
Information and Computation 211 (2012) 138–159

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at SciVerse ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Low dimensional hybrid systems – decidable, undecidable, don’t know

Eugene Asarin a, Venkatesh P. Mysore b,1, Amir Pnueli b,2, Gerardo Schneider c,d,∗
a LIAFA, University Paris Diderot and CNRS, France
b New York University, USA
c Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Sweden
d Department of Informatics, University of Oslo, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 May 2009
Revised 9 July 2011
Available online 5 January 2012

Dedicated to the memory of Amir Pnueli
(1941–2009)

Keywords:
Hybrid systems
Undecidability
Piece-wise affine maps
(Hierarchical) piece-wise constant derivative
systems

Even though many attempts have been made to define the boundary between decidable
and undecidable hybrid systems, the affair is far from being resolved. More and more
low dimensional systems are being shown to be undecidable with respect to reachability,
and many open problems in between are being discovered. In this paper, we present
various two-dimensional hybrid systems for which the reachability problem is undecidable.
We show their undecidability by simulating Minsky machines. Their proximity to the
decidability frontier is understood by inspecting the most parsimonious constraints
necessary to make reachability over these automata decidable. We also show that for other
two-dimensional systems, the reachability question remains unanswered, by proving that
it is as hard as the reachability problem for piecewise affine maps on the real line, which
is a well known open problem.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Hybrid automata (HA) constitute a formalism for capturing the behavior of hybrid systems that have both continuous and
discrete dynamics. Hybrid automata, which can have discrete transitions between states and continuous flows within states,
are a class of immense computational power. Analyzability can be guaranteed only on a class satisfying certain additional
constraints limiting the number of variables (dimensions) and the nature of the dynamical evolution. Two kinds of questions
are addressed in the literature concerning the analysis of hybrid systems. This first one is reachability: “Is a certain final state
(set of states) reachable from a certain initial state (set of states)?”. The second line of research addresses questions like
stability and attraction. In this article, we only focus on studying whether we can always answer any reachability question
over any hybrid automaton that satisfies certain constraints, i.e., on understanding when reachability becomes decidable.

Despite the increasing interest in discovering new decidability results for HA (relevance to safety verification), there is
still no clear boundary between what is decidable and what is not in such systems. HA easily become undecidable for the
reachability query, with only extremely stringent restrictions leading to decidability.

In this paper, we aim at answering the question “What is the simplest class of hybrid systems for which reachability
is undecidable?”. Conventional answers to this question have involved proving that a certain decidable class becomes un-
decidable, when given some additional computational power. By following this reasoning, we provide some undecidability
results, as well as proofs that for many subclasses of hybrid systems, the decidability status of the reachability question
is unknown. In what concerns undecidability proofs, we will observe that the famously undecidable “halting problem” (or

* Corresponding author at: Chalmers University of Technology, Dept. of Computing Science and Engineering, S-412 96 Gothenburg, Sweden.
E-mail addresses: asarin@liafa.jussieu.fr (E. Asarin), venkatesh.mysore@deshawresearch.com (V.P. Mysore), gersch@chalmers.se (G. Schneider).

1 Current affiliation: D. E. Shaw Research, New York, USA.
2 Affiliation at the moment of submission of this paper.
0890-5401/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2011.11.006

https://core.ac.uk/display/82278837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ic.2011.11.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:asarin@liafa.jussieu.fr
mailto:venkatesh.mysore@deshawresearch.com
mailto:gersch@chalmers.se
http://dx.doi.org/10.1016/j.ic.2011.11.006

E. Asarin et al. / Information and Computation 211 (2012) 138–159 139
Fig. 1. Decidable, open and undecidable subclasses of hybrid systems (unstarred results are contributions of this paper).

state-to-state reachability) of (two-counter) Minsky machines [1] can be naturally expressed as a reachability query over
configuration space. A very important application of this result is that reachability can be proven to be undecidable for any
class of automata that can simulate this two counter Minsky machine. Finite one-dimensional piecewise affine maps (1-dim
PAMs), for which the decidability of reachability is still an open question [2,3], play a crucial role in the results we will
present in this paper, as they will be our reference model to show the openness of the reachability query.

We proceed by focussing on a version of Linear Hybrid Automata [4], namely the two-dimensional Hierarchical Piece-
wise Constant Derivative (2-dim HPCD) class introduced in [5,6]. This is an intermediate class, between decidable two-
dimensional Piecewise Constant Derivative systems (2-dim PCDs) [7] and its undecidable three-dimensional extension 3-dim
PCDs [8]. Asarin and Schneider [5] proved that 2-dim HPCDs are equivalent to 1-dim PAMs, thus showing that HPCD-
reachability is open. Moreover, when endowed with a little additional computational power, the 2-dim HPCD class becomes
undecidable. Thus, the 2-dim HPCD class (and equivalently the 1-dim PAM class) is clearly on the boundary between de-
cidable and undecidable HA subclasses. Subsequently, Mysore and Pnueli [9] pursued the following questions: (1) Is there a
class, simpler than the 2-dim HPCD class, which can be shown to be equivalent to 1-dim PAMs? (2) Are there alternative ex-
tensions of the 2-dim HPCD class which become undecidable? (3) Can an approximate reachability algorithm be developed
for the undecidable classes?

This article is an extended and revised version of the papers [5] and [9]. We introduce hybrid automata with one, two
or three dimensions that span the boundary between decidability and undecidability for the reachability problem. The main
results of our work are summarized in Fig. 1; the details of the class definitions (and the acronyms) will be presented in
the technical sections of this paper.

In Section 2, we introduce the necessary background. In Section 3, we show that the reachability problem for 2-dim
HPCDs, PCDs on manifolds, 2-dim PCDs with translational resets and some other classes of 2-dimensional systems is as
hard as the reachability problem for 1-dim PAMs. In Section 4, we show that slight extensions of the 2-dim HPCD class lead
to the undecidability of the reachability question. We present a partially correct but not necessarily terminating algorithm
for testing reachability in 1-dim PAMs, and show how decidable subclasses can be identified in Section 5. In Section 6, we
present related work, and we conclude in the last section.

2. Preliminaries

In this section we define several classes of hybrid automata, two-dimensional manifolds, and our reference models: PAMs
and Minsky machines.

2.1. Hybrid automata

There are many equivalent definitions of hybrid systems [10,4,11]. Conceptually, a hybrid automaton is a directed graph
of discrete states and transitions, augmented with several real-valued continuous variables, which allows arbitrary: (1) In-
variant expressions dictating when (for which values of variables) the system can stay in each discrete state; (2) Differential
equations in the flow expressions in each discrete state (continuous evolution of variables with time); (3) Conditions con-
trolling when a transition can be taken, in the guard expressions; (4) Equations that change the values of the variables,
in the reset expressions during each discrete state transition (instantaneous discrete evolution). A computation of a hybrid
automaton is a series of continuous evolution steps of arbitrary time-length each, interspersed with an arbitrary number of
zero time-length discrete transition steps.

Definition 2.1. An n-dimensional hybrid automaton is a tuple H = (X , Q , f , I0, Inv, δ) where

• X ⊆ Rn is the continuous state space. Elements of X are written as x = (x1, x2, . . . , xn), we always use variables
x1, x2, . . . , xn to denote components of the state vector;

140 E. Asarin et al. / Information and Computation 211 (2012) 138–159
• Q is a finite set of discrete locations;
• f : Q → (X → Rn) assigns a continuous vector field on X to each discrete location. While in discrete location � ∈ Q ,

the evolution of the continuous variables is governed by the differential equation3 ẋ = f�(x). We say that the differential
equation defines the dynamics of location �;

• The initial condition I0 : Q → 2X is a function that for each state defines the initial values of the variables of X ;
• The invariant or staying conditions Inv : Q → 2X , Inv(�) is the condition that must be satisfied by the continuous

variables in order to stay in location � ∈ Q ;
• δ is a set of transitions of the form tr = (�, g, γ , �′) with �, �′ ∈ Q . Such a quadruple means that a transition from � to

�′ can be taken whenever the guard g ⊂ X is satisfied and then the reset relation γ ⊂ X × X is applied. �
A hybrid automaton is said to be deterministic if for every location � and any initial condition x0 ∈ I0, there exists at

most one solution to the equation ẋ = f�(x), and if for any location, the guards of all the outgoing discrete transitions are
mutually exclusive. We consider only deterministic systems unless the contrary be specified.

A state is a pair (�,x) consisting of a location � ∈ Q and x ∈ X , and can change: (1) by a discrete instantaneous transition
that changes both the location and the values of the variables according to the transition relation; or (2) by a time delay
that changes only the values of the variables according to the dynamics of the current location. The system may stay at a
location only if the invariant is true, and must take a transition before it becomes false.

A trajectory of a hybrid automaton H is a function Θ : [0, T] → Q × X , Θ(t) = (�(t), ξ(t)) such that there exists a
sequence of times t0 = 0 < t1 < · · · < tn = T for which the following holds for each 1 � i � n: (1) � is constant on [ti, ti+1)

(with value �i) and ξ is derivable on (ti, ti+1), it is right continuous and with left limits everywhere (cadlag); (2) There is a
transition (�(ti), g, γ , �(ti+1)) ∈ δ such that ξ−(ti+1) ∈ g(�i, �i+1) and (ξ−(ti+1), ξ(ti+1)) ∈ γ ;4 (3) For any 0 � i � n, for any
t ∈ (ti, ti+1), ξ̇ (t) = fl(t)(ξ(t)).

2.2. Rectangular and linear hybrid automata

Consider an n-dim hybrid automaton H with V = {x1, x2, . . . , xn} being the set of n variables. Subclasses of hybrid au-
tomata will be defined by syntactic conditions on expressions defining their ingredients (Section 2.1).

A hybrid automaton H is linear (LHA) [10,4] if: (1) The initial and invariant conditions as well as the guards and the
reset relations are Boolean combinations of linear inequalities; (2) The dynamics are defined by differential equations of the
form ẋ = kx , one for each variable x ∈ V, where kx ∈ Q is a rational constant. We say that kx is the slope (or rate) of the
variable x.

We say that a variable x is a memory cell if it has slope 0 in every location of H. A variable x is a clock if it has slope 1
in every location.

An n-dimensional rectangle R = ∏
1�i�n Ii is the product of n intervals Ii ⊆ R of the real line with rational or infinite

extremities.
A rectangular constraint refers to an expression of the form x ∈ R , while a non-rectangular or comparative constraint is a

conjunction of inequalities x · c < b. State invariants are said to be non-overlapping if the regions they represent in Rn have
disjoint interiors. A constant reset refers to x′ = c, a translational reset refers to x′ = x + b and an affine reset to x′ = Ax + b.

A hybrid automaton is a rectangular automaton [4,12,13] if: (1) All initial conditions, invariants and guards are rectangles;
(2) For each location �, the dynamics has the form ẋ ∈ R� , where R� is a rectangle; (3) Reset relations are conjunctions of
constraints xi ∈ Ii ∧ x′

i ∈ I ′i for some variables xi , i ∈ ρ , and x′
i = xi , i /∈ ρ for others. In an initialized rectangular automaton,

whenever the slope of xi changes after a transition, the variable xi is reset (i.e., i ∈ ρ).
Finally, in the updatable timed automata [14] parameterized by a class of updates C , all the variables are clocks (i.e., their

slopes equal 1), the guards and the invariants are rectangular, and the resets belong to C .

2.3. Piecewise constant derivative system (PCD)

We now recall PCDs, a class of hybrid systems for which the dynamics is defined by constant derivatives, such that the
trajectories are continuous. A 2-dim PCD5 is a hybrid automaton in two continuous variables, where: (1) All flow-derivatives
are constants; (2) The discrete states (with their invariants) correspond to non-overlapping polygons in the real plane with
non-empty interiors; (3) The guards correspond to boundaries between these polygons; (4) No variable can be reset during
transitions, i.e., γ is an identity relation.

Definition 2.2. A piecewise constant derivative system (PCD) [8,7] is a pair H = (P,F) with P = {P s}s∈S a finite family of non-
overlapping convex polygonal sets in R2 with non-empty interiors, and F = {cs}s∈S a family of vectors in R2. The dynamics
are determined by the equation ẋ = cs for x ∈ P s . �

3 Sometimes we will also consider differential inclusions.
4 ξ−(t) is the left limit of ξ at t .
5 If the dimension is not explicitly mentioned, in what follows “PCD” will stand for a 2-dim PCD.

E. Asarin et al. / Information and Computation 211 (2012) 138–159 141
Fig. 2. (a) A simple PCD; (b) Its corresponding hybrid automaton.

We define the support set of a PCD H to be the union of all the underlying convex polygons of the PCD, i.e.,
SuppPCD(H) = ⋃

s∈S P s .
A well-known technique for planar differential equations, and in particular for PCDs, is to replace the analysis of those

systems by the analysis of edge-to-edge discrete successors [8,15,7] (also known as Poincaré map [16]). Given an edge e,
each point on e can be represented by a local one-dimensional coordinate. A one-step edge-to-edge successor in such coor-
dinates can be written as Succe′(x) = ax + b. In general, an n-step successor for a given sequence of edges σ = e1, e2, . . . , en

is again a function of the above form (also see [8]).
A hybrid automaton trajectory in some interval [0, T] ⊆ R, with initial condition x = x0, can be defined as a continuous

and almost-everywhere (everywhere except on a discrete set of points) derivable function ξ(·) such that ξ(0) = x0 and for
all t ∈ (0, T) if ξ(t) ∈ int(P s)

6 then ξ̇ (t) is defined and ξ̇ (t) = cs .
Effectively, the trajectories of a PCD are restricted to be broken straight lines, with slopes changing only when a different

polygonal region (new discrete state) is entered. Unlike other hybrid models, no discontinuous discrete jumps (resets) are
allowed in PCDs. This constraint implies that PCD trajectories are continuous lines, which makes them more suitable for
topological and geometrical analysis. The PCD restriction was motivated by one of the fundamental properties of planar
systems: the evolution of a point in a plane with fixed slopes (flow) at each point, can only trace out a kind of contracting
or expanding spiral, if not a simple finite cycle. Maler and Pnueli [7] used this property to prove that reachability is decidable
for 2-dim PCDs.

Notice that PCDs can be viewed as linear hybrid automata without resets (i.e., with identity reset relations), such that the
locations �s correspond to regions P s; in each location �s the invariant condition is given by the polygon itself: Inv = P s; the
dynamics in �s is given by ẋ = c; and the guard associated to a transition from �s to �k is the common edge of P s and Pk .
In Fig. 2, a simple PCD and its corresponding hybrid automaton are shown.

2.4. Two-dimensional manifolds

All the (topological) definitions, examples and results of this section are done using the combinatorial method and fol-
low [17].

A topological space is triangulable if obtained from a set of triangles by the identification of edges (including their ver-
tices) and vertices, where any two triangles are identified either along a single edge or at a single vertex, or are completely
disjoint. The identification should be done via an affine bijection.

Definition 2.3. A surface (or 2-dim manifold) is a triangulable space for which in addition: (1) Each edge is identified with
exactly one other edge; and (2) The triangles identified at each vertex can always be arranged in a cycle T1, . . . , Tk, T1 so
that adjacent triangles are identified along an edge. �

Typical examples are the sphere, the torus (see Fig. 3) and the Klein’s bottle.
A surface with boundary is a topological space obtained by identifying edges and vertices of a set of triangles as for

surfaces except that certain edges may not be identified with another edge. These edges, which violate the definition of a
surface, are called boundary edges, and their vertices, which also violate the definition of surface, are called boundary vertices.
Typical examples of surfaces with boundary are the cylinder and the Möbius strip. Indeed, the cylinder is equivalent to a
sphere with two disks cut out, while, a bit less intuitively, the Möbius strip can be seen as a projective plane with a disk
removed.

We state now an important theorem in the topological theory of surfaces:

6 int(Ps) is the interior of Ps .

142 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Fig. 3. Representations of a torus: (a) A surface in R
3; (b) A square with identified edges; (c) A triangulated surface.

Theorem 2.4. (See [17].)

• Every compact, connected surface is topologically equivalent to a sphere, or a connected sum of tori, or a connected sum of projec-
tive planes.

• Every compact, connected surface with boundary is equivalent to either a sphere, or a connected sum of tori, or a connected sum
of projective planes, in any case with some finite number of disks removed. �

We will use this theorem without the connectedness assumption. In this case, a manifold is just a finite collection of
connected manifolds described above.

2.5. Our reference models

In this section, we define one-dimensional piecewise affine maps (PAMs) [3,2,18] and recall the definition of Minsky
machine model of computation [19].

2.5.1. Piecewise affine map (PAM)
A (rational) interval is a subset of R of one of the following forms:

[a,b]; [a,b); (a,b]; (a,b); (−∞,b]; (−∞,b); [a,∞); (a,∞)

with rationals a � b.

Definition 2.5. We say that f : R → R is a one-dimensional piecewise affine map (1-dim PAM) whenever f is of the form
f (x) = ai x + bi for x ∈ Ii , where Ii ⊂ R is a finite family of disjoint (rational) intervals. The extremities of intervals Ii are
referred to as vertices of the 1-dim PAM and their finite set is denoted V f . �

Note that the above definition (and related concepts) may be extended to any dimension. As we are mostly concerned
with 1-dim PAMs in the rest of paper, we will write PAM to refer to 1-dim PAM, and explicitly state the dimension whenever
we need to refer to higher dimensional PAMs.

Definition 2.6. We say that a PAM is bounded if none of its intervals is infinite. �
A trajectory of a PAM is a sequence (finite or infinite) x1, x2, . . . such that xn+1 = f (xn) for all n. We say that y is

reachable from x whenever there exists a finite trajectory starting at x and arriving to y.
The reachability problem for PAMs REACHPAM can be defined as:

Problem 2.7. Given a PAM A, is point y reachable from point x?

Even for a function f with just two linear pieces, there is no known decision algorithm for REACHPAM . The problem
becomes undecidable for 2-dim PAMs, and open for dimension 1 when piecewise affine maps are replaced by polynomi-
als [3,2,18]. It is also known that reachability by iteration of elementary functions on R, such as compositions of sines and
cosines, is undecidable [20].

E. Asarin et al. / Information and Computation 211 (2012) 138–159 143
2.5.2. Minsky machine
We recall the definition of the Minsky machine (or, two-counter machine), a computational model, equivalent (with a

slowdown) to a Turing machine.

Definition 2.8. A Minsky machine (MM) consists of:

• Two unbounded registers, m,n, each containing one natural number;
• A list of numbered instructions.

In a Minsky machine, only three kinds of instructions are possible:

1. Increment: given a register and an instruction number, increment the register value, and jump to the specified instruc-
tion number;

2. Decrement: given a register and an instruction number, decrement the register value,7 and jump to the specified in-
struction number;

3. Test: given a register and two instruction numbers, jump to the first instruction number if the register value is zero and
jump to the second instruction number if the register value is positive.

4. Halt. �
A configuration of a Minsky machine is a triple (q,m,n), where q is the current instruction and m and n stand for the

contents of the two counters. The halting problem over Minsky machines HaltMM is a well known undecidable problem:
Given the description of a Minsky machine M and its initial configuration (q,m,n), will M eventually halt? The reachability prob-
lem can be phrased over MM configuration space as: Given a Minsky machine M, will configuration (q′,m′,n′) be reachable from
configuration (q,m,n)? The halting problem can be trivially posed as a reachability query, where the initial state q stands
for the first instruction, with m and n being the allowed initial values of the counters, and the state q′ represents the finite
set of all Halt instruction numbers, with no restrictions on the final counter values m′ and n′ .

On the notion of simulation
Proving that two systems are equivalent requires showing that each simulates the other. Even though the idea of sim-

ulation (abstraction or realization) is accepted in the Computer Science community to mean “machines that perform the
same computation” [21,22,19], in dynamical systems, simulation is captured by the notions of topological equivalence and
homomorphism [23–25]. Defining a general notion of simulation for systems combining discrete and continuous dynamics
is not easy. Some ad hoc definitions (sufficient for decidability analysis) have been presented in [26–28]; in particular the
work presented in [8] provides a notion of simulation for PCDs. In the following sections, every time we establish that a
system A simulates another system B in some ad hoc sense, we make sure that it provides a reduction from the reachability
problem for A to the reachability for B; hence if reachability is undecidable for B , then it must be so for A.

3. Between decidability and undecidability

We show that for several natural classes of 2-dimensional hybrid systems, the reachability problem is as hard as for
1-dim PAMs, and hence, open.

3.1. Hierarchical piecewise constant derivative system (HPCD)

Hierarchical piecewise constant derivative systems can be seen as hybrid automata where the dynamics at each location is
given by a PCD.

Definition 3.1. A hierarchical piecewise constant derivative system is a hybrid automaton HPCD = (X , Q , f , I0, Inv, δ) such
that Q and I0 are as before while the dynamics at each � ∈ Q is a PCD and each transition tr = (�, g, γ , �′) is such that:
(1) Its guard g is a line segment in R2; and (2) The reset relation γ corresponds to an affine function: x′ = γ (x) = Ax + b.
The Inv for a state is defined to be the support set, SuppPCD(H) minus the guards of the outgoing transitions. If all the PCDs
are bounded, then HPCD is said to be bounded. �

Coefficients in the (in-)equations of the ingredients are assumed to be rational.
We introduce a 1-dim coordinate system on each edge e of the polygonal region in every PCD, and on every guard g of

the HPCD. We denote a point with local coordinates x on edge e by (e, x), or whenever unambiguous, just as x.

7 An attempt to decrement 0 produces an error.

144 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Fig. 4. Sketch of the simulation of a HPCD by a PAM.

It can be argued that the term hierarchical in the above definition is superfluous and that in fact HPCDs are equivalent to
two-dimensional linear hybrid automata. The definition is intended to emphasize the fact that the trajectory behaves mostly
like a PCD, with a few reset induced discontinuities. The HPCD reachability problem REACHHPCD can be defined as:

Problem 3.2. Given a HPCD H, is the state (� f ,x f) reachable from (�0,x0)?

To prove its openness, we will show that each HPCD H can be simulated by a PAM A, and that there is a HPCD H that
simulates A. For proving the first, we should: (1) Encode an initial and final point of H by points on some intervals of A;
(2) Represent a configuration of H by a configuration of A; (3) Simulate an edge-to-edge transition of H by some function
application on A.

Lemma 3.3 (PAMs simulate HPCDs). Every bounded HPCD H can be simulated by a PAM.

Proof. We arrange all the edges of H in the real line (in an arbitrary order) and we represent each edge-to-edge successor
function and each reset function by an affine map (restricted to an interval). Assembling all those affine maps together
yields the PAM A simulating H (see Fig. 4).

Let H be a HPCD and PCDi the PCD of location �i . We encode each region of PCDi by parts of a PAM A. Let e0 be an input
edge of region R and e1, . . . , ek be output edges of R and reachable from e0 by the one-step successor Succe0ei (λ) = aiλ+bi

(1 � i � k) (see Fig. 4). We partition edge e0 into intervals I1, . . . , Ik in the following way: Ii = Pree0ei (ei). Suppose that each
edge ei (0 � i � k) has local coordinates ranging from 0 to di . We dispose sequentially all the edges of R in the positive
real line, starting for example at position p, i.e., ei = (li, ui] with l0 = p, u0 = p + d0 and for all 1 � i � k, li = ui−1 and
ui = li + di . Hence, a point on edge ei with local coordinates λ will be situated on the real line R in position li + λ (see
Fig. 4). We proceed in the same way for the other regions of PCDi .

Let Succeie j (λ) = aiλ + bi be a one-step successor, we define a function f as follows:

f (z) = Ai z + Bi if z ∈ Ii

where Ai = ai and Bi = bi + l j − aili .
We show now that for λ0 ∈ ei and λ f ∈ e j , Succei e j (λ0) = λ f iff z f = f (z0). Let Succeie j (λ0) = λ f = aiλ0 + bi such that

λ0 and λ f have coordinates z0 = li + λ0 and z f = l j + λ f on R. Thus

λ f = aiλ0 + bi iff z f − l j = ai(z0 − li) + bi

iff z f = ai z0 + (bi + l j − aili)

iff z f = Ai z0 + Bi

iff z f = f (z0).

We have then constructed a function f for each one-step successor. The PAM A corresponding to the PCD of location �i
is defined then as the function that consists of the body of all the functions f above. Up to now we have encoded just a
simple PCD, it remains to encode the jumps from location �i to location � j in order to simulate a HPCD by a PAM. This is
done in the same way as before, since the reset are edge-to-edge affine functions.

From the above results we have that Reach(H,x0,x f) iff Reach(A, z0, z f). �
The above simulation is valid only if the HPCD H is bounded; infinite edges of an unbounded HPCD cannot be arranged

on the real line.
In order to prove that HPCDs simulate PAMs we should: (1) Encode an initial and final point of A by points on some

edges on H; (2) Represent a configuration of A by a configuration of H; (3) Simulate one-step computation of A by some
trajectory segment (many-steps successor) on H.

E. Asarin et al. / Information and Computation 211 (2012) 138–159 145
Fig. 5. (a) The HPCD that simulates a PAM; (b) An equivalent SA.

Fig. 6. One-state tent map HPCD.

Lemma 3.4 (HPCDs simulate PAMs). Every PAM A can be simulated by a HPCD. Every bounded PAM A can be simulated by a bounded
HPCD.

Proof. Let A be defined by f (z) = ai z +bi if z ∈ Ii for i ∈ {1, . . . ,k}, where Ii are rational intervals. We define a one-location
HPCD with a one-region PCD defined by y � 0 ∧ y � 1, i.e., there are two edges e ≡ y = 0 and e′ ≡ y = 1, and dynamics
defined by vector (0,1) as shown in Fig. 5-(a). There are as many transitions as intervals I i of the PAM. The guards are of
the form y = 1 ∧ x ∈ Ii , with their reset functions being of the form γ (x, y) = (ai x + bi,0). The initial point z0 of the PAM
is encoded as a point (x0, y0) ∈ e with abscissa x0 = z0. Hence, it is easy to see that points with abscissae f n(z0) will be
visited in sequence, establishing simulation.

If moreover A is bounded, the stripe region 0 � y � 1 can be replaced by the rectangular one: 0 � y � 1 ∧ −M � x � M
with M large enough, and this yields the required bounded HPCD. �

From the above two lemmas, we have then the following theorem.

Theorem 3.5 (Bounded HPCDs are equivalent to bounded PAMs). When restricted to bounded systems, REACHHPCD is decidable iff
REACHPAM is. �

Example 3.1. Consider the PAM describing the Tent Map [29]:

f (x) =
{

2x + 0, if x ∈ [0,1/2) (≡ I1),

−2x + 2, if x ∈ [1/2,1] (≡ I2).

The HPCD simulating this PAM is shown in Fig. 6. �
3.2. PCDs with translational resets

Here we show that a bounded PAM can be simulated by a PCD augmented with translational resets of the form x′ = x+c.
This result is achieved by realizing the affine transformations by intersecting the rectilinear flow with orthogonal edges and
by simulating the PAM variable (x) on the two PCD variables (p and q) in turns. The next iterate is computed based on the
variable that carries either a copy of the current value or of the previous iterate. Using the boundedness of the PAM, we can
see that the PCD variables lie in a bounded region in every state. Thus, by separating the states (along each dimension) by a

146 E. Asarin et al. / Information and Computation 211 (2012) 138–159
distance greater than the absolute maximum value of the variables, we can ensure that state invariants are non-overlapping.
The following evident lemma simplifies the proof.

Lemma 3.6. Every bounded PAM is equivalent to a 1-dim “positive” PAM where all intervals are positive.

Proof. Just shift the PAM to the positive semi-axis. �
Results proved over these positive PAMs are thus applicable to general bounded PAMs as well. We can now prove a key

result:

Theorem 3.7. A bounded PAM can be simulated by a PCD with translational resets.

Proof. Consider an equivalent positive PAM f (x) = ai x + bi , x ∈ Ii (i = 1,2, . . . ,n), with the intervals enumerated in the in-
creasing order. Let L be a number such that ∀i, L > bi , and L is greater then the right extremity of the rightmost interval In .
Corresponding to the i-th function of the PAM, we will have two states Pi and Q i . In Pi , the variable p flows from p0 = bi
to xn+1 (≡ bi + ai xn) at the rate ṗ = ai . The other variable q drops from q0 = xn to 0 at the rate q̇ = −1. The guard q = 0
thus ensures that the system spends t = q0 time in this state. This allows the affine term ai xn to be computed, without
using comparative guards or affine resets. In the Q states, the roles of p and q are reversed, i.e., q uses p’s value to grow
to the next iterate, while p just drops to 0, effectively keeping track of time. From Pi , there are transitions to each possible
state Q j . The variable p retains the value it just computed, while q is reset to the constant portion (b j) of the next iterate
of x. In Q j , q will accumulate the rest of its target value (a j x) by flowing for time x (stored in p) at the rate a j . Similarly,
from Q i , there are transitions to each possible state P j , while there are no transitions within P -states or within Q -states.

The above expressions are adjusted, now assuming that each state is associated with a different large constant “base”,
i.e., x becomes L Si + x in state Si , where L Si is the base value derived from the value L defined above. As x evolves in
a state, p and q will not be able to inadvertently cross over to another state because of the designed difference in their
base values; the need to adjust the base value during state transitions leads to translational resets. The full details of the
construction are provided below:

• Corresponding to the i-th function of the PAM, we have two states Pi and Q i associated with the constants L Pi =
4iL − 3L and L Q i = 4iL − L.

• In Pi , p grows at rate ṗ = ai from L Pi + p0(= bi) to aiq0(= xn) + bi + L Pi , while q drops from q0 + L Pi to L Pi at the
rate q̇ = −1. Here q0 denotes the unscaled previous iterate xn , using which xn+1 is being computed by spending exactly
t = q0 time in this state.

• Q i behaves exactly as above with p and q swapped, i.e., this corresponds to the case where q grows to the next iterate,
while p just drops to L Q i .• In Pi and Q i , the values of p and q are both bounded by {(L Pi/Q i − L, L Pi/Q i + L)}, which is equal to {(4iL −4L,4iL −2L)}
in Pi and {(4iL − 2L,4iL)} in Q i . Clearly, none of rectangular regions can overlap.

• From Pi , there are transitions to each possible state Q j with guard q = L Pi ∧ p ∈ I j , i.e., “p has reached the next iterate
of x” and “p is in the interval corresponding to the j-th PAM function”. The reset (translational) is p′ = p − L Pi + L Q j ∧
q′ = q − L Pi + L Q j + b j , i.e., “p, which holds the current value of x, is translated to the range of the destination state
(to prevent overlap)” and “q is in fact reset to the constant portion (b j) of the next iterate of x” (since the value of q
before the transition was a constant, this can be expressed by a translation). The portion proportional to xn (i.e., a j xn)
will be gained by flowing for time xn (stored in p) with slope a j .

• Similarly, from Q i , there are transitions to each possible state P j . There are no transitions within P -states or within
Q -states.

This PCD with translational resets simulates the PAM, as p and q take turns simulating x. It can be seen that x f is reachable
from x0: (i) if (p = L Q j + x f ,q = L Q j + b j); or (ii) if (p = L Q j + b j,q = L Q j + x f) is reachable from the starting state
(p = x0 + L Q k ,q = L Q k + bk). Here k, j are indices of intervals containing x0 and x f , that is x0 ∈ Ik , x f ∈ I j . The disjunction
is necessary because p reaches only even iterates and q reaches only odd iterates of x0. �

Example 3.2. The Tent Map can be simulated by a PCD with translational resets, using two variables p and q and 2 × 2 = 4
states. Setting L = 3 (> max(rn,bi) = 2), we get L P1 = 3, L Q 1 = 9, L P2 = 15, L Q 2 = 21. Thus:

P1: flows ṗ = a1 = 2 and q̇ = −1, with transitions:
→ Q 1: guard q = 3 ∧ p ∈ [3 + 0,3 + 1/2), reset p′ = p − 3 + 9 = p + 6 ∧ q′ = q − 3 + 9 + 0 = q + 6
→ Q 2: guard q = 3 ∧ p ∈ [3 + 1/2,3 + 1], reset p′ = p − 3 + 21 = p + 18 ∧ q′ = q − 3 + 21 + 2 = q + 20
P2: flows ṗ = a2 = −2 and q̇ = −1, with transitions:
→ Q 1: guard q = 15 ∧ p ∈ [15 + 0,15 + 1/2), reset p′ = p − 15 + 9 = p − 6 ∧ q′ = q − 15 + 9 + 0 = q − 6

E. Asarin et al. / Information and Computation 211 (2012) 138–159 147
Fig. 7. PCD with translational resets simulating the tent map.

→ Q 2: guard q = 15 ∧ p ∈ [15 + 1/2,15 + 1], reset p′ = p − 15 + 21 = p + 6 ∧ q′ = q − 15 + 21 + 2 = q + 8
Q 1: flows q̇ = a1 = 2 and ṗ = −1, with transitions:
→ P1: guard p = 9 ∧ q ∈ [9 + 0,9 + 1/2), reset q′ = q − 9 + 3 = q − 6 ∧ p′ = p − 9 + 3 + 0 = p − 6
→ P2: guard p = 9 ∧ q ∈ [9 + 1/2,9 + 1], reset q′ = q − 9 + 15 = q + 6 ∧ p′ = p − 9 + 15 + 2 = p + 8
Q 2: flows q̇ = a2 = −2 and ṗ = −1, with transitions:
→ P1: guard p = 21 ∧ q ∈ [21 + 0,21 + 1/2), reset q′ = q − 21 + 3 = q − 18 ∧ p′ = p − 21 + 3 + 0 = p − 18
→ P2: guard p = 21 ∧ q ∈ [21 + 1/2,21 + 1], reset q′ = q − 21 + 15 = q − 6 ∧ p′ = p − 21 + 15 + 2 = p − 4.

Clearly, p and q take turns simulating the PAM variable x. (See Fig. 7.) �
3.3. PCDs on 2-dimensional manifolds

In this section we will study the reachability problem of PCDs defined on surfaces, or 2-dimensional manifolds (intro-
duced in Section 2.4). To define a PCD on a triangulated surface S , a PCD should be defined on each of its triangles. We
call this class of systems PCD on 2-dimensional manifolds (PCD2m). We impose a couple of restrictions on the dynamics (see
Fig. 8):

• The flow vector is never parallel to an edge of its triangle.
• Every vertex can be an input vertex for at most one triangle.

The first assumption is just for simplicity and can be removed. The second one ensures unicity of trajectories and
excludes “branching” in vertices. In Fig. 9 we define a PCD on a torus and show how to represent it as a family of PCDs on
triangles. As before, a point x f is reachable from another point x0 if there exists a trajectory from x0 to x f , defining the
reachability problem:

Problem 3.8. Given a PCD2m H, is point x f reachable from x0?

We show that indeed the decidability of Problem 3.8 is an open problem, showing as before that REACHPCD2m is equiva-
lent to REACHPAM for a large subclass of PAMs. We recall that V (f) ⊂ R is the finite set of all the “vertices” (i.e., extremities
of intervals) of a PAM f .

148 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Fig. 8. Two forbidden configurations in PCD2m: (a) Flow vector parallel to an edge; (b) Branching in a vertex.

Fig. 9. A PCD2m on the torus: Three views.

The idea of translation from a PCD on a manifold to a PAM is as follows. By definition a manifold is a finite collection
of triangles with identified edges, and a PCD defines a constant flow in each triangle. This flow defines a piecewise-affine
successor relation between edges of the triangle. Identification between edges gives another piecewise affine relation be-
tween edges (only identification between an output edge and an input one matters for reachability). By taking the union
of the successor relations and the useful identifications we can obtain a PAM, defined on the edges of the triangulation of
the manifold, which simulates the PCD. If we want to put it onto the real line, we are obliged to“tear” some edges from
each other in certain vertices and dispose all the edges on the line. Formally speaking, this operation can destroy continuity
or injectivity. Nonetheless the PAM remains continuous and injective if we identify points on the line corresponding to the
same vertex. We call such PAMs regular (see Definition 3.9 below).

Conversely, given a regular PAM, we first put it on a horizontal stripe with vertical flow (like in Lemma 3.4). Next we
replace every affine map from a closed interval to another one by identification of the source and the target intervals on
the upper and lower edges of the stripe (injectivity and continuity insure that this identification is correctly defined). In
virtue of manifold classification theorem (Theorem 2.4) we obtain a piecewise constant flow on a manifold with some disks
removed. “Sewing” these holes by disks with trivial dynamics we obtain a required PCD on a manifold.

In what follows we sketch these constructions with more details.

Definition 3.9. A PAM f defined on a compact domain D(f) is regular if there exists an equivalence relation ∼ on the set
V (f) of its vertices such that f / ∼ is an injective continuous function. �

In other words, the function f should become injective and continuous after identifying finitely many groups of finitely
many points. It should thus satisfy the following:

• f is injective on the interior of its intervals D(f) \ V (f) (we say that f is almost injective);
• for any two vertices u and v , we have that f (u) ∼ f (v) if and only if u ∼ v;
• values of f in all the vertices coincide (up to ∼) with left and right limits of adjacent intervals. Formally, whenever

f (x) = ax + b for x ∈ (u, v), it should be that f (u) ∼ au + b and f (v) ∼ av + b.

We denote by PAMreg the class of regular PAMs, and the corresponding reachability problem by REACHPAMreg .

Lemma 3.10 (PAMreg simulate PCD2m). Every PCD2m can be simulated by a regular PAM.

E. Asarin et al. / Information and Computation 211 (2012) 138–159 149
Fig. 10. From a PCD2m to a regular PAM: (a) A fragment of a PCD2m H; (b) The PAMreg F simulating H; (c) The equivalence relation ∼.

Sketch of the proof. Let H be a PCD2m. The reduction is analog to the simulation of HPCDs by PAMs (see Lemma 3.3), but
special effort is necessary to ensure regularity. We suppose that the support manifold is triangulated, and we consider all
the triangles separately. We will represent every edge e of every triangle by a line segment r(e) of the same length as e on
R (and every point x ∈ e is represented by a point r(x) ∈ r(e)). These segments r(e) are positioned in groups of one or two.
Namely when a triangle has two input edges their representations should be adjacent on R, and similarly for two output
edges (see Fig. 10-(a)). In all the other cases the representing intervals on R should be put apart of each other. All these
representing intervals constitute the support of the PAM f . The mapping itself is defined as a finite union of affine and
piecewise affine mappings of two following types.

Flow-mappings For each triangle the successor map (corresponding to the flow) from its input to its output edges is in
fact piecewise affine (with two pieces). We reproduce this map on the representing intervals. Thus representing
intervals of its input edges are mapped onto representatives of its output edges – it can be done by a two-piece
map (see example on Fig. 10).

Identification-mappings For each pair of identified edges e1 and e2, if one of them (say e1) is input, and the other one (e2)
is output, then the representative r(e2) of the output edge is mapped onto the representative r(e1) of the input
one. (If two input or two output edges are identified, then the flow of the PCD2m cannot traverse this edge, and it
is useless to map their representatives to each other.)

150 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Fig. 11. Simulation of a PCD2m by a PAMreg: Edge J k
i identified with Ik

i via f i .

The PAM obtained is not injective nor continuous, but it becomes so if we glue together all its vertices corresponding to
identified vertices of H (this is a finite equivalence relation ∼). Hence, the PAM is regular.

The relation between H and f can be described as follows: For any trajectory ξ(t) of H take the points xi where it
enters and exits every triangle. These points belong to the edges of the triangulations, and hence are represented by some
points r(xi) in the PAM f . The sequence {r(xi)}i is in this case a trajectory of the PAM f .

The converse is also true, every trajectory {yi}i of f represents in this way some trajectory of H. Indeed, we should just
take the sequence {xi = r−1(yi)} in R2 and build a trajectory of H that passes through the points xi . Whenever the mapping
from yi to yi+1 is a flow-mapping, we connect xi with xi+1 by a straight line segment. By construction of f , this segment
is always parallel to the flow vector of H and can hence be seen as a trajectory segment of H. By the same construction,
whenever the mapping from yi to yi+1 is an identification-mapping in f , then the points xi and xi+1 are identified and
represent the same point in H. Hence, we have obtained a trajectory of H which hits the edges in the points {xi}. �

The example depicted in Fig. 10 helps understanding the construction. The part (a) of the figure presents three triangles
of a PCD2m with corresponding flow vectors (for the third triangle we only consider its input edge). Notice that AB is
identified with E F and E D with H A. The part (b) presents the PAM simulating the PCD2m. We have cut the perimeter of
the first triangle in the vertices B and A in order to put the three edges on the real line. Similarly for two other triangles. In
this way every edge of every triangle is represented in the PAM. The flow of the he PCD2m brings every point on AC and C B
to a point on AB . This is represented in the PAM by a 2-piece affine mapping from AC B onto A′B ′ designated as “flow 1” on
Fig. 10-(b). Similarly for “flow 2” from A′B ′ to E ′D F ′ . Last, but not least the identifications between edges are represented
by other affine mappings in the PAM: from A′B ′ to E F and from E ′D to H I . The PAM obtained has discontinuities in C
and D , but after identifying vertices according to (c) it becomes injective and continuous.

We now turn our attention to the simulation of a PAMreg by a PCD2m.

Lemma 3.11 (PCD2m simulate PAMreg). Every regular PAM can be simulated by a PCD2m .

Sketch of the proof. Let A be a regular PAM defined as f (z) = f i(z) = ai z + bi if z ∈ Ii for 1 � i � n. We obtain a PCD2m
by a construction similar to Lemma 3.4. In a polygon R ⊃ [−M; M] × [0;1] (with M large enough), the dynamics is defined
by vector (0,1).8 To realize the function f by identification of edges, we partition the edges of the PAM (see Fig. 11: on
the bottom of the rectangle R we define Ik

i = (f i(Ii) ∩ Ik) × {0}, on the top, we define J k
i = (Ii ∩ f −1

i (Ik)) × {1}). Almost
injectivity of the PAM A guarantees that these intervals do not overlap. Continuity guarantees that a whole closed edge is
identified with another edge (up to ∼-equivalence on vertices).

Next we identify each non-empty J k
i with Ik

i via the function f i (which is an affine bijection between these two edges).
It is easy to find a triangulation such that Ik

i and J k
i are its edges, hence we have represented our system as a PCD on a

compact surface with boundary.
By the Classification Theorem for Surfaces with Boundary (see Theorem 2.4) we have that this surface is equivalent to a

manifold with some disks removed and we obtain then a PCD2m just “sewing” the disks. We associate with these disks a
zero slope vector. �

From the above two lemmas the Turing equivalence of REACHPAMreg and REACHPCD2m restricted to points on edges is
immediate. On the other hand notice that REACHPCD2m restricted to points on edges is equivalent to REACHPCD2m . Indeed, in
order to check whether x f is reachable from x0, it suffices to draw a trajectory from x0 till it hits some edge in a point x′

0,
to draw a trajectory backwards from x f till it hits some edge in a point x′

f , and check reachability from x′
0 to x′

f (both
points belong to edges).

Theorem 3.12 (PCD2m are equivalent to PAMreg). Reachability for PCD2m is decidable iff reachability for regular PAMs is. �
8 In order to respect the definition of regular PCD2m we take a polygon without vertical edges rather than a rectangle.

E. Asarin et al. / Information and Computation 211 (2012) 138–159 151
Fig. 12. (a) Another HPCD that simulates a PAM; (b) The corresponding AUTA.

3.4. Other open subclasses

Various other intermediate subclasses of low dimensional hybrid automata simulate a PAM. We now present some of the
interesting cases, based on earlier proofs and constructions.

3.4.1. Variants of linear, timed and rectangular automata
We first establish some simple corollaries of Theorem 3.5. Observing the construction in the proof of the theorem, we

see that the only features of HPCDs/LHAs used can be captured by the simple LHA class (see Fig. 5-(b) for the simple LHA
corresponding to the HPCD in Fig. 5-(a)).

Definition 3.13. A simple LHA (SA) is a 2-dimensional LHA with only one location � and 2 variables: one clock y, and
one memory cell x. The invariant is of the form C � y � D , guards are of the form y = D ∧ x ∈ I , and resets of the form
γ (x, y) = (ax + b, c). �

The next result follows immediately from the proof of Theorem 3.5.

Corollary 3.14 (SAs are equivalent to PAMs). Reachability for SAs is decidable iff reachability for PAMs is. �
We deduce that the same holds for any class between SAs and HPCDs.

Corollary 3.15 (Intermediate classes are equivalent to PAMs). For any class C of hybrid automata, such that S A ⊆ C ⊆ HPCD, reacha-
bility for C is decidable iff reachability for PAMs is. �

Another simple corollary concerns a variant of updatable timed automata [30,14] with affine resets, based on the proof
of Theorem 3.5.

Definition 3.16. A 2-clocks affine updatable timed automaton (2AUTA) is a LHA with two clocks x and y, invariants of the
form C � y � D , guards of the form y = D ∧ x ∈ I and resets of the form γ (x, y) = (ax + b,0). �
Corollary 3.17 (AUTAs are equivalent to PAMs). Reachability for 2AUTAs is decidable iff reachability for PAMs is.

Sketch of the proof. In Lemma 3.4 a HPCD H (see Fig. 5) that simulates a PAM was built. We obtain another HPCD H′
applying an affine transformation to H, where the edge e remains unchanged whereas e′ is translated by one unit to the
right. H′ is represented in Fig. 12-(a), where given I = [l, u] the notation I + 1 is a short for [l + 1, u + 1]. It is not difficult
to see that the automaton of Fig. 12-(b) is a 2AUTA equivalent to H′ . �

Next, we extend the constructions devised for proving Theorem 3.7 to characterize other extensions of timed automata
that can simulate a PAM. In Corollary 3.17 we have shown that the affine reset suffices. Our constructions below shows that
it is possible to capture a PAM in a HPCD with comparative guards and simple translational resets.

152 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Proposition 3.18. A bounded PAM can be simulated by a 2-clock automaton, when translational resets and comparative guards are
allowed.

Proof. The following HPCD with 2n states of the form P j and Q j simulates the equivalent positive PAM. We associate a
number L Pi/Q i with each discrete state that is separated from every such number by at least L in the positive and negative
directions. The state P j (and Q j) is defined as:

• p flows from L P j + p0 to L P j + p0 + a j p0 + b j with ṗ = +1;
• q flows from L P j + 0 to L P j + a j p0 + b j with q̇ = +1;
• The discrete transitions will be of the form P j → Q k with guard a j p − (1 + a j)q + b j + L P j = 0 ∧ q ∈ Ik and reset

p′ = 0 + L Q k ∧ q′ = q − L P j + L Q k . �
These ideas can be adapted to show that decidable initialized rectangular automata [13,12] can simulate a PAM, when

extended with comparative guards or when uninitialized. We only prove the latter here.

Proposition 3.19. A bounded PAM can be simulated by a 2-dim (uninitialized) rectangular automaton.

Proof. The following rectangular automaton with 2n states of the form P j and Q j simulates the equivalent positive PAM.
The state P j is defined as follows, with the other states defined symmetrically:

• While entering this discrete state, p has the current value of x;
• p flows from pin to 0 with ṗ = −1;
• q flows from b j to b j + pina j with q̇ = a j ;
• The invariant is p > 0 ∧ q ≶ b j , with the inequality determined by a j ’s sign;
• The discrete state transitions are of the form P j → Q k with guard p = 0 ∧ q > 0 and reset p′ = bk ∧ q′ = q. Since q is

not reset even though its flow changes in the next state, this HA is not an “initialized” automaton. �
3.4.2. Variants of HPCDs

The proof methodology of Theorem 3.7 can be extended to characterize the simplest HPCD subclass that can simulate a
PAM without using resets at all (i.e., all the resets are identity relations); our construction uses both overlapping invariants
and comparative guards.

Proposition 3.20. A bounded PAM can be simulated by a HPCD with comparative guards, 3 different flows +1, −1, 0 for each variable
and no resets.

Proof. Consider a PAM f (x) = ai x + bi , x ∈ Ii , i = 1,2, . . . ,n. Once again, we use the “taking-turns” idea. Unlike the proof of
Theorem 3.7, we cannot initialize a variable’s value at bi as we do not have resets. So, we now have p evolving from xn−1
to xn+1, while q remains stationary at xn . The guard condition p = aiq + bi makes the HA jump to the next state at the
correct time. Since xn+1 could be greater or less than xn−1, the flow will need to be +1 or −1 respectively. Hence, each P
(and Q) state now corresponds to two states: P+ and P− . We will construct a HPCD with 4n states of the form P±

j and

Q ±
j that simulates this PAM; p and q will again take turns simulating x i.e., p2m = p2m+1 = x2m and q2m−1 = q2m = x2m−1,

at the end of each discrete transition. Consider a state P±
j defined as follows:

• Since the initial value of x is pin ∈ I j , the variable q should flow from some qin to the new value of x, that is qout =
a j pin + b j .

• q’s flow is q̇ = +1 since qout > qin in P+
j . To ensure this inequality, the condition q < a j p + b j should be incorporated in

all the guards leading to P+
j . Symmetrically, in P−

j , the opposite inequality q′
out � qin and flow q̇ = −1 should be used.

This is also insured by the guard.
• p remains stationary (and equal to pin), i.e., ṗ = 0 in this state, in order to ensure that q flows to the correct amount.
• The guard condition is satisfied when q reaches qout , i.e., q = a j p + b j .
• The transitions out of this state are of the form P±

j → Q ±
k only. In the next state, q stays fixed at this computed value,

while p flows to the next iterant of x. In particular, the guard for jumping to Q +
k will be q = a j p + b j ∧ q ∈ Ik ∧ p <

akq + bk . (The last constraint will be p ≥ if we are jumping to Q −
k .)

The Q ±
j states are defined exactly as above, with p and q interchanged. The above HPCD without resets simulates the given

PAM. In particular, the reachability query “Is x f reachable from x0” is true iff (Q ±
n , p = x f , q = x f −1) or (P±

n , p = x f −1, q =
x f) is reachable from (Q ±

m , p = x0, q = x1), where x f −1 is some pre-image of x f . Here indices m and n are such that x1 ∈ Im

and x f −1 ∈ In , and the ± signs depend on whether x2 > x1 or not and whether x f > x f −1 or not. There can be at most n

E. Asarin et al. / Information and Computation 211 (2012) 138–159 153
pre-images of the target x f , and hence n reachability queries; further, a factor of two arises from having to accommodate p
or q reaching x f (odd or even iterations). �

The idea can be further adapted to show that PAMs can also be simulated by HPCDs when augmented with origin-
dependent rates (introduced in [31]) and overlapping state-invariants (HPCDx).

Proposition 3.21. A PAM can be simulated by an origin-dependent HPCD with rectangular guards/invariants, and identity resets.

Proof. The following origin-dependent HPCD with 2n states of the form P j and Q j simulates the equivalent positive PAM.
The state P j is defined as follows, with other states defined symmetrically:

• p flows from p0 to 0 with ṗ = −1;
• q flows from 0 to a j p0 + b j with q̇ = a j + b j/p0;
• Discrete state transitions are of the form P j → Q k with guard being p = 0 ∧ q ∈ Ik ∧ q > 0 and identity resets. �

4. Undecidability results

True to its “open” nature, the HPCD class does not present any direct mechanism to simulate a Turing machine (TM) or
a Minsky machine (MM). Using one HPCD variable for each MM counter makes measuring one time unit difficult; storing
at least one of the counters in both the variables (or both counters in both variables) corresponds almost directly to the
original problem of simulating a TM by a PAM. In this section, we show how to extend HPCDs in order to be able to
simulate a Minsky machine.

4.1. HPCDs with one counter

Consider the class of HPCD1c which are HPCDs augmented with a counter c. In each location �, the state vector (x, y)

evolves according to a PCD, while c remains constant. Guards have the form P (x, y) ∧ Q (c) where P (x, y) is as for HPCDs
and Q (c) ≡ c = 0 | c > 0 | true. Resets are as for HPCDs, but they can also increment or decrement c. We prove that the
reachability problem for HPCD1c is undecidable showing that an HPCD1c H can simulate Minsky machines for which reach-
ability is known to be undecidable.

In this section we need a concrete syntax to describe Minsky machines. In accordance with Definition 2.8 we will
represent the MM by a list of numbered instruction of the forms:

qi : m++,goto q j,

qi : m−−,goto q j,

qi : if m = 0 then goto q j else goto qk,

and the similar ones for n (and also halt).

Proposition 4.1 (HPCD1c simulate MMs). Every Minsky machine can be simulated by a HPCD with one counter, so HPCD1c reachability
is undecidable.

Sketch of the proof. We associate with each qi of a Minsky machine M a location �i of HPCD1c. In order to encode
a configuration of M which is a triple (qi,m,n), we represent it in H by (�i, x, y, c) with the point (x, y) = (2−m,0)

representing the first counter of M, and c = n storing the second one. The PCD associated to the location �i simulates
the instruction for the state qi . To increment or decrement m we just divide or multiply x by 2, an operation than can be
performed by a PCD. To test whether m = 0, we check whether x > 0.75. All the operations on n are done directly on the
counter c. Fig. 13 represents PCD simulating instructions m++, m = 0? and n++; PCDs for the three other instructions
(m−−, n−− and n = 0?) are similar.

Putting all those PCDs together we obtain a HPCD1c which simulates M. �
4.2. HPCDs with other infinite structures

In this section, we augment HPCD with different infinite or periodic structures allowing an infinite number of regions, or
a periodic origin-dependent dynamics, or merely integrity testing in the guards. In all the cases, very simple constructions
allow Minsky machines to be simulated, and hence their reachability becomes undecidable. We capture the value of both
counters m and n using one continuous unbounded integer variable x = 2m3n; the second variable y is used as a temporary
variable for other computations. Incrementing and decrementing the counter correspond respectively, to multiplying and
dividing by the appropriate prime factor, which can be done by a simple affine reset. The problem of simulating a Minsky

154 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Fig. 13. Sketch of the simulation of a Minsky Machine by a HPCD1c: Location �i .

Fig. 14. Sketch of the simulation of a Minsky Machine by a HPCD∞ .

Machine over an augmented HPCD now reduces to the problem of checking if m > 0 given the numerical value of x = 2m3n ,
and being able to recover the original value of x at the end.

We will first consider HPCDs for which we relax the condition of having a finite number of regions. We call this class
of systems, HPCDs with infinite partition (HPCD∞). We are not going to define this class formally, since we are just inter-
ested in showing that this additional feature (having an infinite partition, even with very simple periodic structure) leads
immediately to the undecidability of the reachability problem for HPCD∞ .

Proposition 4.2 (HPCD∞ simulate MMs). Every MM M can be simulated by an (unbounded) HPCD with infinite partition. Hence
reachability is undecidable for HPCD∞ .

Sketch of the proof. The hybrid automaton H will have a location �k for each state qk of the MM. We represent the MM
counters by a point on the x-axis with the integer abscissa x = 2m3n in a HPCD∞ as in Fig. 14.

If the instruction qi increments or decrements a counter, this corresponds to an affine operation on x (division or multi-
plication by 2 or 3). In this case the PCD for the state �i contains one region x > 0 ∧ 0 < y < 1, the flow is ẋ = 0, ẏ = 1 (as
on Fig. 14), and the jump goes to the target location and performs the necessary division or multiplication.

The only non-trivial operation is to test whether a counter is 0. Notice, that whenever x is odd we know that m = 0,
and whenever x is not multiple of 3 we know that n = 0. Our periodic infinite partition allows to detect such situations.
Hence, to simulate an instruction of the form qi : if m = 0 then q j else qk , we make a jump from all the odd en edges of
the location �i to the location � j , and from the even ones to �k . �

Another way of introducing “infinite patterns” is allowing continuous dynamics with some periodic behavior that de-
pends on the initial points after a reset is done. We have already discussed origin-dependent rate HPCDs (HPCDx) in
Section 3.4.2. In the construction of the following proposition we will use a HPCDx with rather particular periodic rate
functions.

Proposition 4.3 (HPCDx simulate MMs). Every MM can be simulated by an unbounded HPCDx with periodic functions as dynamics.
Hence the reachability is undecidable for such systems.

E. Asarin et al. / Information and Computation 211 (2012) 138–159 155
Fig. 15. Simulation of a Minsky machine by a HPCDx, case of m = 0 test.

Sketch of proof. We associate with each MM-state qi a location �i , and use the same encoding of the counters in the
abscissa: x = 2m3n . Incrementing/decrementing is simulated as in the proof of Proposition 4.2 above.

For the instruction qi : if m = 0 then q j else qk the location �i uses origin-dependent periodic dynamics. Its PCDi (see
Fig. 15) is defined by regions: R1: 0 < y < 1, and R2: −1 < y < 0. The dynamics in both regions is given by the vector
(0, f (x0)) and the last two by (0,1). Here f (x0) = (−1)�x0+1/2� . This means, in particular, that points on e1 with odd
integer abscissae go down and hit the edge e3, while even ones go up to e2. Jumping from e3 to location � j , and from e2 to
�k terminates the construction. �

The above definition allows the dynamics to be defined by any function of the initial point. To simulate a Minsky
machine, we needed to use functions that have a periodic pattern to obtain an “infinite pattern”, as before. Yet another
application of the same idea concerns HPCDs with integrity testing in the guards.

Proposition 4.4. Reachability is undecidable for HPCDfn-int , an extension of HPCDs where the guard can include a function integer(x)
that returns true if the parameter x is an integer.

Sketch of the proof.

• A discrete state �i corresponds to the program-state qi of M.
• The value of the counters is captured in the variable x as 2m3n while y is a dummy variable typically flowing from 0 to

1 in each state. Note that the rectangles corresponding to the different discrete states are bounded (because of y) but
could possibly overlap.

• MM computations: incrementing/decrementing a counter can be simulated as in the proofs of two previous results. We
should address here the test instruction. The idea is that m > 0 if and only if x/2 is integer (similarly, n > 0 iff x/3 is
an integer). Using this observation, we simulate the instruction qi : if m = 0 then q j else qk as follows:
1. State �i1 has ẋ = 0 and ẏ = 1 and jumps to state �i2 with guard y = 1 and reset x′ = 1

2 x;
2. State �i2 has ẋ = 0 and ẏ = 1 and jumps to state � j with guard y = 1 ∧ integer(x) and reset x′ = 2x, and jumps to

state �k with guard y = 1 ∧ ¬integer(x) and reset x′ = 2x.
The operations on the other counter are similar.

Clearly the HPCD simulates the 2-counter MM M. Since reachability is undecidable for the MM, it has to be undecidable
for the HPCD as well. �
5. Understanding PAMs

Having refined the decidable and undecidable frontiers of the HPCD class, we subject PAMs to a similar extend-restrain
analysis.

5.1. PAM’s proximity to undecidability

We briefly mention one contrived extension of PAMs than enables MM simulation, thus making reachability undecidable
over that class.

156 E. Asarin et al. / Information and Computation 211 (2012) 138–159
Proposition 5.1. PAMs that can check if a given number x can be expressed as p−i (the class “PAMpow”), where p is a given prime
number and i is an unknown positive integer, can simulate a Minsky machine.

Proof. The idea is to encode the two counters m and n, and the line-number (MM instruction) l in one real number as
x = l + 2−m3−n . Thus when x lies in the range Il ≡ (l, l + 1], the i-th instruction of the MM needs to be executed. Thus the
MM instructions can be encoded as follows:

• (qi : m++, goto q j) corresponds to x′ = (x − i) 1
2 + j, x ∈ Ii ;

• (qi : m−−, goto q j) corresponds to x′ = (x − i)2 + j, x ∈ Ii ;
• (qi : if m == 0 goto q j else goto qk) corresponds to x′ = x− i + j, x ∈ Ii ∧ x− l = 3−n and to x′ = x− i +k, x ∈ Ii ∧ x− l �=

3−n . �
5.2. PAM’s proximity to decidability

The simplest PAM is one where every interval maps exactly onto another interval. Thus the mapping unwinds to a
cyclical application of functions, possibly preceded by some finite prefix.

Definition 5.2 (1-dim oPAM). A 1-dim Onto PAM (oPAM) is a PAM where, for every interval I i in the PAM definition, there is
an interval I j also in the definition such that {ai x + bi | x ∈ Ii} = I j . �

Next we prove a crucial lemma:

Lemma 5.3. In a 1-dim oPAM with k intervals, every point has at most 2k unique successors.

Proof. If interval Ii maps onto I j , the end points (li, ri) have to map onto (l j, r j) or to (r j, l j). No other mapping is possible
because of our restriction that the affine post-image of Ii has to exactly and completely overlap with I j . Hence, there are
only two possible equations linking x j with xi :

1. Direct (li → l j, ri → r j): x j = l j + xi−li
ri−li

(r j − l j);

2. Flipped (li → r j, ri → l j): x j = l j + ri−xi
ri−li

(r j − l j).

In other words, if we define d = x0−lx0
rx0 −lx0

, only the points that are l j + d(r j − l j) or l j + (1 − d)(r j − l j) are ever reachable.

Thus, every interval has only two possible reachable points from a given x0. Since there are k intervals, after 2k iterations
all possible successors would have been explored, and there will be a cycle of period � 2k in the path. �

This observation about exactly onto affine maps leads to the following:

Theorem 5.4. Reachability is decidable for 1-dim oPAMs.

Proof. The reachability query can be verified after the partitioning algorithm converges, yielding several non-overlapping
“interval-node-paths” of the form Pi → Pi+1 → ·· · → P j → P j+1 → ·· · → P j i.e., a cycle of interval-nodes possibly pre-
ceded by a linear path of interval-nodes. If the given x0 and x f do not lie on the same interval-node-path, then x f is
unreachable from x0. Otherwise, numerically iteration is performed from x0. If x f is not reached in 2k steps, where k is
the length of the interval path containing x0, we can conclude that x f is unreachable using Lemma 5.3 above. Hence, x f is
reachable iff it is encountered on this 2k-long path starting at x0. �
Remark. We can quickly conclude that x f is unreachable if

x f −xl f
xr f −xl f

is not equal to
x0−xl0
xr0 −xl0

or
xr0 −x0

xr f −xl f
, where [xl f , xr f] and

[xl0 , xr0] are the interval partitions containing x f and x0 respectively.

Example 5.1. f (x) = 2x + 1/3, x ∈ [0,1/3) (≡ I1) and f (x) = 1/2 − x/2, x ∈ [1/3,1] (≡ I2) is an oPAM as f ([0,1/3]) =
[1/3,1] and f ([1/3,1]) = [0,1/3]. Points reachable from x0 = 1/4 are: x1 = 2/4 + 1/3 = 5/6, x2 = 1/2 − 5/12 = 1/12,
x3 = 2/12 + 1/3 = 1/2, x4 = 1/2 − 1/4 = 1/4 = x0, as expected. �
5.3. An approximate reachability algorithm

Reachability is easily semi-decidable for PAMs, with the procedure being iterating x0, f (x0), f (f (x0)), . . . until x f is
reached. If x f is not reachable, this algorithm will never converge. We present a simple algorithm for approximating the

E. Asarin et al. / Information and Computation 211 (2012) 138–159 157
reachable points (see Algorithm 1), where the intervals Ii of the PAM are partitioned, until all the successors (post-images) of
points in one interval map onto exactly one complete interval (an extension of this idea was presented in [32]). Whenever
this algorithm terminates (yielding a 1-dim oPAM), it computes the exact reachability relation. If we interrupt it after a
certain number of iterations, it computes an under-approximation of reachability.

Algorithm 1. Over-approximation of PAM reachability

1. Let the initial partition P be the set of PAM intervals {Ii}.
2. Pick an interval Pi in P and calculate its post-image P ′

i . Let P ′
i span the intervals Pl, Pl+1, . . . , Pr−1, Pr .

3. P ′
i induces r − l + 1 parts on Pi : Pi1 · · · Pir−l+1 such that Pi j maps onto Pl+ j−1. It could also partition Pl and Pr in case

it maps onto a sub-interval rather than covering the whole of Pl or Pr . In all, the total number of parts in the partition
can increase by 0 to n + 1.

4. Update P so it now holds the newly induced parts as well.
5. Repeat steps 2 − 4 until every interval Pi maps onto exactly one interval P j already in P .

If this refinement procedure terminates, we construct a graph which contains two nodes P+
i (direct) and P−

i (flipped) for
each interval Pi . If the post image of Pi is P j , and the affine function on Pi preserves orientation (i.e., has a positive
coefficient), we connect P+

i to P+
j and P−

i to P−
j . If the post image of Pi is P j , and the affine function on Pi changes

orientation (i.e., has a negative coefficient), we connect P+
i to P−

j and P−
i to P+

j . We get a graph representation of the PAM.

Thus, x f is reachable from x0, if there is a path from P+
x0

to P+
x f

in this graph (where xi ∈ Pxi), and also xi and x f divide

their respective intervals in the same proportion α : β . Another possibility is that there is a path from P+
x0

to P−
x f

in this
graph, and also xi and x f divide their respective intervals in inverse proportions α : β and β : α. �
6. Related work

The reachability question is decidable for certain classes of hybrid systems. In [33], it was shown that reachability is
decidable for timed automata (TA), which are a particular case of hybrid automata where all the variables have slope 1.
In [7], the decidability of the same problem for 2-dim PCDs was proved. In [30], some extensions of TA are considered
(updatable timed automata) for which the decidability of the emptiness problem is studied. It has been shown that the
reachability problem for multirate automata (a hybrid automaton where the variables run at any constant slope; see [34,
35]) and rectangular automata [12,13] is decidable, under certain conditions. Some more decidability results were given for
subclasses of linear hybrid systems, extended integrator graphs [36], and for timed graphs with one stopwatch [37].

On the other hand and not surprisingly, many undecidability results have been recorded. In [12], it was shown that
the reachability problem for rectangular automata with at least 5 clocks and one two-slope variable (with rational slopes
k1 �= k2) is undecidable and that the reachability problem is undecidable for rectangular automata with at least 5 clocks and
one skewed clock (see LHA, Section 2.2, for restrictions that have been relaxed). In [38], it was shown that the reachability
question for TA with 3 stopwatches and for TA with 1 memory cell with assignments between variables is undecidable.
Other undecidability results (always for the reachability problem) were given for TA with 6 memory cells without assign-
ment between variables [39], for TA with two three-slope variables [40], for TA with two non-clock constant slope variables
[10], for TA with additive clock constraints [33] and for TA with two skewed clocks [34].

Some other undecidability results were given for low (three or less) dimensional spaces, besides those mentioned results
in the introduction. In [41], it was proved that Turing machines can be simulated by dynamical systems with piecewise
affine functions (in 3 dimension spaces). In [20], two elementary functions are constructed: one in one dimension that
simulates Turing machines with an exponential slowdown and one in two dimensions that simulate TMs in real time
(see references therein for other undecidability results). Among other results, in [27], it is shown that smooth ordinary
differential equations in R2 can simulate an arbitrary Turing machine; in [18], it is proved that TMs can be simulated
by 2-dim PAMs, by 1-dim countable PAM (PAMs with an infinite number of intervals) and by a continuous piecewise-
monotone functions in linear time. As a relevant result in the same work, it is also shown that there exist TMs that cannot
be simulated by a 1-dim PAM. In [3], results are given concerning the frontier between decidability and undecidability for
low dimensional systems, in particular for the reachability problem for 1-dim PAMs. In a more recent work, it is shown that
PAMs are equivalent to Pseudo–Billiard Systems, which may be seen as 2-dim linear hybrid automata with only one state,
and that more general classes of functions lead to undecidability of reachability problem for such class [42,43].

A construction similar to the “taking-turns” idea (see Section 3.2) was used by Berard and Duford to prove that the
emptiness query is undecidable for timed automata with four clocks and additive clock constraints [44].

7. Conclusion

Although intense research has been pursued over the last one or two decades, there is no clear elucidation of the
decidability boundary for the hybrid automaton reachability query. Fig. 1 summarizes the relationship between the main
hybrid models we have considered in this work. The contribution of this paper is twofold. First, we have shown that between

158 E. Asarin et al. / Information and Computation 211 (2012) 138–159
2-dim PCDs (for which the reachability problem is decidable [7]) and 3-dim PCDs (for which reachability is undecidable [8]),
there exists an interesting class, 2-dim HPCD, for which the reachability question is still open. We have also shown that
the same is true for several similar classes, namely 2-dim rectangular automata and 2-dim linear hybrid automata with
additional restrictions, and also for PCDs on 2-dim manifolds. Moreover, we refined the decidability frontier by exploiting
the expressive redundancy of the hierarchical piecewise constant derivative system class definition. We introduced the
“taking-turns” idea, that the two PCD variables could alternatively compute PAM iterations. We also showed how we could
exploit the finite range of the PAM to construct non-overlapping state invariants. These ideas helped show that a 1-dim PAM
can be simulated by a 2-dim PCD augmented with translational resets only, or with overlapping invariants and comparative
guards, with identity resets. We also demonstrated how decidable classes, like timed and initialized rectangular automata,
can be extended into classes open for the reachability problem. Second, we have proved that 2-dim HPCDs are really in the
boundary between decidability and undecidability, since adding a simple counter or allowing some kind of “infinite pattern”
to these systems, makes the reachability problem undecidable. A simple algorithm for over-approximating reachability was
presented. It revealed that the problem is decidable, for those PAMs that converge during this iteration.

There are many related questions still unresolved: What is the least constrained 2-dim HPCD that is decidable? Can we
sharpen the decidability frontier defined by initialized rectangular HPCDs and simple planar differential inclusion systems?
Can the openness of the 1-dim PAM and the one-stopwatch automata classes be compared? A different perspective on the
decidability of the PAM class may be obtained from the literature on discrete chaotic dynamical systems [45]. Another less
explored research problem would be to the characterization of the undecidability problem in other models of computation,
such as the Blum–Shub–Smale model [46] and models of recursive analysis.

References

[1] M. Minsky, Recursive unsolvability of Post’s problem of tag and other topics in theory of Turing machines, Ann. of Math. 74 (1961) 437–455.
[2] P. Koiran, My favourite problems, http://www.ens-lyon.fr/~koiran/problems.html.
[3] O. Bournez, Complexité algorithmique des systèmes dynamiques continus et hybrides, PhD thesis, ENS de Lyon, 1999.
[4] T. Henzinger, The theory of hybrid automata, in: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, LICS’96, IEEE Computer

Society Press, 1996, pp. 278–292.
[5] E. Asarin, G. Schneider, Widening the boundary between decidable and undecidable hybrid systems, in: CONCUR’02, in: Lecture Notes in Comput. Sci.,

vol. 2421, Springer, 2002, pp. 193–208.
[6] G. Schneider, Algorithmic analysis of polygonal hybrid systems, PhD thesis, VERIMAG – UJF, Grenoble, France, July 2002.
[7] O. Maler, A. Pnueli, Reachability analysis of planar multi-linear systems, in: CAV’93, in: Lecture Notes in Comput. Sci., vol. 697, Springer, 1993, pp. 194–

209.
[8] E. Asarin, O. Maler, A. Pnueli, Reachability analysis of dynamical systems having piecewise-constant derivatives, Theoret. Comput. Sci. 138 (1995)

35–65.
[9] V. Mysore, A. Pnueli, Refining the undecidability frontier of hybrid automata, in: FSTTCS, in: Lecture Notes in Comput. Sci., vol. 3821, Springer, 2005,

pp. 261–272.
[10] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid systems,

Theoret. Comput. Sci. 138 (1995) 3–34.
[11] S. Simić, K. Johansson, S. Sastry, J. Lygeros, Towards a geometric theory of hybrid systems, in: HSCC’00, in: Lecture Notes in Comput. Sci., vol. 1790,

Springer, 2000, pp. 421–436.
[12] T. Henzinger, P. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid automata?, in: 27th ACM STOC, ACM Press, 1995, pp. 373–382.
[13] A. Puri, P. Varaiya, Decidability of hybrid systems with rectangular differential inclusions, in: CAV 94, in: Lecture Notes in Comput. Sci., vol. 818,

Springer, 1994, pp. 95–104.
[14] P. Bouyer, C. Dufourd, E. Fleury, A. Petit, Expressiveness of updatable timed automata, in: MFCS’2000, in: Lecture Notes in Comput. Sci., vol. 1893,

Springer, 2000, pp. 232–242.
[15] E. Asarin, G. Schneider, S. Yovine, On the decidability of the reachability problem for planar differential inclusions, in: HSCC’2001, in: Lecture Notes in

Comput. Sci., vol. 2034, Springer, 2001, pp. 89–104.
[16] M. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press Inc., 1974.
[17] M. Henle, A Combinatorial Introduction to Topology, Dover Publications, Inc., 1979.
[18] P. Koiran, M. Cosnard, M. Garzon, Computability with low-dimensional dynamical systems, Theoret. Comput. Sci. 132 (1) (1994) 113–128.
[19] M. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, 1967.
[20] P. Koiran, C. Moore, Closed-form analytic maps in one and two dimensions can simulate universal Turing machines, Theoret. Comput. Sci. 210 (1999)

217–223.
[21] L. Bobrow, M. Arbib, Discrete Mathematics, W.B. Saunders, 1974.
[22] R. Milner, Communication and Concurrency, Prentice Hall Int., 1989.
[23] R. Devaney, An Introduction to Chaotic Dynamical Systems, second ed., Addison–Wesley, Redwood City, 1989.
[24] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Linear Algebra, Springer, New York, 1990.
[25] K. Sibirsky, Introduction to Topological Dynamics, Noordhoff International Publishing, Leyden, 1975.
[26] E. Asarin, O. Maler, On some relations between dynamical systems and transition systems, in: ICALP’94, in: Lecture Notes in Comput. Sci., vol. 820,

Springer, 1994, pp. 59–72.
[27] M. Branicky, Universal computation and other capabilities of hybrid and continuous dynamical systems, Theoret. Comput. Sci. 138 (1) (1995) 67–100.
[28] E. Haghverdi, P. Tabuada, G. Pappas, Bisimulation relations for dynamical, control, and hybrid systems, Theoret. Comput. Sci. 342 (2–3) (2005) 229–261.
[29] G. Teschl, Ordinary differential equations and dynamical systems, Lecture Notes from http://www.mat.univie.ac.at/~gerald/ftp/book-ode/index.html,

2004.
[30] P. Bouyer, C. Dufourd, E. Fleury, A. Petit, Are timed automata updatable?, in: CAV’2000, in: Lecture Notes in Comput. Sci., vol. 1855, Springer, 2000,

pp. 464–479.
[31] R. Alur, S. Kannan, S.L. Torre, Polyhedral flows in hybrid automata, in: HSCC’99, in: Lecture Notes in Comput. Sci., vol. 1569, Springer, 1999, pp. 5–18.
[32] V. Mysore, B. Mishra, Algorithmic algebraic model checking III: Approximate methods, in: Infinity’05, in: ENTCS, vol. 149, 2006, pp. 61–77.
[33] R. Alur, D. Dill, A theory of timed automata, Theoret. Comput. Sci. 126 (1994) 183–235.

http://www.ens-lyon.fr/~koiran/problems.html
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/index.html

E. Asarin et al. / Information and Computation 211 (2012) 138–159 159
[34] R. Alur, C. Courcoubetis, T. Henzinger, P.-H. Ho, Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems, in:
Hybrid Systems, in: Lecture Notes in Comput. Sci., vol. 736, Springer, 1993, pp. 209–229.

[35] X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, An approach to the description and analysis of hybrid systems, in: Hybrid Systems, in: Lecture Notes in
Comput. Sci., vol. 736, Springer, 1993, pp. 149–178.

[36] A. Bouajjani, R. Robbana, Verifying omega-regular properties for a subclass of linear hybrid systems, in: CAV’95, in: Lecture Notes in Comput. Sci.,
vol. 939, 1995, pp. 437–450.

[37] A. Bouajjani, R. Echahed, R. Robbana, Verifying invariance properties of timed systems with duration variables, in: FTRTFT’94, in: Lecture Notes in
Comput. Sci., vol. 863, 1994, pp. 193–210.

[38] K. C̆erāns, Algorithmic problems in analysis of real-time systems specifications, PhD thesis, Univ. of Latvia, 1992.
[39] R. Alur, T. Henzinger, M. Vardi, Parametric real-time reasoning, in: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC’93,

ACM, 1993, pp. 592–601.
[40] Y. Kesten, A. Pnueli, J. Sifakis, S. Yovine, Integration graphs: A class of decidable hybrid systems, in: Hybrid Systems, in: Lecture Notes in Comput. Sci.,

vol. 736, Springer, 1993, pp. 179–208.
[41] C. Moore, Unpredictability and undecidability in dynamical systems, Phys. Rev. Lett. 64 (20) (1990) 2354–2357.
[42] O. Kurganskyy, I. Potapov, F. Sancho-Caparrini, Computation in one-dimensional piecewise maps, in: HSCC’07, in: Lecture Notes in Comput. Sci.,

vol. 4416, Springer, 2007, pp. 706–709.
[43] O. Kurganskyy, I. Potapov, F. Sancho-Caparrini, Reachability problems in low-dimensional iterative maps, Internat. J. Found. Comput. Sci. 19 (4) (2008)

935–951.
[44] B. Berard, C. Dufourd, Timed automata and additive clock constraints, Inform. Process. Lett. 75 (1–2) (2000) 1–7.
[45] E. Asarin, Chaos and undecidability, Tech. Rep., Verimag, 1995.
[46] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, 1997.

	Low dimensional hybrid systems - decidable, undecidable, don't know
	1 Introduction
	2 Preliminaries
	2.1 Hybrid automata
	2.2 Rectangular and linear hybrid automata
	2.3 Piecewise constant derivative system (PCD)
	2.4 Two-dimensional manifolds
	2.5 Our reference models
	2.5.1 Piecewise afﬁne map (PAM)
	2.5.2 Minsky machine
	On the notion of simulation

	3 Between decidability and undecidability
	3.1 Hierarchical piecewise constant derivative system (HPCD)
	3.2 PCDs with translational resets
	3.3 PCDs on 2-dimensional manifolds
	3.4 Other open subclasses
	3.4.1 Variants of linear, timed and rectangular automata
	3.4.2 Variants of HPCDs

	4 Undecidability results
	4.1 HPCDs with one counter
	4.2 HPCDs with other inﬁnite structures

	5 Understanding PAMs
	5.1 PAM's proximity to undecidability
	5.2 PAM's proximity to decidability
	5.3 An approximate reachability algorithm

	6 Related work
	7 Conclusion
	References

