
Theoretical Computer Science 410 (2009) 1863–1875

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Parallelism increases iterative learning powerI

John Case, Samuel E. Moelius III ∗
Department of Computer & Information Sciences, University of Delaware, 103 Smith Hall, Newark, DE 19716, United States

a r t i c l e i n f o

Keywords:
Computational learning theory
Gold-style learning
Inductive inference
Iterative learning
Language learning
Memory limited learning
Parallel learning
Parallelism

a b s t r a c t

Iterative learning (It-learning) is a Gold-style learning model in which each of a learner’s
output conjectures may depend only upon the learner’s current conjecture and the current
input element. Two extensions of the It-learning model are considered, each of which
involves parallelism. The first is to run, in parallel, distinct instantiations of a single learner
on each input element. The second is to run, in parallel, n individual learners incorporating
the first extension, and to allow the n learners to communicate their results. In most
contexts, parallelism is only a means of improving efficiency. However, as shown herein,
learners incorporating the first extension aremore powerful than It-learners, and, collective
learners resulting from the second extension increase in learning power as n increases.
Attention is paid to how one would actually implement a learner incorporating each
extension. Parallelism is the underlying mechanism employed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Iterative learning (It-learning) [34,22,9,7,12] is a mathematical model of language learning in the style of Gold [15].1 In
this model, the learner (commonly denoted byM, formachine) is an algorithmic device that is repeatedly fed elements from
an infinite sequence. The elements of the sequence consist of numbers and, possibly, pauses (#). The set of all such numbers
represents a language. After being fed each element, the learner either: outputs a conjecture, or diverges.2 A conjecture may
be either: a grammar , possibly for the language represented by the sequence, or ‘?’.3 Most importantly, the learner may only
consider its current conjecture and the current input element when forming a new conjecture.
For the remainder of this section, let M be a fixed learner. For now, M may be thought of as an It-learner. Later in this

section, we will treat M as an instance of a more general type of learner. Let x0, x1, . . . be an arbitrary input sequence. Let
p0 be M’s initial conjecture (i.e., M’s conjecture having been fed no data), and, for all j, let p j+1 be the result of Mj, where
Mj is the computation performed by running M on inputs p j and xj. In the event that Mj diverges, we let p j+1 = ⊥. (By
convention, p0 cannot be⊥.) We shall refer toMj as the jth instantiation ofM. See Fig. 1.
An It-learnerM is successful at learning the language represented by x0, x1, . . . def⇔
• none ofM0,M1, . . . diverge (i.e., none of p1, p2, . . . is⊥);
• for some index j0, each ofM j0 ,M j0+1, . . . results in p j0+1; and,
• p j0+1 correctly describes the language represented by x0, x1,

I This paper is an expanded version of [J. Case, S.E. Moelius, Parallelism increases iterative learning power, in: Proceedings of the Eighteenth Annual
Conference on Algorithmic Learning Theory, ALT’07, in: Lecture Notes in Artificial Intelligence, vol. 4754, Springer, Heidelberg, 2007, pp. 49–63].
∗ Corresponding author.
E-mail addresses: case@cis.udel.edu (J. Case), moelius@cis.udel.edu (S.E. Moelius III).

1 In this paper, we focus exclusively on language learning, as opposed to, say, function learning [18].
2 Intuitively, if a learnerM diverges, thenM goes into an infinite loop.
3 N.B. Outputting ‘?’ is not the same as diverging. Outputting ‘?’ requires only finitely many steps; whereas, diverging requires infinitely many steps (in
the sense of the just previous footnote).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.01.015

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:case@cis.udel.edu
mailto:moelius@cis.udel.edu
http://dx.doi.org/10.1016/j.tcs.2009.01.015

1864 J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875

Fig. 1. The iterative learning process. The jth instantiation of learner M, Mj , is fed the current conjecture pj and current input element xj . From these, Mj
produces a new conjecture p j+1 .

We say that M identifies a language L, or, L is identifiable by M def
⇔ M is successful at learning L from any input sequence

representing L.
The pattern languages are an example of a class of languages that are It-learnable, i.e., there exists an It-learner capable

of identifying every language in the class. A pattern language is (by definition) the language generated by all positive length
substitution instances in a pattern (e.g., abXYcbbZXa, where the variables/nonterminals are depicted in uppercase, and
the constants/terminals are depicted in lowercase). The pattern languages and their learnability were first considered by
Angluin [2]. Since then, much work has been done on the learnability of pattern languages [28,29,8] and finite unions
thereof [30,36,19,4]. The class of pattern languages, itself, was shown to be It-learnable by Lange and Wiehagen [21].
Subsequently, this result was extended by Case, et al. [9] who showed that, for each k, the class formed by taking the union
of all choices of k pattern languages is It-learnable. Nix [24], as well as Shinohara and Arikawa [27], outline interesting
applications of pattern inference algorithms.

It-learning is a memory limited special case of the more general explanatory learning (Ex-learning) [15,18]4 and
behaviorally correct learning (Bc-learning) [10,18].5 Ex- and Bc-learners are not , in general, limited to just the current
conjecture and current input element when forming a new conjecture. Rather, such learners can refer to conjectures and/or
input elements arbitrarily far into the past.6
Many It-learnable classes of languages are of practical interest. For example, the pattern languages, mentioned above,

are a class whose learnability has applications to problems in molecular biology [1,32,27]. Furthermore, there is benefit in
knowing that a class of languages is It-learnable, as It-learners satisfy the following informal property.

Property 1. If an input sequence represents a language identifiable by the learner, then each element of the sequence may be
discarded before the next element is fed to the learner.

Clearly, Ex- and Bc-learners do not satisfy Property 1. In general, an implementation of an Ex- or Bc-learner would have to
store each element of an input sequence indefinitely. Thus, from a practical perspective, showing a class of languages to be
It-learnable is far more desirable than showing it to be merely Ex- or Bc-learnable.
Herein, we consider two extensions of the It-learning model, each of which involves parallelism. The first is to run, in

parallel, distinct instantiations of a single learner on each input element (see Section 1.1).We call a learner incorporating this
extension a 1-ParIt-learner . Our second extension is to run, in parallel, n distinct learners incorporating the first extension,
and to allow the n learners to communicate their results (see Section 1.2).7 We call a collective learner resulting from this
latter extension, an n-ParIt-learner .
Each extension is described in further detail below.

1.1. First extension

As mentioned previously, for an It-learnerM to be successful at learning a language, none of its instantiationsM0,M1, . . .
may diverge. Thus, a most obvious implementation ofMwould runMj only afterMj−1 has converged. We can put each such
Mj squarely into one of two categories: those that need pj to compute p j+1, and those that do not . For those that do not , there
is no reason to wait untilMj−1 has converged, nor is there reason to require thatMj−1 converge at all.
Thus, our first extension is to allowM0,M1, . . . to run in parallel. We do not require that each ofM0,M1, . . . converge,

as is required by It-learning. However, we do require that if Mj needs pj to compute p j+1, and, Mj−1 diverges, then Mj also
diverges. This is an informal way of saying thatMmust bemonotonic [35]. This issue is discussed further in Section 1.2.
We call a learner incorporating our first extension a 1-ParIt-learner . We say that such a learner is successful at learning

the language represented by x0, x1, . . . def⇔ for some index j0,

• each ofM j0 ,M j0+1, . . . converges;
• each ofM j0 ,M j0+1, . . . results in p j0+1; and,
• p j0+1 correctly describes the language represented by x0, x1,

4 Ex-learning is the model that was actually studied by Gold [15].
5 Other memory limited learning models are considered in [25,14,9,7].
6 Bc-learners differ from Ex-learners in that, beyond some point, all of the conjectures output by a Bc-learner must correctly (semantically) describe the
input language, but those conjectures need not be (syntactically) identical.
7 The reader should not confuse this idea with team learning [31,18].

J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875 1865

Fig. 2.How a 1-ParIt-learnerMmay be implemented. OnceMj has converged (i.e., has resulted in something other than⊥) (a), any previous instantiations
ofM that are still running may be forcibly terminated (b).

Fig. 3. A collective learner resulting from our second extension. For each i < n, and each j, ith constituent learnerMi may consider conjectures p
j
0, . . . , p

j
n−1

and input element xj when forming conjecture pj+1i .

A 1-ParIt-learner may be implemented in the following manner. Successively, for each j, start running Mj.
Simultaneously, watch for each Mj that is currently running to converge. Whenever j is such that Mj converges, forcibly
terminate any currently running instantiations of the formM0, . . . ,Mj−1. (The idea is that onceMj has converged, the results
of any previous instantiations ofM are no longer needed. See Fig. 2.)
Clearly, a learner implemented in this way will not satisfy Property 1. However, if x0, x1, . . . represents a language

identifiable by M, then, for some index j0, each of M j0 ,M j0+1, . . . will converge. Thus, on such an input sequence, each
instantiationMj will eventually either: converge or be forced to terminate. Once either has occurred, the inputs ofMj may
be discarded. As such, every 1-ParIt-learner satisfies the following weakened version of Property 1.
Property 2. If an input sequence represents a language identifiable by the learner, then each element of the sequence may be
discarded eventually.

Clearly, Ex- and Bc-learners do not satisfy even the weaker Property 2. Thus, from a practical perspective, 1-ParIt-learners
are more attractive than Ex or Bc-learners.
Our first main result, Corollary 16 in Section 3, is that 1-ParIt-learners are strictly more powerful than It-learners.

1.2. Second extension

An obvious parallel generalization of the preceding ideas is to run, in parallel, distinct, individual learners incorporating
the first extension. Clearly, nothing is gained if each such learner runs in isolation. But, if the learners are allowed to
communicate their results, then the resulting collective learner can actually be more powerful than each of its constituent
learners.
For the remainder of this section, let n ≥ 1 be fixed, and letM0, . . . ,Mn−1 be n learners incorporating the first extension.

For each i < n, let p0i beMi’s initial conjecture. For each i < n, and each j, let p
j+1
i be the result ofMji.

Our second extension is to allow M0, . . . ,Mn−1 to run in parallel. For each i < n, and each j, we allow Mji to consider
pj0, . . . , p

j
n−1 and x

j when forming conjecture pj+1i (see Fig. 3). However, as in the 1-ary case, we require that each Mi be
monotonic.8 So, ifMji needs p

j
i′ to compute p

j+1
i , and,M

j−1
i′ diverges, thenM

j
i also diverges. The following examples give some

intuition as towhich strategiesMjimay employ, andwhich strategiesM
j
imay not employ, in considering p

j
0, . . . , p

j
n−1. Exactly

which such strategiesMji may employ is made formal by Definition 8 in Section 3.

Example 3. Mji may employ any of the following strategies in considering p
j
0, . . . , p

j
n−1.

(a) Mji does not wait for any ofM
j−1
0 , . . . ,Mj−1n−1 to converge;M

j
i uses just x

j to compute pj+1i .
(b) Mji waits forM

j−1
i′ to converge. Then,M

j
i uses p

j
i′ to compute p

j+1
i .

(c) Mji waits forM
j−1
i′ to converge. Then,M

j
i performs some computable test on p

j
i′ , and, based on the outcome, either: uses

just pji′ to compute p
j+1
i ; or, waits forM

j−1
i′′ to converge, and uses both p

j
i′ and p

j
i′′ to compute p

j+1
i .

8 In this context, monotonicity is equivalent to continuity [35], since eachMji operates on only finitely much data.

1866 J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875

Fig. 4. How an n-ParIt-learnerM = (M0, . . . ,Mn−1) may be implemented. Once each ofM
j
0, . . . ,M

j
n−1 has converged (a), any previous instantiations of

M0, . . . ,Mn−1 that are still running may be forcibly terminated (b).

(d) Mji waits for each of M
j−1
0 , . . . ,Mj−1n−1 to converge, in some predetermined order. Then, M

j
i uses each of p

j
0, . . . , p

j
n−1 to

compute pj+1i .

Example 4. In general,Mji may not employ the following strategy in considering p
j
0, . . . , p

j
n−1 when n ≥ 2.

(∗) Mji waits for any of M
j−1
0 , . . . ,Mj−1n−1 to converge. Then, for that i

′ < n such that Mj−1i′ converges first , Mji uses p
j
i′ to

compute pj+1i .

Example 4 is revisited following Definition 8 in Section 3.
LetM = (M0, . . . ,Mn−1). We call such a collective learnerM an n-ParIt-learner . We say that such a learner is successful

at learning the language represented by x0, x1, . . . def⇔ for some index j0, and each i < n,

• each ofMj0i ,M
j0+1
i , . . . converges;

• each ofMj0i ,M
j0+1
i , . . . results in pj0+1i ; and,

• pj0+1i correctly describes the language represented by x0, x1,

A strategy for running instantiations of an n-ParIt-learner can easily be generalized from the 1-ary case. Instantiations
may be terminated using the following strategy.Whenever j is such that each ofMj0, . . . ,M

j
n−1 converges, forcibly terminate

any currently running instantiations of the form M0i , . . . ,M
j−1
i , where i < n. (The idea is that once each of M

j
0, . . . ,M

j
n−1

has converged, the results of any previous instantiations ofM0, . . . ,Mn−1 are no longer needed. See Fig. 4.)
Clearly, if x0, x1, . . . represents a language identifiable byM, then, for all but finitely many j, each ofMj0, . . . ,M

j
n−1 will

converge. It follows that an n-ParIt-learner implemented as described in the just previous paragraph satisfies Property 2.
Thus, from a practical perspective, n-ParIt-learners are more attractive than Ex- or Bc-learners.9
Our second main result, Theorem 17 in Section 3, is that, for all n ≥ 1, (n+ 1)-ParIt-learners are strictly more powerful

than n-ParIt-learners.

1.3. Summary of results

Our results are summarized by the following diagram, where the arrows represent proper inclusions.

That is, 1-ParIt-learners are strictlymore powerful than It-learners (Corollary 16). Furthermore, for all n ≥ 1, (n+ 1)-ParIt-
learners are strictly more powerful than n-ParIt-learners (Theorem 17). Thus, we think it is fair to say: parallelism increases
iterative learning power.
We also show that, for all n ≥ 1, n-ParIt-learners and set-driven learners (SD-learners, Definition 6) are incomparable

in learning power (Theorem 15 and Proposition 18). However, by lessening the restrictions of SD-learning only slightly, one
obtains a form of learning that, while still strictly weaker than Ex, completely subsumes the n-ParIt hierarchy (Theorem 19).
The remainder of this paper is organized as follows. Section 2 covers notation and preliminaries. Section 3 gives the

formal definition of n-ParIt-learning and presents our results. Section 4 concludes.

9 In addition to satisfying this intuitive property, there is some chance that n-ParIt-learners might be used to model cognitive processes. In particular,
even human language processing appears to exploit parallelism [16,17].

J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875 1867

2. Notation and preliminaries

Computability-theoretical concepts not explained below are treated in [26].
N denotes the set of natural numbers, {0, 1, 2, . . .}. N? def= N ∪ {?}. N?,⊥ def= N? ∪ {⊥}. N# def= N ∪ {#}. Lowercase Roman

letters other than f , g, p, and q, with orwithout decorations, range over elements ofN. f and g will be used to denote (possibly
partial) functions of various types. The exact type of f and g will be made clear whenever they are introduced. p and q, with
or without decorations, range overN?,⊥. Ep and Eqwill be used to denote tuples whose elements are drawn fromN?,⊥. The size
of Ep and Eqwill be made clear whenever they are introduced. For all n, all Ep ∈ Nn?,⊥, and all i < n, (Ep)i denotes the ith element
of Ep, where the first element is considered the 0th. D0,D1, . . . denotes a fixed, canonical enumeration of all finite subsets of
N such that D0 = ∅ [26]. Uppercase Roman letters, with or without decorations, range over all (finite and infinite) subsets
of N.L ranges over collections of subsets of N.
〈·, ·〉 : N × N → N denotes any fixed, 1–1, onto, computable function. For the remainder, we will write A × B for

{〈a, b〉 : a ∈ A ∧ b ∈ B}.
For all p and q, p v q def⇔ [p = ⊥ ∨ p = q]. The relationv is pronounced approximates or is less or the same information

as.10 For all n, and all Ep, Eq ∈ Nn?,⊥, Ep v Eq def⇔ (∀i < n)[(Ep)i v (Eq)i]. For all n, and all Ep ∈ Nn?,⊥, |Ep|6=⊥ def= |{i < n : (Ep)i 6= ⊥}|.
So, for example, |(0, 1,⊥,⊥, ?)|6=⊥ = 3.
ϕ0, ϕ1, . . . denotes any fixed, acceptable numbering of all partial computable functions of type N ⇀ N [26]. For each

i, we will treat ϕi as a total function of type N → N⊥, where ⊥ denotes the value of a divergent computation.11 For all i,
Wi def= {x ∈ N : ϕi(x) 6= ⊥}. Thus, for all i,Wi is the ith recursively enumerable set [26].

N∗# denotes the set of all finite initial segments of total functions of type N→ N#. N
≤ω
denotes the set of all (finite and

infinite) initial segments of total functions of typeN→ N#. λ denotes the empty initial segment. ρ, σ , and τ , with orwithout
decorations, range over elements of N∗#.
For all f ∈ N≤ω# , content(f) def= {y ∈ N : (∃x)[f (x) = y]}. For all f ∈ N≤ω# and L, f represents L def⇔ f is total and

content(f) = L.12 For all σ , |σ | denotes the length of σ , i.e., the number of elements in σ . For all f ∈ N≤ω# , and all n, f [n]
denotes the initial segment of f of length n, if it exists; f , otherwise. For all σ , all f ∈ N≤ω# , and all i,

(σ � f)(i) def=

{
σ(i), if i < |σ |;
f (i− |σ |), otherwise.

(1)

M will be used to denote partial computable functions of type N∗# ⇀ Nn? , for various n. However, as with ϕ0, ϕ1, . . ., we
will treat eachM as a total function of type N∗# → Nn?,⊥. The exact type ofM will be made clear whenever it is introduced.
For all n, allM : N∗# → Nn?,⊥, all i < n, and all ρ,Mi(ρ) def=

(
M(ρ)

)
i.

The following are the formal definitions of It- and SD-learning.13

Definition 5 (Wiehagen [34]). (a) For allM : N∗# → N?,⊥ and L,M It-identifies L ⇔ (i) and (ii) below.
(i) For all f representing L, there exist j and p ∈ N such that (∀j′ ≥ j)

[
M(f [j′]) = p

]
andWp = L.14

(ii) For all ρ, σ , and τ such that content(ρ) ∪ content(σ) ∪ content(τ) ⊆ L, (α) and (β) below.
(α) M(ρ) 6= ⊥.
(β) M(ρ) = M(σ) ⇒ M(ρ � τ) = M(σ � τ).

(b) For allM : N∗# → N?,⊥, It(M) = {L : M It-identifies L}.
(c) It = {L : (∃M : N∗# → N?,⊥)[L ⊆ It(M)]}.

Definition 6 (Wexler and Culicover [33]). (a) For allM : N∗# → N?,⊥ and L,M SD-identifies L ⇔ (i) and (ii) below.
(i) For all f representing L, there exist j and p ∈ N such that (∀j′ ≥ j)

[
M(f [j′]) = p

]
andWp = L.

(ii) For all ρ and σ , if content(ρ) = content(σ), thenM(ρ) = M(σ).
(iii) For all ρ, if content(ρ) ⊆ L, thenM(ρ) 6= ⊥.

(b) For allM : N∗# → N?,⊥, SD(M) = {L : M SD-identifies L}.
(c) SD = {L : (∃M : N∗# → N?,⊥)[L ⊆ SD(M)]}.

The formal definition of SD′-learning is obtained from Definition 6 by dropping condition (a)(iii). That SD′ ⊂ Ex is shown
by the proof of Proposition 5.25 in [18].
The following result, due to Kinber and Stephan [20], will be of relevance.

10 Quoting Winskel [35, page 72]: ‘‘The elements [of N?,⊥] are thought of as points of information and the ordering p v q as meaning p approximates q
(or, p is less or the same information as q) — so⊥ is the point of least information.’’ (Note: the variables in the preceding quote were changed in order to
adhere to the conventions of this paper.)
11 N.B. It cannot , in general, be determined whether ϕi(x) = ⊥, for arbitrary i and x.
12 Such an f is often called a text (for L) [18].
13 It-learners are often given a formal definition more in line with their description in Section 1. The definition given herein was inspired, in part, by the
Myhill-Nerode Theorem [13]. A proof that this definition is equivalent to the more common definition can be found in [12].
14 Condition (a)(i) in Definition 5 is equivalent to:M Ex-identifies L [15,18].

1868 J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875

Theorem 7 ([20, Theorem 7.7(c)]). It ⊆ SD.
Some of our proofs make use of the Operator Recursion Theorem (ORT) [5]. ORT represents a form of infinitary self-

reference, similar to the way in which Kleene’s Recursion Theorem [26, page 214, problem 11-4] represents a form of
individual self-reference. That is, ORT provides a means of forming an infinite computable sequence of programs e0, e1, . . .
such that each program ei knows all programs in the sequence and its own index i. The sequence can also be assumed
monotone increasing. The first author gives a thorough explanation of ORT in [6].

3. Results

This section gives the formal definition of n-ParIt-learning and presents our results. To recap, our main results are:

• 1-ParIt-learners are strictly more powerful than It-learners (Corollary 16);
• for all n ≥ 1, (n+ 1)-ParIt-learners are strictly more powerful than n-ParIt-learners (Theorem 17);
• for all n ≥ 1, n-ParIt-learners and SD-learners are incomparable in learning power (Theorem 15 and Proposition 18);
and,
• for all n ≥ 1, SD′-learners are strictly more powerful than n-ParIt-learners (Theorem 19).

Definition 8. For all n ≥ 1, (a)–(c) below.

(a) For allM : N∗# → Nn?,⊥ and L,M n-ParIt-identifies L ⇔ (i) and (ii) below.
(i) For all f representing L, there exist j and Ep ∈ Nn such that (∀j′ ≥ j) [M(f [j′]) = Ep] and (∀i < n)[W(Ep)i = L].
(ii) (∀ρ, σ , τ)[M(ρ) v M(σ) ⇒ M(ρ � τ) v M(σ � τ)].

(b) For allM : N∗# → Nn?,⊥, n-ParIt(M) = {L : M n-ParIt-identifies L}.
(c) n-ParIt = {L : (∃M : N∗# → Nn?,⊥)[L ⊆ n-ParIt(M)]}.

Example 9 (Example 4 Revisited). Suppose thatM : N∗# → N2?,⊥, ρ, σ , Ep ∈ N2?,⊥, and x are such that (a)–(e) below.

(a) M(ρ) = M(σ) = Ep.
(b) |Ep|6=⊥ = 2.
(c) (Ep)0 6= (Ep)1.
(d) In the computation ofM0(ρ � x),M0 waits for either ofM0(ρ) orM1(ρ) to converge. Then, for the i ≤ 1 such thatMi(ρ)
converges first ,M0(ρ � x) = Mi(ρ). Similarly, in the computation ofM0(σ � x),M0 waits for either ofM0(σ) orM1(σ)
to converge. Then, for the i ≤ 1 such thatMi(σ) converges first ,M0(σ � x) = Mi(σ).

(e) In the computation of M(ρ), M0(ρ) converges before M1(ρ); in the computation of M(σ), M1(σ) converges before
M0(σ).

Then, for all L,M does not 2-ParIt-identify L, i.e.,M is not a 2-ParIt-learner.
Proof. By (a) above, M(ρ) v M(σ). By (c)-(e) above, M0(ρ � x) = (Ep)0 6= (Ep)1 = M0(σ � x). Finally, by (b) above,
M(ρ � x) 6v M(σ � x). Thus,M does not satisfy condition (a)(ii) in Definition 8. � (Example 9)
Though theM of Example 9 violates Definition 8, such a learner could certainly exist in the real world. For example, the

reader familiarwith theMessage Passing Interface (MPI) [23] (see also [3]) can likely imagine an implementation ofMwhere
the constituent learners, M0 and M1, are distinct processes that communicate by passing messages. So, for example, since
M0 needs (Ep)1 to computeM0(σ � x),M1 could send a message toM0 with (Ep)1 as its contents. Note, however, that in such
an implementation,M0 would need to be able to wait for messages from multiple sources simultaneously. That is, sinceM0
does not know beforehand which of (Ep)0 and (Ep)1 should be the result ofM0(σ � x),M0 would need to be able to receive a
message from either M0 or M1. MPI provides constructs for handling exactly this sort of situation.15 Very roughly, it is the
fact that an implementation ofMwould require such constructs that causesM to violate Definition 8.
More generally, the M of Example 9 makes use of, not just the value of a conjecture, but also the time used to compute

it. However, the elements of N?,⊥ do not capture this information. To overcome this difficulty would require that a learner
be defined as object with a more complex range than Nn?,⊥. It would be interesting to explore generalizations of Definition 8
that do this.
The following straightforward variant of SD-learning is used in the proof of Theorem 15.

Definition 10. (a) For allM : N∗# → N?,⊥ and L,M TotSD-identifies L ⇔ M SD-identifies L, and, for all ρ,M(ρ) 6= ⊥.
(b) For allM : N∗# → N?,⊥, TotSD(M) = {L : M TotSD-identifies L}.
(c) TotSD = {L : (∃M : N∗# → N?,⊥)[L ⊆ TotSD(M)]}.

Recall that if a learnerMSD-identifies language L, then it is only required thatM(ρ) 6= ⊥ for those ρ such that content(ρ) ⊆
L. However, ifM TotSD-identifies L, then, for all ρ,M(ρ) 6= ⊥.

15 For example, in a call toMPI_Recv (to receive a message), the calling process must indicate from whom it is willing to receive a message. This argument
of the call may uniquely identify some process, or it may be the constantMPI_ANY_SOURCE, which indicates that the calling process is willing to receive
a message from anyone.

J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875 1869

The following is a basic fact relating SD and TotSD.
Proposition 11. For allL ∈ SD, if N ∈ L, thenL ∈ TotSD.
Proof of Proposition. Straightforward. � (Proposition 11)
[11] employs a form of total iterative learning, TotIt, analogous to the form of total set-driven learning, TotSD, given by

Definition 10. The following proposition relates these two criteria.
Proposition 12. TotIt ⊆ TotSD.
Proof of Proposition. It is easily seen that if one applies the technique of [20, Theorem7.7(c)] (Theorem7) to a total iterative
learner, then a total set-driven learner results. � (Proposition 12)
The following lemma is used in the proof of Theorem 15.

Lemma 13. LetL be the class of languages consisting of each L satisfying (a)–(c) below.

(a) (∀e ∈ L)[ϕe(0) ∈ N].
(b) {ϕe(0) : e ∈ L} is finite.
(c) L =

⋃
e ∈ LWϕe(0).

Then,L ∈ It− TotSD.
Proof that L ∈ It. Let f : N→ N be a 1–1, computable function such that, for all a,

Wf (a) =
⋃
e ∈ Da

We. (2)

LetM : N∗# → N?,⊥ be such thatM(λ) = f (0), and, for all ρ, a, and e, ifM(ρ) = f (a), then

M(ρ � e) =

f (a), if ϕe(0) ∈ Da;
f (b), if ϕe(0) ∈ (N− Da),

where b is such that Db = Da ∪ {ϕe(0)};
⊥, if ϕe(0) = ⊥.

(3)

Clearly,L ⊆ It(M).

Proof that L 6∈ TotSD. By way of contradiction, suppose that M : N∗# → N?,⊥ is such that L ⊆ TotSD(M). By ORT, there
exists a computable sequence of pairwise distinct ϕ-programs e0, e1, . . . such that, for all i and x,

We0 = {ej+2 : ϕej+2(0) = e0}; (4)

We1 = {ej+2 : ϕej+2(0) = e1}; (5)

ϕei+2(x) =

e0, if (∀j ≤ i)[M(e2 � · · · � ej+2) 6= M(e2 � · · · � ej+1)];
e1, if i is least such thatM(e2 � · · · � ei+2) = M(e2 � · · · � ei+1);
⊥, otherwise.

(6)

Consider the following cases.

Case (∀i)[ϕei+2(0) = e0]. Then, clearly, We0 = {ej+2 : j ∈ N} and We0 ∈ L. By the case, for all i, M(e2 � · · · � ei+2) 6=
M(e2 � · · · � ei+1). But then, clearly,We0 6∈ SD(M).
Case (∃i)[ϕei+2(0) = e1]. Then, clearly,We0 = {ej+2 : j < i} and (∀j < i) [ϕej+2(0) = e0]. Furthermore,We1 = {ei+2} and
ϕei+2(0) = e1. Thus,We0 ∪We1 andWe0 are distinct languages inL. Let f and f − be as follows.

f = e2 � e3 � · · · � ei+2 � #ω. (7)
f − = e2 � e3 � · · · � ei+1 � #ω. (8)

Clearly, f representsWe0 ∪We1 , and f
− representsWe0 . Note that, for all j ≥ i,

content(f [j+ 1]) = content(f [i+ 1]) ∧ content(f −[j]) = content(f −[i]). (9)

Thus,

(∀j ≥ i)
[
M(f [j+ 1]) = M(f [i+ 1]) ∧ M(f −[j]) = M(f −[i])

]
. (10)

Furthermore, by the case,

M(f [i+ 1]) = M(f −[i]). (11)

But, clearly, this is a contradiction. � (Lemma 13)

Proposition 14 (Folklore). TotIt ⊂ It.
Proof of Proposition. Immediate by Proposition 12 and Lemma 13. � (Proposition 14)

1870 J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875

Theorem 15. LetL be as in Lemma 13. LetL′ be such thatL′ = L ∪ {N}. Then,L′ ∈ 1-ParIt− SD.

Proof that L′ ∈ 1-ParIt. By Lemma 13, there exists M : N∗# → N?,⊥ such that L ⊆ It(M). Let z0 be such that ϕz0(0) = ⊥.
Clearly, for all L ∈ L, z0 6∈ L. Consider an M′ : N∗# → N?,⊥ described informally as follows. On any given input sequence,
M′ simulatesM until, if ever,M′ is fed z0. Upon being fed z0,M′ stops simulatingM, and starts outputting a conjecture for N.
Clearly, for such anM′,L′ ⊆ 1-ParIt(M′).

Proof that L′ 6∈ SD. By way of contradiction, suppose thatL′ ∈ SD. Then, by Proposition 11,L′ ∈ TotSD. LetM : N∗# → N?,⊥
be such thatL′ ⊆ TotSD(M). Then,L ⊂ L′ ⊆ TotSD(M). But this contradicts Lemma 13. � (Theorem 15)

Corollary 16. LetL′ be as in Theorem 15. Then,L′ ∈ 1-ParIt− It.

Proof of Corollary. Immediate by Theorems 7 and 15. � (Corollary 16)

Theorem 17. Let n ≥ 1 be fixed. For each i < n, let zi be any fixed ϕ-program such that Wϕzi (0)
= {〈i, zi〉}. LetLn be the class of

languages consisting of each L ⊆ {0, . . . , n− 1} × N satisfying either (a) or (b) below.

(a) (i) and (ii) below.
(i) L ∩ ({0, . . . , n− 1} × {z0, . . . , zn−1}) = ∅.
(ii) For each i < n, if E is such that E = {e ∈ N : 〈i, e〉 ∈ L}, then (α)–(γ) below.
(α) (∀e ∈ E)[ϕe(0) ∈ N].
(β) {ϕe(0) : e ∈ E} is finite.
(γ) L =

⋃
e ∈ E Wϕe(0).

(b) There exists k < n such that (i) and (ii) below.
(i) L ∩ ({0, . . . , n− 1} × {z0, . . . , zn−1}) = {〈k, zk〉}.
(ii) If E is such that E = {e ∈ N : 〈k, e〉 ∈ L}, then (α)–(γ) as in (a)(ii) above for this E.

Then, for all n ≥ 1,Ln+1 ∈ (n+ 1)-ParIt− n-ParIt.

Proof that Ln+1 ∈ (n+ 1)-ParIt. Let n ≥ 1 be fixed. Let f : N2 → N be a 1–1, computable function such that, for all j and a,

Wf (j,a) =
⋃
e ∈ Da

We. (12)

LetM : N∗# → Nn+1?,⊥ be such that, for each i ≤ n,Mi(λ) = f (i, 0), and, for all ρ, k, and e,

Mi(ρ � 〈k, e〉) =

Mk(ρ), if (∗) [k 6= i ∧ e = zk];
Mj(ρ), if ¬(∗) ∧ Mi(ρ) ∈ N ∧ [j 6= i ∨ ϕe(0) ∈ Da],

where j and a are such thatMi(ρ) = f (j, a);
f (i, b), if ¬(∗) ∧ Mi(ρ) ∈ N ∧ j = i ∧ ϕe(0) ∈ (N− Da),

where j, a, and b are such thatMi(ρ) = f (j, a)
and Db = Da ∪ {ϕe(0)};

⊥, if ¬(∗) ∧ Mi(ρ) ∈ N ∧ j = i ∧ ϕe(0) = ⊥,
where j is such thatMi(ρ) = f (j, a), for some a;

⊥, if ¬(∗) ∧ Mi(ρ) = ⊥.

(13)

Let L ∈ Ln+1 be fixed. Clearly, if L is a language of type (a) in the statement of the theorem, then, for each i ≤ n,Mi identifies
L. So, suppose that L is a language of type (b) in the statement of the theorem. Let k be such that 〈k, zk〉 ∈ L. Then, clearly,
Mk identifies L. Furthermore, by a straightforward induction, it can be shown that, for each i ≤ n, and all ρ and σ such that
content(ρ) ∪ content(σ) ⊆ L,Mi(ρ � 〈k, zk〉 � σ) = Mk(ρ � 〈k, zk〉 � σ). Thus, for each i ≤ n such that i 6= k,Mi identifies L
as well.

Proof that Ln+1 6∈ n-ParIt. By way of contradiction, suppose that n ≥ 1 and M : N∗# → Nn?,⊥ are such that Ln+1 ⊆
n-ParIt(M). Let f : N→ N be such that, for all s,

f (s) = s · (n+ 1)+ 1. (14)

By ORT, there exists a computable sequence of pairwise distinct ϕ-programs e0, e1, . . ., none of which are z0, . . . , zn, and
whose behavior is as in Fig. 5.

Claim 1. For all s ≥ 1, if stage s is entered, then (a)–(c) below.

(a) (∀〈i, e〉 ∈ W se0)[i ≤ n ∧ e 6∈ {z0, . . . , zn} ∧ ϕe(0) = e0].
(b) content(ρs) = W se0 .
(c) ρs � #ω represents W se0 .

J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875 1871

Fig. 5. The behavior of ϕ-programs e0, e1, . . . in the proof of Theorem 17.

Proof of Claim. (a) is clear by construction. (b) is proven by a straightforward induction. (c) follows immediately from
(b). � (Claim 1)

Claim 2. For all s ≥ 1, if stage s is exited, then there exist ρ ′ and ρ ′′ such that ρs ⊆ ρ ′ ⊂ ρ ′′ ⊆ ρs+1 andM(ρ ′′) 6v M(ρ ′).

Proof of Claim. Clear by construction. � (Claim 2)

If every stage s is exited, then, by Claim1(a) and Claim2,We0 ∈ Ln+1−n-ParIt(M) (a contradiction). So, for the remainder
of the proof, suppose that stage s is entered but never exited.
If stage s is never exited because there is no ρ ′ such that ρs ⊆ ρ ′ ⊂ ρs � #ω and |M(ρ ′)|6=⊥ = n, then, by (a) and (c) of

Claim 1,W se0 ∈ Ln+1−n-ParIt(M) (a contradiction). So, suppose that stage s is never exited because there exists k such that
−1 ≤ k < n and (¬α) and (¬β) below.

(¬α) (∀Eq : |Eq|6=⊥ = n− k)(∃σ ∈ {〈0, ef (s)〉 � · · · � 〈k, ef (s)+k〉, λ})
[Eq 6v M(ρ ′ � σ � 〈k+ 1, ef (s)+k+1〉 � · · · � 〈n, ef (s)+n〉)].

(¬β) M(ρ ′ � 〈0, ef (s)〉 � · · · � 〈k, ef (s)+k〉) v M(ρ ′).

Claim 3. M(ρ ′ � 〈0, ef (s)〉 � · · · � 〈n, ef (s)+n〉) v M(ρ ′ � 〈k+ 1, ef (s)+k+1〉 � · · · � 〈n, ef (s)+n〉).

Proof of Claim. Follows from (¬β). � (Claim 3)

By the choice of k, there exists Ep such that |Ep|6=⊥ = n− k− 1 and

(∀σ ∈ {〈0, ef (s)〉 � · · · � 〈k+ 1, ef (s)+k+1〉, λ})
[Ep v M(ρ ′ � σ � 〈k+ 2, ef (s)+k+2〉 � · · · � 〈n, ef (s)+n〉)].

(15)

Claim 4. Ep = M(ρ ′ � 〈0, ef (s)〉 � · · · � 〈n, ef (s)+n〉).

Proof of Claim. By way of contradiction, suppose otherwise. By (15), it must be the case that

Ep @ M(ρ ′ � 〈0, ef (s)〉 � · · · � 〈n, ef (s)+n〉). (16)

Thus, there must exist Eq such that |Eq|6=⊥ = |Ep|6=⊥ + 1 = n− k and

Eq v M(ρ ′ � 〈0, ef (s)〉 � · · · � 〈n, ef (s)+n〉). (17)

By (17) and Claim 3,

Eq v M(ρ ′ � 〈k+ 1, ef (s)+k+1〉 � · · · � 〈n, ef (s)+n〉). (18)

But this contradicts (¬α). � (Claim 4)

1872 J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875

Claim 5. M(ρ ′ � 〈0, ef (s)〉 � · · · � 〈n, ef (s)+n〉) v M(ρ ′ � 〈k+ 2, ef (s)+k+2〉 � · · · � 〈n, ef (s)+n〉).

Proof of Claim. Immediate by Claim 4 and (15). � (Claim 5)

Let p = ϕef (s)+k+1(0). Thus, by construction,Wp = {〈k+1, ef (s)+k+1〉}. Let e
′
6∈ {z0, . . . , zn, e0, e1, . . .} and p′ be as follows.

ϕe′(0) = p′. (19)
Wp′ = {〈k+ 2, ef (s)+k+2〉, . . . , 〈n, ef (s)+n〉, 〈0, ef (s)〉, . . . , 〈k, ef (s)+k〉, 〈k+ 1, e′〉}. (20)

Let L and L− be as follows.

L = W se0 ∪Wp ∪Wp′ ∪ {〈k+ 1, zk+1〉}. (21)

L− = W se0 ∪Wp′ ∪ {〈k+ 1, zk+1〉}. (22)

Clearly, L and L− are distinct languages inLn+1. Let g and g− be as follows.

g = ρ ′ � 〈0, ef (s)〉 � · · · � 〈n, ef (s)+n〉
� 〈0, ef (s)〉 � · · · � 〈k, ef (s)+k〉 � 〈k+ 1, e′〉 � 〈k+ 1, zk+1〉 � #ω.

(23)

g−= ρ ′ � 〈k+ 2, ef (s)+k+2〉 � · · · � 〈n, ef (s)+n〉
� 〈0, ef (s)〉 � · · · � 〈k, ef (s)+k〉 � 〈k+ 1, e′〉 � 〈k+ 1, zk+1〉 � #ω.

(24)

Clearly, g represents L, and g− represents L−. Let ` be such thatM(g[`]) ∈ Nn,M(g−[`]) ∈ Nn, and

(∀`′ ≥ `)
[
M(g[`′]) = M(g[`]) ∧ M(g−[`′]) = M(g−[`])

]
. (25)

From Claim 5, and the fact thatM(g[`]) ∈ Nn andM(g−[`]) ∈ Nn, it follows thatM(g[`]) = M(g−[`]). But, clearly, this is a
contradiction. � (Theorem 17)

Proposition 18. LetL be such that

L =
{
{0, . . . ,m} : m ∈ N

}
∪
{
N− {0}

}
. (26)

Then, for all n ≥ 1,L ∈ SD− n-ParIt.

Proof. It is already known thatL ∈ SD [20, remark on page 238]. So, by way of contradiction, let n ≥ 1 andM : N∗# → Nn?,⊥
be such thatL ⊆ n-ParIt(M). Let f be as follows.

f = 1 � 2 � · · · . (27)

Clearly, f represents N−{0}. Thus, there exist j and Ep ∈ Nn such that (∀j′ ≥ j)[M(f [j′]) = Ep] and (∀i < n)[W(Ep)i = N−{0}].
Let g and g− be as follows.

g = 1 � 2 � · · · � j+ 1 � 0 � #ω. (28)
g− = 1 � 2 � · · · � j � 0 � #ω. (29)

Clearly, g represents {0, . . . , j+ 1}, and g− represents {0, . . . , j}. Note that

g[j+ 1] = f [j+ 1] ∧ g−[j] = f [j]. (30)

Thus, by the choice of j,

M(g[j+ 1]) = M(g−[j]) (= Ep). (31)

Let k ≥ j be such thatM(g[k+ 1]) ∈ Nn,M(g−[k]) ∈ Nn, and

(∀k′ ≥ k)
[
M(g[k′ + 1]) = M(g[k+ 1]) ∧ M(g−[k′]) = M(g−[k])

]
. (32)

From (31), it follows thatM(g[k+ 1]) = M(g−[k]). But, clearly, this is a contradiction. � (Proposition 18)

Theorem 19. For all n ≥ 1, n-ParIt ⊆ SD′.

Proof. This proof is similar to that of [20, Theorem 7.7(c)] (Theorem 7). Let n ≥ 1 and L ∈ n-ParIt be fixed. Let
M : N∗# → Nn?,⊥ be such that L ⊆ n-ParIt(M). Let f be a computable function such that, for each finite set A = {x0 <
x1 < · · · < x`−1} ⊆ N,

f (A) = # � x0 � # � x1 � · · · � # � x`−1. (33)

J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875 1873

Clearly, such an f exists. LetM′ : N∗# → N?,⊥ be such that, for all σ ,

M′(σ) =

M0((f ◦ content)(σ) � #m), wherem is first found such that

|M((f ◦ content)(σ) � #m)|6=⊥ = n
andM((f ◦ content)(σ) � #m+1)
= M((f ◦ content)(σ) � #m),

if such anm exists;
⊥, otherwise.

(34)

Clearly,M′ is set-driven. Let L ∈ L be fixed, and let g be such that g represents L. To see thatM′ identifies L from g (in the
SD′ sense), consider the following cases.

Case [L is finite]. Let j be such that L ⊆ content(g[j]). Let h be such that

h = (f ◦ content)(g[j]) � #ω. (35)

Clearly, h represents L. Thus, there exists a least ` such that, for allm ≥ `,

|M((f ◦ content)(g[j]) � #m)|6=⊥ = n
∧ M((f ◦ content)(g[j]) � #m) = M((f ◦ content)(g[j]) � #`). (36)

It follows that ` is least such that, for allm ≥ `,

|M((f ◦ content)(g[j]) � #m)|6=⊥ = n
∧ M((f ◦ content)(g[j]) � #m+1) = M((f ◦ content)(g[j]) � #m). (37)

Let Ep = M((f ◦ content)(g[j]) � #`). Clearly, Ep ∈ Nn and (∀i < n)[W(Ep)i = L]. To complete the proof for this case, it
suffices to show that (∀j′ ≥ j) [M′(g[j′]) = (Ep)0]. Let j′ ≥ j be fixed. Clearly,

content(g[j′]) = content(g[j]) (= L). (38)

Thus, in (34), somem is found in the computation ofM′(g[j′]). Moreover, by (37),m ≥ `. Consequently,

M′(g[j′])=M0((f ◦ content)(g[j′]) � #m) {by (34)}
=M0((f ◦ content)(g[j]) � #m) {by (38)}
=M0((f ◦ content)(g[j]) � #`) {by (36)}
= (Ep)0 {by the choice of Ep}.

Case [L is infinite]. Let x0 < x1 < · · · be such that L = {x0, x1, . . .}. Let h be such that

h = # � x0 � # � x1 � · · · . (39)

Clearly, h represents L. Thus, there exists k ∈ 2N and Ep ∈ Nn such that (∀k′ ≥ k)[M(h[k′]) = Ep] and (∀i < n)[W(Ep)i = L].
Note that

M(h[k] � #)=M(h[k+ 1]) {by (39) and k ∈ 2N}
= Ep {by the choice of Ep}.

(40)

It can similarly be shown that, for all y ∈ L− content(h[k]),

M(h[k] � y) = Ep. (41)

Let j be such that content(h[k]) ⊆ content(g[j]). To complete the proof for this case, it suffices to show that (∀j′ ≥ j)
[M′(g[j′]) = (Ep)0]. Let j′ ≥ j be fixed. Clearly, content(h[k]) ⊆ content(g[j′]). Thus,

(f ◦ content)(g[j′]) = h[k] � # � y0 � # � y1 � · · · � # � y`−1, (42)

for some {y0 < y1 < · · · < y`−1} ⊆ L− content(h[k]). Note that

(M ◦ f ◦ content)(g[j′])=Ep {by (40)–(42)}
=M(h[k]) {by the choice of Ep}.

(43)

Furthermore, by (40) and (43), for allm,

(M ◦ f ◦ content)(g[j′] � #m) = Ep. (44)

Thus, in (34), somem is found in the computation ofM′(g[j′]). Consequently,

M′(g[j′])=M0((f ◦ content)(g[j′]) � #m) {by (34)}
= (Ep)0 {by (44)}. � (Theorem 19)

1874 J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875

4. Conclusion

We presented two extensions to the It-learning model, each of which involves parallelism. We called learners
incorporating the two extensions n-ParIt-learners. We showed that 1-ParIt-learners are strictly more powerful than It-
learners (Corollary 16). We further showed that, for all n ≥ 1, n+ 1-ParIt-learners are strictly more powerful than n-ParIt-
learners (Theorem17). Our results are somewhat surprising, since, inmost contexts, parallelism is only ameans of improving
efficiency.
We paid particular attention to how one would actually implement an n-ParIt-learner. In this regard, we gave a scheme

detailing:when new instantiations of an n-ParIt-learner could be run, andwhen running instantiations could be terminated.
We further argued that ann-ParIt-learner implementedusing our schemewouldhavenice properties in termsofwhen input
elements could be discarded (see the discussion surrounding Property 2 in Section 1.1). As such, n-ParIt-learners, though
still not as attractive as It-learners, are more attractive than an Ex- or Bc-learners.
There are several ways in which this work might be extended. First, as mentioned in Section 1.2, our current formulation

(Definition 8) implicitly does not allow an instantiation Mji of an n-ParIt-learner M to wait for the first of M
j−1
0 , . . . ,Mj−1n−1

to converge. However, since such a learner could certainly exist in the real world (see the discussion following Example 9
in Section 3), it would be interesting to explore generalizations of Definition 8 that allow this sort of polling behavior. We
hope to do so in future work.
Another interesting generalization would be to allow a collective learner to make use of a finite but bounded number of

constituent learners, i.e., to allow the number of constituent learners to grow, provided that this occurs only finitely often.
This idea raises a host of questions, however. For example:

• Under what conditions should new constituent learners be created?
• How should the program governing the behavior of a newly created constituent learner be determined? How should its
initial conjecture be determined?
• Should the number of constituent learners be allowed to grow without bound on an input sequence representing a
language not identifiable by the collective learner?

None of the above questions seem to have a clear right or wrong answer. Regardless of such specific choices, however, it
would be interesting to see where such an idea leads.

Acknowledgements

We are grateful to the referees for their helpful suggestions.

References

[1] S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, T. Shinohara, A machine discovery from amino-acid-sequences by decision trees over
regular patterns, New Generation Computing 11 (1993) 361–375.

[2] D. Angluin, Finding patterns common to a set of strings, Journal of Computer and System Sciences 21 (1980) 46–62.
[3] Argonne national laboratory, the message passing interface (MPI) standard, http://www-unix.mcs.anl.gov/mpi is the URL.
[4] A. Brazma, E. Ukkonen, J. Vilo, Discovering unbounded unions of regular pattern languages from positive examples, in: Proceedings of the Seventh
International Symposium on Algorithms and Computation, ISAAC’ 96, in: Lecture Notes in Computer Science, Osaka, Japan, 1996.

[5] J. Case, Periodicity in generations of automata, Mathematical Systems Theory 8 (1974) 15–32.
[6] J. Case, Infinitary self-reference in learning theory, Journal of Experimental and Theoretical Artificial Intelligence 6 (1994) 3–16.
[7] L. Carlucci, J. Case, S. Jain, F. Stephan, Results on memory-limited U-shaped learning, Information and Computation 205 (2007) 1551–1573.
[8] J. Case, S. Jain, S. Kaufmann, A. Sharma, F. Stephan, Predictive learning models for concept drift, Theoretical Computer Science 268 (2001) 323–349.
[9] J. Case, S. Jain, S. Lange, T. Zeugmann, Incremental concept learning for bounded data mining, Information and Computation 152 (1999) 74–110.
[10] J. Case, C. Lynes, Machine inductive inference and language identification, in: Proceedings of the Ninth International Colloquium on Automata,

Languages and Programming, ICALP’82, in: Lecture Notes in Computer Science, vol. 140, Springer, Heidelberg, 1982, pp. 107–115.
[11] J. Case, S. E. Moelius, Parallelism increases iterative learning power, in: Proceedings of the Eighteenth Annual Conference on Algorithmic Learning

Theory, ALT’07, in: Lecture Notes in Artificial Intelligence, vol. 4754, Springer, Heidelberg, 2007, pp. 49–63.
[12] J. Case, S.E. Moelius, U-shaped, iterative, and iterative-with-counter learning, Machine Learning 72 (2008) 63–88.
[13] M. Davis, R. Sigal, E. Weyuker, Computability, Complexity, and Languages, second ed., Morgan Kaufmann, San Francisco, 1994.
[14] M. Fulk, S. Jain, D. Osherson, Open problems in systems that learn, Journal of Computer and System Sciences 49 (1994) 589–604.
[15] E. Gold, Language identification in the limit, Information and Control 10 (1967) 447–474.
[16] J. Heinz, The inductive learning of phonotactic patterns, Ph.D. Thesis, University of California, Los Angeles, 2007.
[17] J. Heinz, Learning left-to-right and right-to-left iterative languages, in: Proceedings of the Ninth International International Colloquium on

Grammatical Inference, ICGI’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 84–97.
[18] S. Jain, D. Osherson, J. Royer, A. Sharma, Systems that Learn: An Introduction to Learning Theory, second ed., MIT Press, Cambridge, MA, 1999.
[19] P. Kilpeläinen, H. Mannila, E. Ukkonen, MDL learning of unions of simple pattern languages from positive examples, in: Proceedings of the Second

European Conference on Computational Learning Theory, in: Lecture Notes in Artificial Intelligence, vol. 904, Springer, Heidelberg, 1995, pp. 252–260.
[20] E. Kinber, F. Stephan, Language learning from texts: Mind changes, limited memory, and monotonicity, Information and Computation 123 (1995)

224–241.
[21] S. Lange, R. Wiehagen, Polynomial time inference of arbitrary pattern languages, New Generation Computing 8 (1991) 361–370.
[22] S. Lange, T. Zeugmann, Incremental learning from positive data, Journal of Computer and System Sciences 53 (1996) 88–103.
[23] Message passing interface (MPI) forum, http://www.mpi-forum.org is the URL.
[24] R. Nix, Editing by examples, Technical Report 280, Department of Computer Science, Yale University, New Haven, CT, USA, 1983.
[25] D. Osherson, M. Stob, S. Weinstein, Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, MIT Press,

Cambridge, MA, 1986.

http://www-unix.mcs.anl.gov/mpi
http://www.mpi-forum.org

J. Case, S.E. Moelius III / Theoretical Computer Science 410 (2009) 1863–1875 1875

[26] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967, Reprinted, MIT Press, 1987.
[27] T. Shinohara, A. Arikawa, Pattern inference, in: Algorithmic Learning for Knowledge-Based Systems, in: Lecture Notes in Artificial Intelligence,

vol. 961, Springer, Heidelberg, 1995, pp. 259–291.
[28] A. Salomaa, Patterns (The formal Language theory column), EATCS Bulletin 54 (1994) 46–62.
[29] A. Salomaa, Return to patterns (The formal Language theory column), EATCS Bulletin 55 (1994) 144–157.
[30] T. Shinohara, Inferring unions of two pattern languages, Bulletin of Informatics and Cybernetics 20 (1983) 83–88.
[31] Carl H. Smith, Three decades of team learning, in: Proceedings of the Fourth International Workshop on Analogical and Inductive Inference, AII’ 94,

Springer, Heidelberg, 1994, pp. 211–228.
[32] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, S. Arikawa, Knowledge acquisition from amino acid sequences by machine learning

system BONSAI, Transactions of Information Processing Society of Japan 35 (1994) 2009–2018.
[33] K. Wexler, P. Culicover, Formal Principles of Language Acquisition, MIT Press, Cambridge, MA, 1980.
[34] R. Wiehagen, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, Electronische Informationverarbeitung und Kybernetik 12 (1976)

93–99.
[35] G. Winskel, The Formal Semantics of Programming Languages: An Introduction, MIT Press, Cambridge, MA, 1993.
[36] K. Wright, Identification of unions of languages drawn from an identifiable class, in: Proceedings of the Second Annual Workshop on Computational

Learning Theory, Morgan Kaufmann, San Francisco, 1989, pp. 328–333.

	Parallelism increases iterative learning power
	Introduction
	First extension
	Second extension
	Summary of results

	Notation and preliminaries
	Results
	Conclusion
	Acknowledgements
	References

