]. Notice that the vehicles that access parking during time slice i are not included, as they already

experience one transition event during this time slice. The number of vehicles that accessed parking in time slice i′ is

ni′
s/p. The probability that these vehicles depart parking in time slice i equals to the probability of the parking duration

being between (i − i′) · t and (i + 1 − i′) · t, i.e.,
∫ (i+1−i′)·t

(i−i′)·t f (td) dtd.

Some distributions are more suitable to describe parking duration than others, see Richardson (1974), Lautso

(1981) and Cao et al. (2013); although theoretically, any distribution can be used, e.g., negative binomial, poisson.

Eq. 20, therefore, remains general enough to fit any distribution for describing parking duration in this model.

4.5. Leave the area, ni
ns/

Vehicles leave the area after they drive for a given distance. The starting point for counting that distance corre-

sponds to the moment they enter the area (if they are through traffic and do not park in the area), or the moment they

depart the parking facilities. For these two cases, the required distances are l/ and lp/, respectively. They can be fixed

values, or values drawn out of any given probability distribution function. Here, for simplicity, we assume they are

fixed. Eq. 21 shows the number of vehicles that leave the area during time slice i.

ni
ns/ =

i−1∑
i′=1

(
βi′ · ni′

/ns · γi′
/ + ni′

p/ns · γi′
p/

)
(21)

where

γi′
/ =

⎧⎪⎪⎨⎪⎪⎩1, if l/ ≤ ∑ j=i−1

j=i′ d j and
∑ j=i−1

j=i′ d j ≤ l/ + di−1

0, if otherwise.

γi′
p/ =

⎧⎪⎪⎨⎪⎪⎩1, if lp/ ≤ ∑ j=i−1

j=i′ d j and
∑ j=i−1

j=i′ d j ≤ lp/ + di−1

0, if otherwise.

As shown in Eq. 21, ni
ns/ consists of two parts, the vehicles that leave the area without parking, i.e., βi′ · ni′

/ns for

all time slices i′ ∈ [1, i − 1] (through traffic); and the vehicles that leave the area after they have parked, i.e., ni′
p/ns for
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all time slices i′ ∈ [1, i − 1]. γi′
/ and γi′

p/ are binary variables (0 or 1) indicating whether these two groups of vehicles

leave the area in time slice i. γi′
/ and γi′

p/ are equal to 1 if the vehicles that transitioned into the “non-searching” state

in time slice i′ have reached (during time slice i − 1) the given distance required to leave the area.

5. Applications

In this section, a numerical example is provided to illustrate how to build the transition matrix and exploit the useful

information it provides. Additionally, we use the numerical example to test different parking policies and evaluate

their influence on the traffic system.

5.1. Numerical example

The total travel demand contains 200 trips. Each time slice lasts for 1 minute, i.e., t=1 min.

The entry time of the vehicles to the area obeys a gamma distribution, where the average arrival time is 20 minutes

after the observation period starts (more precisely, the shape parameter is 4 and the scale parameter is 5). The parking

durations also obey a gamma distribution, where the average duration is 10 minutes (more precisely, the shape param-

eter is 2 and the scale parameter is 5). Notice that, the application of the analytical model is not limited to a specific

distribution, other distributions besides gamma could also be assumed. Although the model is suitable for cases with

through traffic, for simplicity and due to space constraints, we assume there is no through traffic (i.e., βi = 0, ∀ i).
Other inputs include: L = 1 km; A = 21 spaces; v = 30 km/h; kc = 60 veh/km/lane; k j = 150 veh/km/lane; Qmax =

1800 veh/h/lane; lns/s = 0.5 km and lp/ = 0.5 km. Note that for this specific case, A = 21 is the smallest integer where

gridlock conditions are avoided, larger values are tested in section 5.2.

Section 5.1.1 provides some important outputs of the model/matrix. Section 5.1.2 explains these outputs and how

to use them to better understand and evaluate the interactions between the urban parking and traffic systems.

5.1.1. Transition matrix and resulting queuing diagram
A queuing diagram is shown in Figure 4 with five curves, indicating the cumulative number of vehicles going

through each parking-related transition event.

As mentioned before, the vertical distance between each pair of consecutive curves is the number of vehicles in

a state (notice that the non-searching state consists of two parts). Also, the area between two consecutive curves is

the total time vehicles spend within that state. The area between the curves “enter the area” and “start to search” is

the total time vehicles spend within the network before they start to search for parking; the area between the curves

“depart parking” and “leave the area” is the total time vehicles spend within the network after they depart their parking

spots. The sum of these two areas constitutes the total time vehicles spend in the “non-searching” state. If there is

no congestion and the average travel speed remains v, this area would equal to 400 vehicle-minutes (as each vehicle

Fig. 4. Queuing diagram of vehicles in the area (numerical example).
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would drive for a period of
lns/s+lp/

v = 2 min). If there is congestion, then this area could be larger due to a lower travel

speed. The obtained values are listed in Table 4.

Table 4. Average time vehicles spend in non-searching and searching states (numerical example).

State Total time (vehicle-minutes) Average time per vehicle (minutes) Average delay per vehicle (minutes)

Non-searching state 2100 10.5 8.5

Searching state 6180 30.9 30.9

Total 8280 41.4 39.4

As shown in Table 4, the average time spent by a vehicle in the non-searching state is 10.5 minutes, i.e., a total

time of 2100 vehicle-minutes. This contains an average delay (during non-searching state) of 8.5 minutes, i.e., a total

delay of 1700 minutes (i.e., 28.3 hours).

Moreover, while searching, each vehicle spends on average 30.9 minutes. This is, evidently, an extreme case and

not very realistic, as drivers spend three times longer searching for parking than actually parked. However, it illustrates

the potential negative effects that a limited parking supply can have on the traffic system if the demand is not altered.

In total, each vehicle is delayed for 39.4 minutes during driving (within the non-searching and the searching states).

Figure 5 shows both the proportion of traffic searching for parking, and the parking occupancy over time. It can be

seen that the values of both of them are high for a large portion of the observation period. The peak of the parking

occupancy starts earlier than that of the share of traffic searching for parking, indicating the causal relationship. Notice

that once the parking occupancy reaches 100%, it stays there for most of the observation period, indicating that vacated

parking spots get filled with new searchers right away within the same time slice. This is not surprising, as in this

example the demand for parking is much larger than the supply.

5.1.2. Interactions between parking and traffic systems
In this section we illustrate these interactions with the results of the numerical example, e.g., the correlation be-

tween traffic speed, total driving traffic (non-searching and searching), and the total driven distance. These three

values are shown in Figure 6.

Fig. 5. (a) Proportion of traffic “searching for parking” over time. (b) Parking occupancy over time (numerical example).
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Fig. 6. Values of indicators for the traffic conditions. (a) Traffic density on the road network over time; (b) Average travel speed over time; (c) Total

distance driven by vehicles over time (numerical example).

As seen in Figures 6 (a) and 6 (b), traffic congestion occurs between minutes 18 and 80 (i.e., the traffic density

is higher than kc and the average speed is lower than v). Additionally, near-gridlock conditions are reached between

minutes 37 and 55 as the speed drops below 2 km/h.

Figure 6 (a) shows a continuous growth of traffic density before minute 40, there are three reasons contributing to

this. First, the parking system starts to saturate, thus vehicles take longer to find a parking space (i.e., they spend more

time in the “searching” state). Second, as the traffic becomes more congested, the vehicles can drive a smaller distance

within a time slice, and this also influences their ability to find parking. Third, the distance vehicles can drive within a

time slice becomes smaller, vehicles in the “non-searching” state (after parking) need a longer time to leave the area.

Notice that the congestion also reduces the number of vehicles transitioning between the states of “non-searching”

and “searching”; this influences the traffic composition, but it does not affect the overall traffic density.

Figure 6 (c) shows the total distance driven within each time slice. There are two peaks on this curve, the first one

occurs approximately at minute 18 and the second one occurs approximately at minute 80. Notice that these two times

correspond to the moments when the average travel speed starts to drop from 30 km/h, and when it reaches back 30
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km/h, respectively. Before the first peak and after the second peak, the average travel speed remains at the maximum

level, and the curve of the total driven distance follows the same pattern as that of the traffic density. Between the two

peaks, the traffic density reaches the critical density, leading to a rather low speed across the system. Then the speed

changes become more significant than the density changes, and the curve of the total driven distance follows the same

pattern as that of the travel speed(Figure 6 (b)).

Table 5 shows the average and total driven distance within the non-searching and the searching states.

Table 5. Total driven distance and average driven distance per vehicle (numerical example).

State Total driven distance Average driven distance

Non-searching state 219 km 1.1 km/veh

Searching state 1175 km 5.9 km/veh

Total 1394 km 7.0 km/veh

Recall that vehicles can only transition into the next state at the end of each time slice (not immediately); there-

fore, the average driven distance for non-searching vehicles is 1.1 km/veh, slightly higher than that assumed (i.e.,

lns/s+lp/=1 km). Nevertheless, the distance driven by non-searching vehicles constitutes a small portion of the total

driven distance. The average driven distance of searching vehicles is 5.9 km/veh (over four times more than that of

non-searching vehicles).

Overall, vehicles drive 1394 km (recall that the size of the network is 1km and there are only 200 trips). This

distance can be used to measure energy consumption, air pollution, and other externalities caused by parking issues.

5.2. Assessment of alternative parking policies

In the numerical example, the traffic problems observed are highly related to the parking supply. Hence, in this

section, we test two sets of parking policies and compare them by quantifying their effects on the total system delay

and driven distance. The two sets of policies are (1) increasing the parking supply, and (2) limiting the maximum

parking duration. They are independent of each other. Notice that the specifics of these policies as tested here are

very simplistic (e.g., a 10 minute maximum parking duration is not realistic for most networks). However, they are

only used to illustrate the effects that such policy types may have on traffic, and not to draw specific conclusions about

their optimal values.

The results indicate that a proper time control scheme can highly improve the system without enlarging parking

supply, which is typically harder to implement as it is a more expensive and controversial policy.

Increasing the parking supply
A1: provide 22 parking spaces instead of 21.

A2: provide 23 parking spaces instead of 21.

Limiting the maximum parking duration
B1: the longest parking duration is 20 minutes. Vehicles who wish to park shorter than 20 minutes are not affected.

Vehicles who wish to park longer than 20 minutes have to leave at the end of the 20 minutes maximum parking

duration.

B2: the longest parking duration is 10 minutes. Vehicles who wish to park shorter than 10 minutes are not affected.

Vehicles who wish to park longer than 10 minutes have to leave at the end of the 10 minutes maximum parking

duration.

Table 6 shows the comparison between the original conditions and policies A1, A2, B1 and B2. Values within

parenthesis indicate the percentage change driven by the different policies with respect to the original conditions.

Not surprisingly, it can be seen that the non-searching time, searching time and delay per vehicle can be reduced

both by increasing the parking supply and by limiting the maximum parking duration. Also, stronger policies are

more effective at reducing delays, i.e., A2 reduces delay by an additional 7% compared to A1; B2 reduces delay by

an additional 29% compared to B1.

Interestingly, not all the policies reduce the total driven distance. As a matter of fact, compared to the original

conditions, policies A1 and A2 result in longer distances (3.9% and 3.8% longer respectively) despite reducing the
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Table 6. Traffic effects of different parking policies (numerical example).

Policy Non-searching time (min/veh) Searching time (min/veh) Delay (min/veh) Total driven distance (km)

Original 10.5 30.9 39.4 1394

A1 (22 parking spaces) 7.9 (-24.8%) 29.5 (-4.5 %) 35.4 (-10.2 %) 1449 (+3.9 %)

A2 (23 parking spaces) 6.7 (-36.2%) 27.9 (-9.7 %) 32.6 (-17.3%) 1447 (+3.8 %)

B1 (20 minutes maximum) 9.7 (-7.6 %) 29.3 (-5.2 %) 37.0 (-6.1%) 1365 (-2.1 %)

B2 (10 minutes maximum) 5.4 (-48.6%) 22.2 (-28.2%) 25.6 (-35.0%) 1295 (-7.1 %)

delay. This is important to notice as it highlights the need for estimating/optimizing multiple traffic metrics (besides

delay) when evaluating different parking policies from the traffic prospective.

To understand these seemingly controversial results, Figure 7 is provided to show the traffic density, the average

travel speed and the total driven distance over time based on the tested policies. Figure 7 (a) compares policies A1

and A2 to the original conditions; Figure 7 (b) compares policies B1 and B2 to the original conditions.

Fig. 7. Traffic conditions obtained from the transition matrix based on different parking policies, including the traffic density, the travel speed and

the total driven distance in each time slice. (a) Policies A1, A2 and original conditions (b) Policies B1, B2 and original conditions (numerical

example).



167 Jin Cao and Monica Menendez  /  Transportation Research Procedia   7  ( 2015 )  149 – 169 

As shown in Figure 7 (a3) and (b3), the values of total driven distance in some time slices are larger than for the

original conditions whereas for other time slices they are smaller. Increases in driven distance are caused by the higher

average speeds on the network (Figure 7 (a2) and (b2)), and the still relatively high traffic density (Figure 7 (a1) and

(b1)). Reductions in driven distance happen when congestion disappears earlier.

For policies A1 and A2, the increased driven distance during the congested period is larger than the saved driven

distance after congestion (notice that the congested period finishes only a couple of minutes earlier compared to the

original conditions). Even though the speed is higher than with the original conditions, the ability of vehicles to find

parking spots (during congestion) is kept low as the parking occupancy is high. In other words, these drivers take the

same time to find parking, but since the speed is faster than with the original conditions, they drive longer distances.

On the contrary, for policies B1 and B2, the increased driven distance during the congested period is smaller than

the saved driven distance after congestion. Therefore, these two policies are more effective in reducing both the delay

and the total driven distance in this case.

These findings are relevant, as they highlight the importance of estimating multiple metrics when designing or

evaluating new parking policies. A good parking policy should be aiming to (at least) not only enhance the traffic

performance but also the total driven distance, and this is not automatically achieved, as these two metrics might react

to the policy in very opposite directions.

6. Conclusions

In this study, we develop a macroscopic model to analyze the interactions between the urban parking and traffic

systems. Based on the transition matrix of vehicles between different parking-related states within the urban area, a

queuing diagram can be provided. This can show the cumulative number of vehicles that go through each parking-

related transition event as a function of time, as well as the number of vehicles within each state at any given time.

The model can also furnish other traffic related metrics, such as total time vehicles spend in each state, total distance

driven, and total delay.

The whole framework/model provides a new perspective for looking at parking systems and their interactions with

traffic. Below we highlight some advantages of the model:

1. In comparison to microscopic models or MA simulation tools which are typically used when analyzing parking-

caused traffic issues, the macroscopic model proposed here has several advantages.

• The model has very little data requirements, while most of the tools used nowadays to analyze parking-

related traffic require a lot of detailed data that is really hard to get. Our model, on the other hand, is

macroscopically built and only needs some general inputs, distributions and probability theory.

• This macroscopic model allows us to compute the results without the use of complex simulations, as it can

be easily solved with a simple numerical solver such as excel or matlab. This is in part possible because

we only have a few parameters, and all of them have a physical interpretation. Moreover, they can all be

obtained from field data. In addition, there is no need to run the model many times in order to account for

its stochasticity, as it is based on probability functions (i.e., the stochasticity is already implicit within the

model formulations).

• The simpler form of the macroscopic model might provide additional insights that cannot be delivered by

microscopic models (e.g., insights into the mathematical relation between parking availability and traffic

speeds).

2. The proposed model represents a dynamic system, where the time-varying conditions can be considered, and

the time-based results or average values across time can be found. This gives it clear planning and operational

applications (e.g., provide short term forecasting of traffic conditions based on the parking system, or parking

usage based on traffic conditions; evaluate the total/average effect of different parking policies onto the traffic

system over time and vice versa).

• The model provides the proportion of vehicles looking for parking on an urban network. In reality, vehicles

looking for parking are hard to distinguish from normal driving vehicles, hence significant investments
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must be made to collect empirical data through the use of GPS and other devices. This model, however,

provides some analytical results, which could be very helpful for cities to estimate their parking search

condition with very limited investment.

• The model provides a method to find the influence of parking searchers (or the parking system) on the non-

searching vehicles (e.g., through traffic). This is interesting, as city governments and individual travelers

often do not realize that parking can be a source of traffic jams (general congestion instead of a distinctive

bottleneck). To this end, the model helps to detect the portion of traffic congestion which is caused by

parking issues (i.e., detect parking-caused problems) as well as the magnitude of such negative effects.

• The model provides the total distance driven on the network, including the extra distance driven due to

the search for parking. Even if there is no traffic jam, considering the same amount of trips, the longer the

distance travelled, the worse it is for the environment (i.e., more air pollution). Based on this model, this

part can be estimated as well, and further taken into account for policies such as pricing, etc.

• The model provides new insights and tools to evaluate the performance of parking systems over time (i.e.,

considering dynamic conditions). In other words, it also provides new aspects for parking systems to

consider and new goals for them to reach when they are being planned and designed. Eventually, it can

assess and assist parking provision such as dynamic pricing schemes and time control policies, to avoid

the traffic deterioration caused by parking systems.

Overall, the usage/application of the proposed model is far beyond what we have illustrated in the numerical

example. The model can provide the relation between the proportion of through traffic, the traffic conditions, and

the likelihood of vehicles to access parking, for example. This is not included in the paper as the through traffic was

assumed to be zero for simplification purposes. Also, the values of the driven distances needed for certain transition

events (i.e., lns/s, l/, and lp/) can be generated by distributions to better duplicate reality, instead of using fixed values.

In addition, the off-street parking facilities can be modeled more explicitly, such as multiple parking spots at the same

location; so the network can be easily expanded to include different kinds of parking supplies. All of these extensions,

although not directly presented here, can be achieved easily based on the current model. The future research work

could incorporate, however, a non-homogeneous environment (e.g., where both, the parking demand and supply are

inhomogeneously distributed temporally and spatially); and incorporate different adjacent networks, where parking

decisions can be made based on the conditions of more than one network. Also, in future studies, the bottleneck and

delays caused by on-street parking maneuvers to traffic flow will be taken into account as well based on some other

studies by the authors (Cao and Menendez (2014; 2015)).

In summary, the proposed model, despite its simplicity, can be used to efficiently evaluate the urban traffic system

macroscopically. The parking-state-based transition matrix for traffic can be used to estimate both, how parking

availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for

parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers’ ability to

find parking. Moreover, the proposed model can be further exploited to study multiple strategies or scenarios for

traffic operations and control, transportation planning, land use planning, or parking management and operations

(e.g., evaluation of parking time/pricing controls, location and number of parking stalls). The numerical example in

the paper, in spite of being rather simple, shows very optimistic results for the use of the proposed model. It provides

an idea on how different parking policies can affect traffic in the short-term. It is also evident from the presented

results that multiple traffic metrics should be considered when studying the potential impacts of parking policies, e.g.,

a given policy can reduce traffic delay (i.e., by increasing the travel speed), but simultaneously increase total distance

travelled. This is a very interesting fact, and relevant as well, as it shows the importance of considering the total driven

distance as an indicator of the policy/system, in addition to the direct traffic indicators such as speed. This could guide

policy makers into a more sustainable direction, rather than short-sighted decisions which could be detrimental to the

environment.
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